首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We describe a procedure that enriches for temperature-sensitive (ts) mutants of vesicular stomatitis virus (VSV), Indiana serotype, which are conditionally defective in the biosynthesis of the viral glycoprotein. The selection procedure depends on the rescue of pseudotypes of known ts VSV mutants in complementation group V (corresponding to the viral G protein) by growth at 39.5 degrees C in cells preinfected with the avian retrovirus Rous-associated virus 1 (RAV-1). Seventeen nonleaky ts mutants were isolated from mutagenized stocks of VSV. Eight induced no synthesis of VSV proteins at the nonpermissive temperature and hence were not studied further. Four mutants belonged to complementation group V and resembled other ts (V) mutations in their thermolability, production at 39.5 degrees C of noninfectious particles specifically deficient in VSV G protein, synthesis at 39.5 degrees C of normal levels of viral RNA and protein, and ability to be rescued at 39.5 degrees C by preinfection of cells by avian retroviruses. Five new ts mutants were, unexpectedly, in complementation group IV, the putative structural gene for the viral nucleocapsid (N) protein. At 39.5 degrees C these mutants also induced formation of noninfectious particles relatively deficient in G protein, and production of infectious virus at 39.5 degrees C was also enhanced by preinfection with RAV-1, although not to the same extent as in the case of the group V mutants. We believe that the primary effect of the ts mutation is a reduced synthesis of the nucleocapsid and thus an inhibition of synthesis of all viral proteins; apparently, the accumulation of G protein at the surface is not sufficient to envelope all the viral nucleocapsids, or the mutation in the nucleocapsid prevents proper assembly of G into virions. The selection procedure, based on pseudotype formation with glycoproteins encoded by an unrelated virus, has potential use for the isolation of new glycoprotein mutants of diverse groups of enveloped viruses.  相似文献   

2.
3.
Nine temperature-sensitive mutants of herpes simplex virus type 2 representing eight complementation groups were assigned to two classes as a consequence of the virion forms and virus-specific cellular alterations observed in thin sections of mutant-infected human embryonic lung cells grown at the nonpermissive temperature. Mutants in class A, one DNA- and one DNA +, failed to synthesize detectable virus particles. Mutants in class B, 4DNA- and 3DNA+, produced moderate to large numbers of empty nucleocapsids. Dense-cored nucleocapsids were not observed in thin sections of cells infected with any of the nine mutants at this temperature. Virus-specific cellular alterations consisted primarily of margination of chromating and nulcear membrane thickening and duplication.  相似文献   

4.
Virions from Newcastle disease virus mutants in four temperature-sensitive RNA+ groups were grown in embryonated hen eggs at the permissive temperature, purified, and then analyzed for biological properties at both the permissive and nonpermissive temperatures. At the permissive temperature, virions of mutants in groups B, C, and BC (11 mutants) were all lower in specific (per milligram of protein) hemagglutination, neuraminidase, and hemolysis activities compared with the wild type. These deficiencies were related to decreased amounts of hemagglutinin-neuraminidase glycoprotein in the virions. Activities of these mutant virions at both the permissive and nonpermissive temperatures were similar, indicating that hemagglutinin-neuraminidase synthesized at the permissive temperature was not temperature sensitive in function. The three group D mutants displayed a different pattern. At the permissive temperature, they had wild-type hemagglutination and neuraminidase activities but were deficient compared with the wild type in hemolysis. Again, functions were similar at both temperatures. Most of the B, C, and BC mutants had specific infectivities similar to that of the wild type despite lower hemagglutination, neuraminidase, and hemolysis functions. However, the D mutants were all less infectious. This evidence is consistent with a shared hemagglutinin-neuraminidase defect in the B, C, and BC mutants and a defect in either the F glycoprotein or the M protein in the D mutants.  相似文献   

5.
Fifty temperature-sensitive mutants, which replicate at 32 degrees C but not at 39.5 degrees C, were isolated after mutagenesis of the vaccine strain of adenovirus type 7 with hydroxylamine (mutation frequency of 9.0%) or nitrous acid (mutation frequency of 3.8%). Intratypic complementation analyses separated 46 of these mutants into seven groups. Intertypic complementation tests with temperature-sensitive mutants of adenovirus type 5 showed that the mutant in complementation group A failed to complement H5ts125 (a DNA-binding protein mutant), that mutants in group B and C did not complement adenovirus type 5 hexon mutants, and that none of the mutants was defective in fiber production. Further phenotypic characterization showed that at the nonpermissive temperature the mutant in group A failed to make immunologically reactive DNA-binding protein, mutants in groups B and C were defective in transport of trimeric hexons to the nucleus, mutants in groups D, E, and F assembled empty capsids, and mutants in group G assembled DNA-containing capsids as well as empty capsids. The mutants of the complementation groups were physically mapped by marker rescue, and the mutations were localized between the following map coordinates: groups B and C between 50.4 and 60.2 map units (m.u.), groups D and E between 29.6 and 36.7 m.u., and group G between 36.7 and 42.0 m.u. or 44.0 and 47.0 m.u. The mutant in group A proved to be a double mutant.  相似文献   

6.
Several temperature-sensitive mutants of vesicular stomatitis virus in complementation group III produce, at nonpermissive temperature, noninfectious particles which contain the viral M (matrix) and G (glycoprotein) proteins but less than 10% of the normal proportion of N protein or RNA. Since group III mutants are thought to be defective in the structural gene for the virus M protein, these findings demonstrate that an interaction between M and the nucleocapsid is of importance in virus budding. Taken together with earlier results, they suggest that M is the key protein in bud formation.  相似文献   

7.
We isolated 25 temperature-sensitive mutants of B/Kanagawa/73 strain generated by mutagenesis with 5-fluorouracil and classified them into seven recombination groups by pair-wise crosses. All mutants showed a ratio of plaquing efficiency at the nonpermissive temperature (37.5 C) to the permissive temperature (32 C) of 10–4 or less. At 37.5 C most of group I, II, and III mutants did not produce appreciable amounts of protein, but all other group mutants were protein synthesis-positive. A group VII mutant produced active hemagglutinin (HA) and neuraminidase (NA) at the nonpermissive temperature, but Group V mutants produced only active NA and were defective in the HA molecule. The other group mutants, including group IV mutants with mutation only in the NA gene (8, 10), lacked both activities at the nonpermissive temperature. One of nine influenza B virus isolates in 1989 had EOP 37.5/32 of 1/3 × 10–2 and belonged to recombination group VII.  相似文献   

8.
Temperature-sensitive mutants of Japanese encephalitis virus.   总被引:2,自引:2,他引:0       下载免费PDF全文
Ten stable temperature-sensitive mutants of Japanese encephalitis virus were isolated after mutagenesis by growth of cloned wild-type virus in the presence of the nucleic acid precursor analogs 5-fluorouracil and 5-azacytidine. Mutants were selected which grew at least 100-fold better at 33 degrees C than at 41 degrees C. The 5-fluorouracil was found to be more effective at inducing temperature-sensitive mutations than was 5-azacytidine. Analysis of the virus-specific RNA and proteins synthesized by each mutant at the nonpermissive temperature was used to determine biochemical phenotypes. The mutants were analyzed for abilities to complement in mixed infections. Although inefficient and sometimes nonreciprocal, complementation occurred at higher levels than previously reported for flavivirus mutants. Interference between mutants in some mixed infections was also observed. Seven complementation groups were defined. Three groups contained mutants incapable of synthesizing virus-specific RNA at the nonpermissive temperature, whereas the remaining complementation groups displayed an RNA+ phenotype. Levels of protein synthesis comparable to that of wild type were observed at the nonpermissive temperature in three groups. Two other groups were represented by mutants which synthesized only low levels of virus-specific proteins at the higher temperature. Mutants in the remaining two groups did not produce detectable levels of proteins under nonpermissive conditions.  相似文献   

9.
Viral proteins synthesized in L cells infected with temperature-sensitive (ts) mutants of vesicular stomatitis (VS) virus at permissive (31 C) and nonpermissive (39 C) temperatures were compared by polyacrylamide gel electrophoresis. Mutant ts 5, deficient in synthesis of viral ribonucleic acid (RNA), failed to synthesize any of the five identifiable viral proteins at 39 C. Each of three RNA+ mutants, representing three separate complementation groups, showed distinctive patterns of viral protein synthesis at nonpermissive temperature. Equivalent amounts of 3H-amino acids were incorporated into the five viral proteins made in cells infected with RNA+ mutant ts 45 at 31 and 39 C. Complete virions of ts 45 could be identified by electron microscopy of infected cells incubated at the nonpermissive temperature; the defect in ts 45 appeared to be due in part to greater thermolability of virions as compared with the wild-type. RNA+ mutant ts 23 was deficient in synthesis of viral envelope protein S and failed to make detectable virions at the nonpermissive temperature. Infection of cells at 39 C with the third RNA+ mutant, ts 52, resulted in synthesis of all five viral proteins, but the peak of radioactivity representing the viral membrane glycoprotein migrated more rapidly on gels than coelectrophoresed authentic virion 14C-glycoprotein or viral 3H-glycoprotein extracted from cells infected at 31 C. These data and results of experiments on incorporation of radioactive glucosamine suggest that the primary defect in mutant ts 52 at nonpermissive temperature is failure of glycosylation of the viral glycoprotein. The viral structural proteins made in cells infected with ts 52 at the nonpermissive temperature did not assemble into sedimentable components as they did at permissive temperature; this observation indicates failure of insertion of the nonglycosylated protein (G′) into cell membrane. In support of this hypothesis was the finding that antiviral-antiferritin hybrid antibody did not detect VS viral antigen on the plasma membrane of L cells infected at 39 C with ts 52. In contrast, VS viral antigen localized in plasma membrane of L cells infected at 39 C with mutants ts 23 and ts 45 was readily detected by electron microscopy and fluorescence microscopy.  相似文献   

10.
11.
Maturation of viral proteins in cells infected with mutants of vesicular stomatitis virus was studied by surface iodination and cell fractionation. The movement of G, M, and N proteins to the virion bud appeared to be interdependent. Mutations thought to be in G protein prevented its migration to the cell surface, allowed neither M nor N protein to become membrane bound, and blocked formation of viral particles. Mutant G protein appeared not to leave the endoplasmic reticulum at the nonpermissive temperature, but this defect was partially reversible. In cells infected with mutants that caused N protein to be degraded rapidly or prevented its assembly into nucleocapsids, M protein did not bind to membranes and G protein matured to the cell surface, but never entered structures with the density of virions. Mutations causing M protein to be degraded prevented virion formation, and G protein behaved as in cells infected by mutants in N protein. These results are consistent with a model of virion formation involving coalescence of soluble nucleocapsid and soluble M protein with G protein already in the plasma membrane.  相似文献   

12.
Maturation Defects in Temperature-sensitive Mutants of Sindbis Virus   总被引:18,自引:16,他引:2       下载免费PDF全文
Temperature-sensitive mutants of Sindbis virus, which synthesize viral ribonucleic acid (RNA) but not mature virus at the nonpermissible temperature, were selected for the study of viral maturation. Of these, three mutants which complement each other genetically were used. Two major proteins, the nucleocapsid and membrane proteins, located, respectively, in the viral nucleoid and membrane, were found in intact virions. In cells infected with wild-type Sindbis virus, four distinct types of viral RNA with sedimentation coefficients of 40S, 26S, 20S, and 15S were detected in constant distribution. The 20S RNA was ribonuclease-resistant, whereas the other types were ribonuclease-sensitive. The 40S RNA, identical to that obtained from the virion, was found associated with nucleocapsid protein as a subviral particle, which was assumed to be the nucleoid. Viral materials from cells infected with the mutants under nonpermissive conditions were compared with those from cells infected with wild-type virus, in terms of (i) the distribution of the different types of RNA, (ii) the association of infectious viral RNA into subviral particles, and (iii) the ability of infected cells to hemadsorb goose erythrocytes. According to these criteria, each of the three mutants demonstrated different maturation defects. Defective nucleocapsid proteins and membrane proteins may each account for one of the above mutants. The thrid mutant may have defects in a minor structural protein or possibly a maturation protein which is involved in the assembly of Sindbis virus.  相似文献   

13.
《The Journal of cell biology》1983,97(4):1055-1061
Two Chinese hamster ovary cell lines with mutated beta-tubulins (Grs-2 and Cmd-4) and one that has a mutation in alpha-tubulin (Tax-1) are temperature sensitive for growth at 40.5 degrees C. To determine the functional defect in these mutant cells at the nonpermissive temperature, they were characterized with respect to cell cycle parameters and microtubule organization and function after relatively short periods at 40.5 degrees C. At the nonpermissive temperature all the mutants had normal appearing cytoplasmic microtubules. Premature chromosome condensation analysis failed to show any discrete step in the interphase cell cycle in which these mutants are arrested. These cells, however, show several defects at the nonpermissive temperature that appear related to the function of microtubules during mitosis. Time-lapse studies showed that mitosis was lengthened in the three mutant lines at 40.5 degrees C as compared with the wild-type cells at this temperature, resulting in a higher proportion of cells in mitosis after temperature shift. There was also a large increase in multinucleated cells in mutant populations after incubation at the nonpermissive temperature. Immunofluorescent studies using a monoclonal anti--alpha-tubulin antibody showed that the mutant cells had a high proportion of abnormal spindles at the nonpermissive temperature. The two altered beta-tubulins and the altered alpha-tubulin all were found to cause a similar phenotype at the high temperature that results in mitotic delay, defective cytokinesis, multinucleation, and ultimately, cell death. We conclude that spindle formation is the limiting microtubule function in these mutant cell lines at the nonpermissive temperature and that these cell lines will be of value for the study of the precise role of tubulin in mammalian spindle formation.  相似文献   

14.
Five temperature-sensitive mutants of simian virus 40 containing two temperature-sensitive mutations were isolated. The double mutant of the A and D complementation groups, like the D mutants, failed to complement by conventional complementation analysis and did not induce host DNA synthesis at 40 degrees C. However, under conditions that suppressed the D defect, the A:D double mutant expressed only the A defect. Thus, viral DNA replication dropped rapidly after this mutant was shifted from permissive to restrictive temperatures. The A:D double mutant failed to transfrom at the restrictive temperature when subconfluent Chinese hamster lung monolayers were used. Double mutants of A:B, A:C, and A:BC complementation groups, like their A parent, were defective in viral DNA replication, in the induction of host DNA synthesis and in the transformation of secondary Chinese hamster lung cells at the nonpermissive temperature.  相似文献   

15.
16.
17.
18.
The vaccinia virus B1 gene encodes a 34-kDa protein with homology to protein kinases. In L cells infected nonpermissively with mutants containing lesions in the B1 gene (ts2 and ts25), the infectious cycle arrests prior to DNA replication. In this report, we demonstrate that DNA synthesis ceases when cultures infected with these mutants at 32 degrees C are shifted to the nonpermissive temperature (39.5 degrees C) in the midst of DNA replication. We also show that B1 protein is synthesized transiently during the early phase of infection, even when the progression to later stages of gene expression is prevented. Although wild-type (wt) B1 is stable, the ts B1 proteins are markedly labile in both L and BSC40 cells at both permissive and nonpermissive temperatures. These results suggest that the ts phenotype of the mutants is complex and may in part reflect a temperature-dependent requirement for kinase activity, an induction of temperature sensitivity in B1 substrates under nonpermissive conditions, and/or ts complementation by host factors. To facilitate biochemical analyses, recombinant wt B1, ts2 B1, and ts25 B1 were produced in Escherichia coli. The wt protein was able to phosphorylate serine and threonine residues on several exogenous substrates in vitro. The activity of ts25 B1 was 3% that of the wt enzyme, and no detectable kinase activity was associated with ts2 B1. In light of the inactivity of the ts2 B1 protein in vitro and its extreme lability in vivo, we attempted to isolate a vaccinia virus B1 null mutant by targeted interruption of the B1 gene at 32 degrees C. No null mutants were isolated. These results indicate that the B1 protein kinase provides a vital function which cannot be supplied by the host or circumvented by incubation at 32 degrees C.  相似文献   

19.
M V Haspel  R Duff    F Rapp 《Journal of virology》1975,16(4):1000-1009
Twenty-four genetically stable temperature-sensitive mutants of measles virus were isolated after mutangenesis by 5-azacytidine, 5 fluorouracil, or proflavine. The restricted replication of all mutants at 39 C was blocked subsequent to cell penetration and could not be attributed to heat inactivation of virus infectivity. Complementation analysis was made possible through the use of poly-L-ornithine. The members of one complementation group exhibited wild-type RNA synthesis at the nonpermissive temperature and induced the synthesis of virus antigens. These mutants were found defective in both hemolysin antigen synthesis and cell fusion "from within," supporting the unitary hypothesis for these functions. The members of the other two complementation groups synthesized neither virion RNA nor detectable virus antigens at the nonpermissive temperature.  相似文献   

20.
Biochemical transformation assays of herpes simplex virus type 1 temperature-sensitive (ts) mutants distinguished three groups of mutants with regard to their thymidine kinase (TK) transforming ability: those incapable of transferring the TK gene at either the permissive or restrictive temperatures (group I); those resembling the wild-type virus, and therefore able to transform at both the permissive and nonpermissive temperatures (group II); and those that failed to transform or exhibited very low transformation frequencies at the permissive temperature but were able to transform at the nonpermissive temperature (group III). Two mutants in group II exhibited greatly enhanced transformation efficiency at the permissive temperature. The ts lesions in the majority of the mutants tested map between 0.30 and 0.60 units on the viral genome. Mutants with TK-positive (TK+), but DNA-negative, phenotypes at the nonpermissive temperature produced no TK+ transformants at the permissive temperature and only unstable transformants at the nonpermissive temperature. This suggests that a function which is required for viral DNA synthesis is also required to obtain stable expression or to transfer the TK+ gene or both when transfer is mediated by the entire viral genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号