首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary A modified protoplast isolation technique, applicable to a range of dihaploidSolanum tuberosum genotypes, has been developed. A combination of high calcium and high pH was used to fuse mesophyl protoplasts of dihaploidS. tuberosum (PDH40) and the diploid wild speciesS. brevidens. Large numbers of colonies were obtained after fusion and putative hybrids selected on the basis of phenotype from regenerated shoots. From these, 11 somatic hybrid plants have been identified by their isoenzyme patterns and morphologic characteristics. Four of these hybrids had the expected chromosome number of 48. The approach of mass culture after fusion followed by selection of hybrids from regenerated shoots and the application of somatic hybridization to potato breeding are discussed.  相似文献   

2.
Summary Somatic fusions between the cultivated potato Solanum tuberosum and the wild species S. circaeifolium subsp. circaeifolium Bitter were produced in order to incorporate desirable traits into the potato gene pool. Selection of the putative hybrids was based on a difference in callus morphology between the hybrids and their parents, with the hybrids showing typical purple-colored cells in otherwise green calli. In all, 17 individual calli regenerated to plants. Of the nine plants that could be transferred to the greenhouse, eight showed a hybrid and one a parental morphology. Restriction fragment length polymorphism (RFLP) analysis confirmed the hybrid character in the former group. Chloroplast counts in stomatal guard cells and flow cytometric determination of nuclear DNA content showed that four hybrid plants were tetraploid (4x), one was mixoploid (5x–8x), and the others were polyploid (6x; 8x). Three out of four tetraploid hybrids were found to be fully resistant to Phytophthora infestans, and all four hybrids were resistant to Globodera pallida pathotypes Pa2 and Pa3. It was further observed that the type and amount of steroidal glycoalkaloids varied among the tubers of the parents and the hybrids. Using the hybrids as female parents in crosses with S. tuberosum, viable seeds could be obtained. This demonstrates the potential of these hybrids in practical plant breeding.  相似文献   

3.
 The wild potato relative Solanum commersonii is reported to carry resistance to bacterial wilt disease caused by Ralstonia solanacearum. To overcome sexual incompatibilites due to differences in ploidy and endosperm balance numbers, somatic hybrids were made that combine the S. tuberosum and S. commersonii genomes. The resulting somatic hybrid plants are vigorous, but their disease resistance level and their fertility was unknown. We therefore tested the S. commersonii and S. tuberosum source material cv Superior, potato cv Atlantic and six somatic hybrid lines for resistance to a virulent strain of R. solanacearum (race 3, biovar 2) at 28°C. As expected, S. commersonii was significantly more wilt-resistant than the cultivated potatoes. In five of the six somatic hybrid lines, disease resistance levels were similar to that of the resistant S. commersonii parent. The resistance level of the sixth somatic hybrid was intermediate, significantly different from both S. commersonii and S. tuberosum. In controlled crosses, the somatic hybrids in this study proved both to be male- and female-fertile and were self-compatible. More importantly, the somatic hybrids can be crossed with S. tuberosum to produce viable seeds. Received: 23 June 1998 / Accepted: 13 October 1998  相似文献   

4.
Interspecific somatic hybrids between commercial cultivars of potato Solanum tuberosum L. Agave and Delikat and the wild diploid species Solanum cardiophyllum Lindl. (cph) were produced by protoplast electrofusion. The hybrid nature of the regenerated plants was confirmed by flow cytometry, simple sequence repeat (SSR), amplified fragment length polymorphism (AFLP), microsatellite-anchored fragment length polymorphism (MFLP) markers and morphological analysis. Somatic hybrids were assessed for their resistance to Colorado potato beetle (CPB) using a laboratory bioassay, to Potato virus Y (PVY) by mechanical inoculation and field trials, and foliage blight in a greenhouse and by field trials. Twenty-four and 26 somatic hybrids of cph + cv. Agave or cph + cv. Delikat, respectively, showed no symptoms of infection with PVY, of which 3 and 12, respectively, were also resistant to foliage blight. One hybrid of cph + Agave performed best in CPB and PVY resistance tests. Of the somatic hybrids that were evaluated for their morphology and tuber yield in the field for 3 years, four did not differ significantly in tuber yield from the parental and standard cultivars. Progeny of hybrids was obtained by pollinating them with pollen from a cultivar, selfing or cross-pollination. The results confirm that protoplast electrofusion can be used to transfer the CPB, PVY and late blight resistance of cph into somatic hybrids. These resistant somatic hybrids can be used in pre-breeding studies, molecular characterization and for increasing the genetic diversity available for potato breeding by marker-assisted combinatorial introgression into the potato gene pool.  相似文献   

5.
Summary Many somatic fusion hybrids have been produced between a dihaploid potato Solanum tuberosum and the sexually-incompatible wild species S. brevidens using both chemical and electrical fusion techniques. S. brevidens was resistant to both potato leaf roll virus (PLRV) and potato virus Y (PVY), the viruses being either at low (PLRV) or undetectable (PVY) concentrations as determined by enzyme-linked immunosorbent assay (ELISA). The S. tuberosum parent was susceptible to both viruses. A wide range of resistance, expressed as a decrease in virus concentration to both viruses was found amongst fusion hybrids, four of which were especially resistant. The practicality of introducing virus resistance from S. brevidens into cultivated potatoes by somatic hybridisation is discussed.  相似文献   

6.
Protoplast fusion between incongruent Solanum bulbocastanum and S. tuberosum haploids was accomplished to produce hybrids combining elite traits from both parents. We identified 11 somatic hybrids out of 42 regenerants analyzed through ISSR markers. Some hybrids had loss or gain of fragments compared to the parents, likely due to rearrangements and deletions of chromosome segments after fusion, and/or to somaclonal variation during hybrid regeneration. Increased heterotic vigor for some traits as well as high diversity was observed as the effect of both ploidy and fusion combination. Microsporogenesis analysis indicated the occurrence of multivalent configurations and several meiotic abnormalities, such as chromosomes bridges and various spindle orientations. Since all hybrids were sterile, in vitro anther culture was employed for haploidization as a possible strategy to overcome barriers to hybridizations. Haploids were obtained from all the tetraploid S. bulbocastanum (+) S. tuberosum somatic hybrids tested, although with differences in both the number of embryos per 100 anthers cultured and the number of differentiated green plantlets. This is the first report on the successful production of haploid plants from S. bulbocastanum (+) S. tuberosum hybrids.  相似文献   

7.
Solanum chacoense Bitter, a wild relative of the cultivated potato, produces several glycoalkaloids, including solanine, chaconine, and the leptines. The foliar-specific leptine glycoalkaloids are believed to confer resistance to the Colorado Potato Beetle (CPB). Using two bulked DNA samples composed of high- and low-percent leptine individuals from a segregating F1 population of S. chacoense, we have identified two molecular markers that are closely linked to high percent solanine+chaconine and, conversely, to nil/low percent leptine. One of these, a 1,500-bp RAPD product (UBC370-1500), had a recombination value of 3% in the F1 progeny, indicating tight linkage. UBC370-1500 mapped to the end of the short arm of potato chromosome 1, in the region of a previously mapped major QTL for solanidine, from a S. tuberosum (solanidine)×S. berthaultii (solasodine) cross. Taken together, these results suggest that either (1) a major locus determining solanidine accumulation in Solanum spp. is on chromosome 1 in the region defined by the RFLP markers TG24, CT197, and CT233, or (2) this region of chromosome 1 may harbor two or more important genes which determine accumulation of steroidal aglycones. These findings are important for the genetics of leptine (as well as other glycoalkaloid) accumulation and for the development of CPB-resistant potato varieties. Received: 5 March 1998 / Accepted: 28 July 1998  相似文献   

8.
The somatic hybrids were derived previously from protoplast fusion between Solanum tuberosum and S. chacoense to gain the bacterial wilt resistance from the wild species. The genome components analysis in the present research was to clarify the nuclear and cytoplasmic composition of the hybrids, to explore the molecular markers associated with the resistance, and provide information for better use of these hybrids in potato breeding. One hundred and eight nuclear SSR markers and five cytoplasmic specific primers polymorphic between the fusion parents were used to detect the genome components of 44 somatic hybrids. The bacterial wilt resistance was assessed thrice by inoculating the in vitro plants with a bacterial suspension of race 1. The disease index, relative disease index, and resistance level were assigned to each hybrid, which were further analyzed in relation to the molecular markers for elucidating the potential genetic base of the resistance. All of the 317 parental unique nuclear SSR alleles appeared in the somatic hybrids with some variations in the number of bands detected. Nearly 80 % of the hybrids randomly showed the chloroplast pattern of one parent, and most of the hybrids exhibited a fused mitochondrial DNA pattern. One hundred and nine specific SSR alleles of S. chacoense were analyzed for their relationship with the disease index of the hybrids, and three alleles were identified to be significantly associated with the resistance. Selection for the resistant SSR alleles of S. chacoense may increase the possibility of producing resistant pedigrees.  相似文献   

9.
Summary Regeneration of inter-EBN hybrids among potato species was achieved using embryo rescue techniques. Tetraploid hybrids between 4x(2EBN) Solanum stoloniferum x 4x(4EBN) S. tuberosum Gp. Andigena as well as diploid hybrids between 2x(1EBN) S. chancayense x 2x(2EBN) S. chacoense were obtained by culturing immature hybrid embryos in nutrient medium. Identification of appropriate embryo developmental stages was critical in developing a suitable protocol for rescuing viable hybrid embryos. The use of IVP clones as the second pollinator in 4x(2EBN) x 4x(4EBN) crosses reduced premature fruit drop and helped to identify triploid hybrids. Morphological and cytological examination confirmed true hybridity for a few of the regenerated plants. Male sterility and meiotic abnormalities were characteristic of the hybrids. Several S. stoloniferum-Andigena hybrids were successfully backcrossed to Gp. Andigena.Cooperative investigation of Vegetable Crops Research Unit, USDA, Agricultural Research Service, and the Wisconsin Agricultural Experiment Station Note: Reference to a specific brand or firm name does not constitute endorsement by the U.S. Department of Agriculture over others of similar nature not mentioned  相似文献   

10.
Solanum acaule Bitt. is a disomic tetraploid (4x) wild potato species which is resistant to several potato diseases. Introgression of disease resistance and abiotic stress tolerance to the tetrasomic tetraploid (4x) cultivated potato (S. tuberosum L.) gene pool via crossing has been limited due to the difference in the endosperm balance number. In the present study, protoplast fusion was applied to produce hexaploid (6x) somatic hybrids between the parental lines, tetraploid (4x) S. acaule and two anther-derived dihaploid (2x) lines of S. tuberosum cv. White Lady. One callus (0.4%) of a total of 229 calli obtained regenerated into shoots in the fusion combination S. acaule (+) White Lady 15.dh.8.2.2. All the regenerated shoots were confirmed to be interspecific somatic hybrids using species-specific RAPD markers. In another fusion combination, S. acaule (+) White Lady 7.dh.23.1.1, fifteen calli (5%) regenerated into a total of sixteen shoots from 289 calli. All the analysed somatic hybrids between S. acaule and S. tuberosum were hexaploid. The mean DNA content (2C value) of the combination S. acaule (+) White Lady 15.dh.8.2.2 somatic hybrids (4.55 pg), was approximately the sum (4.69 pg) of the DNA contents of the parental lines, S. acaule (2.95 pg) and S. tuberosum (1.74 pg). In the greenhouse, the two somatic hybrids analysed were normal in their morphological characteristics and more vigorous than their parental lines. Most of the morphological characteristics were closer to the tetraploid S. acaule than to the dihaploid S. tuberosum. The interspecific somatic hybrids are currently being tested for frost tolerance and glycoalkaloid composition. Received: 19 January 1998 / Revision received: 27 March 1998 / Accepted: 20 April 1998  相似文献   

11.
Somatic hybrids between a potato virus Y (PVY) resistant Solanum etuberosum clone and a susceptible diploid potato clone derived from a cross between S. tuberosum Gp. Tuberosum haploid US-W 730 and S. berthaultii were evaluated for resistance to PVY. All but one of the tested somatic hybrids were significantly more resistant than cultivars Atlantic and Katahdin. However, none was as resistant as the S. etuberosum parent. One hexaploid somatic hybrid, possibly the product of a triple-cell fusion involving one S. etuberosum protoplast and two haploid x S. berthaultii protoplasts, was as susceptible to PVY infection as the cultivars. Tetraploid progeny of the somatic hybrids, obtained from crosses with Gp. Tuberosum cultivars, were neither as resistant as the maternal somatic hybrid parent, nor as susceptible as the paternal cultivar parent. It appears that the introgression of PVY resistance from (1EBN) S. etuberosum into (4EBN) S. tuberosum (EBN-endosperm balance number) will be successful through the use of somatic hybridization and subsequent crosses of the somatic hybrids back to S. tuberosum.  相似文献   

12.
Summary Production of plants from cultured anthers of Solanum chacoense clone IP 33, of its interspecific diploid hybrids with S. tuberosum clones IP 354 and IP 372, and of a complex Solanum hybrid containing in its genome S. ajanhuiri is reported. Genotypic differences were found to influence both the induction phase and the regeneration process. Hybrids derived from clone IP 354 of S. tuberosum were much more responsive in culture than hybrids from clone IP 372. Altogether, 507 plants were regenerated and 309 were cytologically analyzed. Of these, 52% were haploid, 47% diploid and 1% mixoploid or tetraploid. A number of diploid plants probably originated from unreduced microspores and some genetic consequences of this event are discussed.  相似文献   

13.
Interspecific potato somatic hybrids between Solanum tuberosum L. (di)haploid C-13 and 1 endosperm balance number non-tuberous wild species S. etuberosum Lindl. were produced by protoplasts electrofusion. The objective was to transfer virus resistance from this wild species into the cultivated potatoes. Post-fusion products were cultured in VKM medium followed by regeneration of calli in MS13 K medium at 20°C under a 16-h photoperiod, and regenerants were multiplied on MS medium. Twenty-one somatic hybrids were confirmed by RAPD, SSR and cytoplasm (chloroplast/mitochondria) type analysis possessing species-specific diagnostic bands of corresponding parents. Tetraploid nature of these somatic hybrids was determined through flow cytometry analysis. Somatic hybrids showed intermediate phenotypes (plant, leaves and floral morphology) to their parents in glass-house grown plants. All the somatic hybrids were male-fertile. ELISA assay of somatic hybrids after artificial inoculation of Potato virus Y (PVY) infection reveals high PVY resistance.  相似文献   

14.
Summary Somatic hybrid plants of various ploidy levels obtained after chemical fusion between two dihaploid clones of potato Solanum tuberosum L. have been analysed by cytological, morphological and molecular methods. The hybrid nature of tetraploid and hexaploid plants and the genome dosage in hexaploid hybrids were confirmed by Giemsa C-banding. Tetraploid and hexaploid hybrids showed numerical as well as structural chromosome mutations. The latter occurred mainly in the nuclear organizing chromosome. The tetraploid hybrids were more vigorous than the dihaploid parents as demonstrated by an increase in height, enlargement of leaves, increase in the number of internodes, restored potential for flowering and increased tuber yield. The grouping of tetraploid somatic hybrids into various classes on the basis of leaf morphology revealed that plants with a full chromosome complement were more uniform than aneuploids. Many hexaploid somatic hybrids were also more vigorous than the dihaploid parents and could be grouped into two different classes on the basis of floral colour and tuber characteristics, the differences being due to their different dosage of parental genomes. Most of the tetraploid somatic hybrids showed pollen development halted at the tetrad stage as one of the parental clones contained a S. Stoloniferum cytoplasm. However, one tetraploid plant produced pollen grains with high viability. The chloroplast genome in the hybrid plants was determined by RFLP analysis. All of the hybrids had a cpDNA pattern identical to one parent, which contained either S. Tuberosum or S. Stoloniferum cpDNA. A slight preference for S. Tuberosum plastids were observed in hybrid plants. No correlation between pollen development and plastid type could be detected.  相似文献   

15.
Summary Transformation of potato (Solanum tuberosum L.) with cysteine proteinase inhibitor (PI) genes represents a potential way of controlling the major insect pest Colorado potato beetle (CPB; Leptinotarsa decemlineata Say). The present study describes the Agrobacterium-mediated transformation of potato (cv. Kennebec) with an oryzacystatin I (OCI) cDNA clone linked to a CaMV 35S promoter. The transgenic plants accumulated active OCI in potato leaves, as demonstrated by the papain-inhibitory activity of transgenic plant leaf extracts. In addition to their anti-papain activity, the extracts also caused a partial but significant inhibition of CPB digestive proteinases, similar to that observed with pure inhibitors. Recombinant OCI did not alter the activity of the major potato leaf endogenous proteinases, which seemed to be of the serine-type. Therefore we suggest that the OCI cDNA can be used for the production of CPB-resistant transgenic potato plants without interfering with endogenous proteinases of these plants.Abbreviations CPB Colorado potato beetle - E-64 trans-epoxy-succinyl-L-leucylamido (4-guanidino) butane - OCI oryzacystatin I - PI proteinase inhibitor - PMSF phenylmethylsulfonyl fluoride  相似文献   

16.
The common potato, tetraploid Solanum tuberosum spp. tuberosum L. (tbr), has a narrow genetic base but a large number of related tuber-bearing species that harbor genetic diversity for agronomic characters. The taxonomic status of Solanum ruiz-lealii Brücher (rzl), a diploid species endemic to Mendoza province, Argentina, is controversial. It has been described as a new species of non-hybrid origin and as a natural hybrid between S. kurtzianum Bitt. & Wittm. (ktz) and S. chacoense Bitt. (chc). The hypothesis of the hybrid origin of rzl is examined systematically for the first time by phenetic analyses of morphological and molecular (SSR markers) data, and cytological analyses of interspecific hybrids. The morphological, cytological and molecular data are congruent, and suggest that rzl is not a recent natural hybrid between the ktz and the chc populations studied but has probably originated by divergence of chc, or by hybridization between chc and another taxon.  相似文献   

17.
Potato virus Y (PVY) and potato leafroll virus (PLRV) are two of the most important viral pathogens of potato. Infection of potato by these viruses results in losses of yield and quality in commercial production and in the rejection of seed in certification programs. Host plant resistance to these two viruses was identified in the backcross progeny of a Solanum etuberosum Lindl. somatic hybrid. Multiple years of field evaluations with high-virus inoculum and aphid populations have shown the PVY and PLRV resistances of S. etuberosum to be stably expressed in two generations of progeny. However, while PLRV resistance was transmitted and expressed in the third generation of backcrossing to cultivated potato (Solanum tuberosum L. subsp. tuberosum), PVY resistance was lost. PLRV resistance appears to be monogenic based on the inheritance of resistance in a BC3 population. Data from a previous evaluation of the BC2 progeny used in this study provides evidence that PLRV resistance was partly conferred by reduced PLRV accumulation in foliage. The field and grafting data presented in this study suggests that resistance to the systemic spread of PLRV from infected foliage to tubers also contributes to the observed resistance from S. etuberosum. The PLRV resistance contributed by S. etuberosum is stably transmitted and expressed through sexual generations and therefore would be useful to potato breeders for the development of PLRV resistant potato cultivars.  相似文献   

18.
Interspecific somatic hybrids between the dihaploid Solanum tuberosum and the wild species S. pinnatisectum Dun. were produced via protoplast fusion. Protoplast isolation, electrofusion, culture of post-fusion products and regeneration of calli/shoots were undertaken following optimized protocols. Regenerants were characterized for hybridity, ploidy and resistance to Phytophthora infestans (Mont.) de Bery, causal fungal pathogen of late blight disease. From a total of 126 regenerated macrocalli, 12 somatic hybrids were confirmed by possessing species-specific diagnostic bands of their corresponding parents as revealed by RAPD, SSRs and cytoplasmic-DNA analyses. Tetraploid status of the 12 hybrids was determined using flow cytometry analysis. Intermediate phenotypes for leaf, flower, and tuber characteristics and high male fertility were observed in field-grown hybrid plants. Hybrids were highly resistant to foliage late blight based on field assessment for two seasons. In contrast, moderate level of resistance to foliage blight was observed in hybrids based on the detached leaf assay under laboratory conditions. Overall, somatic hybrids with moderate levels of resistance to foliage blight were identified, and these will be useful for in situ hybridization in potato breeding efforts.  相似文献   

19.
Summary Plants were regenerated from petiole calli of interspecific hybrids of Solanum tuberosum x S. berthaultii, an insect-resistant wild species. Callus culture was used to generate genetic changes to overcome the restricted recombination between the two genomes. Two plants out of 58 (3.5%) from calli of hybrid J114-1 showed stable and heritable differences from the hybrid over two cycles of evaluations in the field. Replicated trials were conducted in 1987 and 1988, using two populations of plants propagated by nodal cuttings from the original regenerates maintained in vitro. One regenerate showed insect resistance and increased marketable yield (approximately two fold) in the field. The other had higher levels of phenolic exudate in one of the two types of foliar trichomes associated with the insect resistance mechanism. Some desirable changes were discernible only in sexual progeny of regenerates, not in the regenerates themselves. In a backcross to S. tuberosum, 7 of 14 (50%) regenerates from hybrid F743-4 showed more progeny (up to 15-fold) with improved trichome traits and horticultural characteristics than the original hybrid. The variations were not associated with changes in ploidy. Fifteen plants obtained from these crosses are currently being incorporated into breeding lines. These results suggest that a period of callus culture followed by plant regeneration may aid in the introgression of desirable traits from wild species into crop plants.  相似文献   

20.
 Crossing experiments were conducted to introduce resistance to the root-knot nematodes, Meloidogyne chitwoodi and M. fallax, from various polyploid Central American Solanum spp. into the cultivated potato, S. tuberosum ssp. tuberosum. The most effort was put into producing tetraploid hybrids through inter-EBN (Endosperm Balance Number) crosses. From the crosses of tetraploid S. tuberosum (4 EBN) with tetraploid S. stoloniferum and S. fendleri (both 2 EBN), few seeds were derived that led to viable plants. In vitro culture of immature seeds also yielded several hybrid plants. From crosses of diploid S. tuberosum (2 EBN) with hexaploid S. hougasii (4 EBN) four hybrids were obtained through in vitro culture. Backcrosses were made with selected hybrids and a variable number of seeds was produced depending on the hybrid genotype. The successful introgression of resistance into backcross populations is shown. A scheme is presented for the introgression of traits at a tetraploid level from allotetraploid Solanum species into autotetraploid S. tuberosum through sexual crosses. The relevance of EBN for potato breeding is discussed. Received: 25 November 1996 / Accepted: 14 February 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号