首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A mutation in polyomavirus large T antigen which affects viral DNA synthesis was discovered in strain NG59RA (RA). The effect was most visible in nonpermissive cells. Although a substantial yield in DNA synthesis is normally observed in infections of Fischer rat cells when these are maintained at 33 degrees C (D.L. Hacker, K.H. Friderici, C. Priehs, S. Kalvonjian, and M.M. Fluck, p. 173-181, in R.E. Moses and W.C. Summers, ed., DNA Replication and Mutagenesis, 1988; D.L. Hacker and M.M. Fluck, Mol. Cell. Biol., in press), a 10- to 20-fold decrease in yield was obtained in infections with RA. The yield of free viral DNA in RA transformants was also strongly diminished, whether the transformants were maintained at 37 or 33 degrees C. A large reduction in the apparent number of integration sites, as well as a small reduction in the incidence of tandem integration of the viral genome, was observed in F-111 or FR-3T3 cells transformed by the mutant strain. This appears not to be directly related to the number of integration templates. A DNA fragment was identified which rescues these phenotypes. The fragment is located between the HindIII and NsiI restriction sites (nucleotides 1656 to 1910), a region which encodes only large T antigen. Sequence analysis of this region reveals a C-to-G transition at nucleotide 1791 which causes a proline-to-alanine change in the amino acid sequence of large T antigen. No other mutations have been previously reported in this region of large T antigen.  相似文献   

2.
Chinese hamster embryo cells transformed with the tsA 58 mutant of Simian virus 40 express the transformed phenotype at the permissive temperature (33 degrees C or 37 degrees C) and a "normal" phenotype at the nonpermissive temperature (40.5 degrees C). Immunofluorescence and immunoprecipitation of T antigens demonstrated that the "T" antigen (100 K) has an increase rate of synthesis and degradation at 40.5 degrees C. However, the cells continue to replicate at the nonpermissive temperature when assayed by flow cytometry and autoradiography. This DNA synthesis was cellular, not viral, and not owing to an increase in DNA repair. When the cell cycle distributions of G1, S, and G2 + M were assayed by the fraction labeled mitoses method, no differences were evident at the permissive and nonpermissive temperature; however, the doubling time was lengthened at 40.5 degrees C (13 hours vs. 100 hours). These results suggest that at 40.5 degrees C, the tsA transformed cells are cycling and dying. However, if the transformed cells are seeded onto monolayers of normal Chinese hamster cells at 40.5 degrees C, the cells are growth arrested when measured by growth assays, flow cytometry, autoradiography, and immunofluorescence for T antigen. Therefore, growth arrest can be obtained in tsA 58 transformed Chinese hamster cells when cocultured with normal Chinese hamster cells.  相似文献   

3.
Simian virus 40 infection of semipermissive human diploid fibroblasts (HF), at early passage in cell culture, was compared with that of permissive established monkey cell lines. Viral DNA can be readily detected at 24 to 48 h postinfection at 37 degrees C with a high multiplicity of infection, approaching 10% of that of monkey cells (TC7). The length of time necessary for replication of an average molecule of viral DNA was found to be indistinguishable in HF and TC7 cells. Strand elongation plus termination were assessed by following the accumulation of DNA I at 40 degrees C from replicative intermediates of tsA30 prelabeled at 33 degrees C, obviating isotope pool problems. Combined initiation and elongation of wild-type viral DNA was measured by density shift experiments involving a 5-bromodeoxyuridine chase of prelabeled [3H]thymidine-labeled viral DNA. Determination of accumulation of viral T and V antigens supports the conclusion that the most likely basis for the reduced virus yield in HF cells results from the inefficiency of an early stage in virus infection, before or during uncoating. Similar results were obtained in fibroblasts derived from patients with xeroderma pigmentosum, suggesting that enzymes of UV repair are not required in unirradiated simian virus 40 DNA synthesis.  相似文献   

4.
Integration of DNA of a temperature-sensitive SV40 mutant (tsA239) into the cell genome was studied. The viral A gene (the oncogene) encodes the tumour T antigen which is ts in the mutant and is devoid of mutagenic and transforming activity under non-permissive conditions (40 degrees C). Clones of Chinese hamster cells infected by tsA239 mutant were analysed. Those infected by wild-type SV40 served as controls. As shown by dot-hybridization, SV40 DNA was detected in cells of 14 out of 18 clones infected by tsA mutant and incubated at 40.5 degrees C, and in all 20 clones infected by tsA mutant and incubated under permissive conditions (33 degrees C), the difference between the two groups being insignificant (p greater than 0.05). By means of blot-hybridization it was established that viral DNA was integrated into the cell genome of all 12 clones analysed, belonging to the three experimental series: infection by tsA mutant, incubation at 40.5 and 33 degrees C, infection by wt SV40, incubation at 40.5 degrees C. The number of integration sites ranged from one to four in different clones. Integration of SV40 DNA in tandems was observed. The data presented allow to conclude that integration per se does not play a crucial role in determining the mutagenic and transforming effect of the virus. Obviously, what matters is the activity of viral oncogene product - the T antigen.  相似文献   

5.
To identify specific cellular factors which could be required during the synthesis of retroviral DNA, we have studied the replication of murine leukemia virus in mouse cells temperature sensitive for cell DNA synthesis (M. L. Slater and H. L. Ozer, Cell 7:289-295, 1976) and in several of their revertants. This mutation has previously been mapped on the X chromosome. We found that a short incubation of mutant cells at a nonpermissive temperature (39 degrees C) during the early part of the virus cycle (between 0- to 20-h postinfection) greatly inhibited virus production. This effect was not observed in revertant or wild-type cells. Molecular studies by the Southern transfer procedure of the unintegrated viral DNA synthesized in these cells at a permissive (33 degrees C) or nonpermissive temperature revealed that the levels of linear double-stranded viral DNA (8.8 kilobase pairs) were nearly identical in mutant or revertant cells incubated at 33 or 39 degrees C. However, the levels of two species of supercoiled viral DNA (with one or two long terminal repeats) were significantly lower in mutant cells incubated at 39 degrees C than in mutant cells incubated at 33 degrees C or in revertant cells incubated at 39 degrees C. Pulse-chase experiments showed that linear viral DNA made at 39 degrees C could not be converted into supercoiled viral DNA in mutant cells after a shift down to 33 degrees C. In contrast, such conversion was observed in revertant cells. Restriction endonuclease analysis did not detect differences in the structure of linear viral DNA made at 39 degrees C in mutant cells as compared to linear viral DNA isolated from the same cells at 33 degrees C. However, linear viral DNA made at 39 degrees C in mutant cells was poorly infectious in transfection assays. Taken together, these results strongly suggest that this X-linked gene, affecting mouse cell DNA synthesis, is operating in the early phase of murine leukemia virus replication. It seems to affect the level of production of unintegrated linear viral DNA only slightly while greatly reducing the infectivity of these molecules. In contrast, the accumulation of supercoiled viral DNA and subsequent progeny virus production are greatly reduced. Our pulse-chase experiments suggest that the apparent, but not yet identified, defect in linear viral DNA molecules might be responsible for their subsequent impaired circularization.  相似文献   

6.
The integration of temperature-sensitive SV40 mutant DNA (tsA239) into the Chinese hamster cellular genome at an early stage of infection was studied. The content of single-stranded DNA structures in the infected and control cells at a non-permissive temperature (40 degrees C) differed drastically from that in control cells at permissive temperatures (33 degrees C, 37 degrees C). The role of single-stranded structures in the integration of the SV40 genome into cellular DNA was shown by blot hybridization. The integration mechanism is discussed.  相似文献   

7.
The levels of simian virus 40 (SV40) large T antigen in a tsA-transformed mouse macrophage line at the permissive (33 degrees C) and the nonpermissive (39 degrees C) temperature were examined by immunofluorescence, sodium dodecylsulfate-polyacrylamide gel electrophoresis, complement fixation, and enzyme-linked immunosorbent assay. When the cells were confluent and rested at 33 degrees C, and then were shifted to 39 degrees C, the amount of large T antigen per cell decreased, and most cells survived and remained phagocytic. When the cells were proliferating at 33 degrees C, and then were shifted to 39 degrees C, the cells died with only a small reduction in the amount of large T antigen. Therefore, the physiological state of the cells may determine the survival of cells by affecting the level of large T antigen after exposure to 39 degrees. The confluent cells may be rested with a concomitant decrease of large T antigen. The proliferating cells may not survive in the presence of a relatively high level of functionally defective large T antigen at 39 degrees C.  相似文献   

8.
C Basilico  S Gattoni  D Zouzias  G D Valle 《Cell》1979,17(3):645-659
Rat cells transformed by polyoma virus contain, in addition to integrated viral DNA, a small number of nonintegrated viral DNA molecules. The free viral DNA originates from the integrated form through a spontaneous induction of viral DNA replication in a minority of the cell population. Its presence is under the control of the viral A locus. To determine whether the induction of free viral DNA replication was accompanied by a loss of integrated viral DNA molecules in a phenomenon similar to the "curing" of lysogenic bacteria, we selected for revertants arising in the transformed rat populations and determined whether these cells had lost integrated viral genomes. We further investigated whether the viral A function was necessary for "curing" by determining the frequency of cured cells in populations of rat cells transformed by the ts-a mutant of polyoma virus following propagation at the permissive or nonpermissive temperature. A large proportion of the revertants isolated were negative or weakly positive when assayed by immunofluorescence for polyoma T antigen and were unable to produce infectious virus upon fusion with permissive mouse cells. The T antigen-negative, virus rescue-negative clones can be retransformed by superinfection and appear to have lost a considerable proportion of integrated viral DNA sequences. Restriction enzyme analysis of the integrated viral DNA sequences shows that the parental transformed lines contain tandem repeats of integrated viral molecules, and that this tandem arrangement is generally lost in the cured derivatives. While cells transformed by wild-type virus undergo "curing" with about the same frequency at 33 degrees or 39 degrees C, cells transformed by the ts-a mutant contain a much higher frequency of cured cells after propagation at 33 degrees than at 39 degrees C. Our results indicate that in polyoma-transformed rat cells, loss of integrated viral DNA can occur at a rather high rate, producing (at least in some cases) cells which have reverted partially or completely to a normal phenotype. Loss of integrated viral DNA is never total and appears to involve an excision event. The polyoma A function (large T antigen) is necessary for such excision to occur. In the absence of a functional A gene product, the association of the viral DNA with the host DNA appears to be very stable.  相似文献   

9.
The stimulation of host macromolecular synthesis and induction into the cell cycle of serum-deprived G0-G1-arrested mouse embryo fibroblasts were examined after infection of resting cells with wild-type simian virus 40 or with viral mutants affecting T antigen (tsA58) or small t antigen (dl884). At various times after virus infection, cell cultures were analyzed for DNA synthesis by autoradiography and flow microfluorimetry. Whereas mock-infected cultured remained quiescent and displayed either a 2N DNA content (80%) or a 4N DNA content (15%), mouse cells infected with wild-type simian virus 40, tsA58 at 33 degrees C, or dl884 were induced into active cell cycling at approximately 18 h postinfection. Although dl884-infected mouse cells were induced to cycle initially at the same rate as wild type-infected cells, they became arrested earlier after infection and also failed to reach the saturation densities of wild-type simian virus 40-infected cells. Infection with dl884 also failed to induce loss of cytoplasmic actin cables in the majority of the infected cell population. Mouse cells infected with tsA58 and maintained at 39.5 degrees C showed a transient burst of DNA synthesis as reflected by changes in cell DNA content and an increase in the number of labeled nuclei during the first 24 h postinfection; however, after the abortive stimulation of DNA synthesis at 39.5 degrees C shift experiments demonstrated that host DNA replication was regulated by a functional A gene product. It is concluded that both products of the early region of simian virus 40 DNA play a complementary role in recruiting and maintaining simian virus 40-infected cells in the cell cycle.  相似文献   

10.
11.
Studies were done to characterize a DNA-negative temperature-sensitive (ts) mutant of human adenovirus type 2, H2 ts111. The temperature-sensitive defect, which was reversible on shift-down in the absence of protein synthesis, was expressed as early as 2 h postinfection, and the results of density-labeling experiments are in agreement with at least a DNA replication initiation block. On shift-up, after allowing viral DNA synthesis at permissive temperatures, the newly synthesized viral DNA and the mature viral DNA were cleaved into fragments which sedimented as a broad peak with a mean coefficient of 10-12S. This cleavage was more marked in the presence of hydroxyurea as the DNA synthesis inhibitor. Parental DNA in infected cells was degraded to a much lesser extent regardless of the incubation temperature. In contrast, the parental DNA was strongly degraded when early gene expression was permitted at 33 degrees C before shift-up to 39.5 degrees C. Furthermore, cellular DNA was also degraded at 39.5 degrees C in ts111-infected cells, the rate of cleavage being related to the multiplicity of infection. This cleavage effect, which did not seem to be related to penton base-associated endonuclease activity, was also enhanced when early gene expression was allowed at 33 degrees C before shift-up. The ts111 defect, which was related to an initiation block and endonucleolytic cleavage of viral and cellular DNA, seemed to correspond to a single mutation. The implication of the ts111 gene product in protection of viral and cellular DNA by way of a DNase-inhibitory function is discussed.  相似文献   

12.
Simian virus 40 mutant with transposed T-antigen and VP1 genes   总被引:7,自引:3,他引:4       下载免费PDF全文
  相似文献   

13.
We have isolated a new type of temperature-sensitive mutant of simian virus 40 (SV40) that is capable of productive infection in permissive cells but not of maintenance of viral DNA integration in transformed cells at the conditional temperature. Virus development is induced when cells transformed by this mutant are shifted to temperatures above 39 degrees C, but is not induced below this temperature. The plaque-purified, temperature-sensitive mutant virus confers heat inducibility to new host cells, indicating that the conditional function is a property of the viral genome. Unlike previously described temperature-sensitive SV40 mutants, in (ts)-1501 is capable of productive infection in permissive cells at the conditional temperature. The morphology, growth, and oncogenicity of in (ts)-1501-transformed cells at 37 degrees C are similar to those of cell lines transformed by wild-type SV40. HK10-c2(in(ts)-1501), a cloned cell line, transformed at 37 degrees C by the mutant virus, exhibits a transient increase in DNA synthesis before cell death at the conditional temperature. Many properties of in(ts)-1501 are analogous to those of the heat-inducible mutants of bacteriophages in which a heat-inactivated protein is responsible for the stable integration of the prophage in the bacterial chromosome.  相似文献   

14.
A possible role of the simian virus 40 T antigen in chromosome damages in transformed cells was examined. Two lines of Golden hamster embryonal fibroblasts, transformed by SV40 tsA30 and ts239 mutants (He30 and He239, respectively), were incubated at nonpermissive (40.5-41 degrees C) or permissive (33 degrees C) temperatures. Chromosome aberrations were registered in either subline after 3, 6, 9 and 12 weeks of cultivation under the above conditions. In the both cell lines kept at 33 degrees the frequency of aberrant metaphases and the number of chromosome breaks per cell increased drastically by week 3 of cultivation, and such a state was preserved up to week 12. The frequency of aberrant metaphases in cells cultivated at 41 degrees was maintained at the constant level (He239) or at slightly higher than that in the original culture (He30). The sublines He239, originally incubated at 33 or 40.5 degrees, were then shifted to 40.5 and 33 degrees, respectively. As a result the number of chromosome aberrations either decreased (33----40.5 degrees) or increased (40.5----33 degrees) as early as on day 2, and these patterns were stabilized at the level corresponding to the new conditions. We assayed the induction of DNA breaks in cells, grown at the permissive or nonpermissive temperatures, by using DNA sedimentation in the alkaline sucrose gradient. The DNA sedimentation peaks of cells cultured at 37 and 41 degrees coincided, whereas the DNA of cells cultured at 33 degrees was represented by shorter fragments.  相似文献   

15.
Previous studies have shown that cells infected with the herpes simplex virus 1(HFEM) mutant tsB7 and maintained at the nonpermissive temperature fail to accumulate viral polypeptides. Analyses of intertypic recombinants generated by marker rescue of tsB7 with herpes simplex virus 2 DNA fragments localized the mutation between 0.46 and 0.52 map units on the viral genome (Knipe et al., J. Virol. 38:539-547, 1981). In this paper we report that the mutation in tsB7 affects several aspects of the reproductive cycle of the virus at the nonpermissive temperature. Thus, (i) viral capsids accumulate at the nuclear pores and do not release viral DNA for at least 6 h postinfection at 39 degrees C. The DNA was released within 30 min after a shift to the permissive temperature. (ii) Experiments involving shifts from the permissive to the nonpermissive temperature indicated that viral protein synthesis was not sustained in cells maintained at the permissive temperature for less than 4 h. (iii) Viral DNA synthesis was delayed at the permissive temperature for as long as 8 h. Once initiated, it continued at 39 degrees C. (iv) Marker rescue of tsB7 by transfection with herpes simplex virus 1(F) DNA fragments localized the mutation to between 0.501 and 0.503 map units on the viral genome. These results are consistent with the tsB7 lesion being in a gene coding for a virion component which affects release of viral DNA from capsids and onset of viral DNA synthesis.  相似文献   

16.
17.
Simian virus 40 (SV40) mutant 5002 carries base pair substitutions of C-5109----T and C-5082----T. These mutations lie in a region of the genome that encodes amino acids common to the large and small viral tumor antigens (T and t antigens, respectively) and result in amino acid substitutions of Leu-19----Phe and Pro-28----Ser. In contrast to wild-type SV40, which produces large plaques that are clearly visible 8 days postinfection, mutant 5002 is defective for productive infection, producing tiny plaques that arise at around 21 days postinfection. However, 5002 is capable of replicating viral DNA and producing normal amounts of capsid proteins, indicating that the mutations alter an activity of T antigen that is required subsequent to DNA synthesis, such as maturation, viral assembly, or release of virions. The mutant T antigen has normal ATPase activity, is phosphorylated in a manner that is indistinguishable from that of the wild-type T antigen, and retains the ability to oligomerize. 5002 complements mutants defective in T antigen host range-adenovirus helper function for productive infection. Thus, T antigen encodes two activities that affect at least two different steps in viral infection other than DNA replication, one inactivated by mutations in the host range-adenovirus helper domain and one inactivated by the mutations present in 5002. The 5002-encoded T antigen is also defective for transformation of REF52 cells when expressed from the normal SV40 early promoter, although this defect can be partially overcome by expressing the protein from stronger promoters.  相似文献   

18.
We described a strategy which facilitates the identification of cell mutants which are restricted in DNA synthesis in a temperature-dependent manner. A collection of over 200 cell mutants temperature-sensitive for growth was isolated in established Chinese hamster cell lines (CHO and V79) by a variety of selective and nonselective techniques. Approximately 10% of these mutants were identified as ts DNA- based on differential inhibition of macromolecular synthesis at the restrictive temperature (39 degrees C) as assessed by incorporation of [3H]thymidine and [35S]methionine. Nine such mutants, selected for further study, demonstrated rapid shutoff of DNA replication at 39 degrees C. Infections with two classes of DNA viruses extensively dependent on host-cell functions for their replication were used to distinguish defects in DNA synthesis itself from those predominantly affecting other aspects of DNA replication. All cell mutants supported human adenovirus type 2 (Ad2) and mouse polyomavirus DNA synthesis at the permissive temperature. Five of the nine mutants (JB3-B, JB3-O, JB7-K, JB8-D, and JB11-J) restricted polyomavirus DNA replication upon transfection with viral sequences at 33 degrees C and subsequent shift to 39 degrees C either before or after the onset of viral DNA synthesis. Only one of these mutants (JB3-B) also restricted Ad2 DNA synthesis after virion infection under comparable conditions. No mutant was both restrictive for Ad2 and permissive for polyomavirus DNA synthesis at 39 degrees C. The differential effect of these cell mutants on viral DNA synthesis is expected to assist subsequent definition of the biochemical defect responsible.  相似文献   

19.
The consequences of herpes simplex virus type 2 (HSV-2) and human embryonic fibroblast cell interaction at different temperatures (37, 40, and 42 degrees C) were investigated. Incubation at 37 or 40 degrees C was permissive for HSV-2 inhibition of host DNA synthesis, induction of virus-specific DNA replication, and infectious virus production. The amount of [methyl-3H]thymidine incorporated into viral DNA and the final yield of new infectious virus were significantly reduced at 40 degrees C compared to 37 degrees C. At 42 degrees C, detectable virus-specific DNA synthesis was totally blocked. Maximum stimulation of host cell DNA synthesis at 42 degrees C was measured after a multiplicity of infection of 0.5 to 1.0 PFU/cell. By autoradiography, data indicated that HSV-2 stimulates host cell chromosomal DNA synthesis. Stimulation of thymidine kinase activity with thermostability properties in common with a virus enzyme was detected during the first 24 h of infection at 42 degrees C, after 24 h the enhanced thymidine kinase activity had properties in common with host cell isozymes. The data obtained during this investigation indicated that stimulation of host cell DNA synthesis does not require viral DNA synthesis.  相似文献   

20.
The temperature-sensitive early mutant, ts(*)101, was characterized during productive infection in monkey cells, and the results are presented in an accompanying paper. This paper demonstrates that although 101 mutant virions adsorb normally to confluent Balb/3T3 mouse cells at both permissive (33 C) and restrictive (38.5 C) temperatures, T antigen synthesis and transformation, abortive and stable, are inhibited at both temperatures (host-range inhibition). T antigen synthesis is temperature sensitive, whereas abortive and stable transformation are not. Clones of 101-transformed Balb/3T3 cells were isolated, and virus was rescued from all clones at both permissive and restrictive temperatures. The rescued virus was as temperature sensitive as the original transforming 101 virions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号