首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We examined the inductive signals necessary to render B lymphocytes capable of supporting a productive vesicular stomatitis virus infection. Small murine splenic B cells in the G0 phase of the cell cycle were cultured with stimulators which allow progression through various stages in the activation and/or differentiation pathway leading to antibody secretion. We found that vesicular stomatitis virus expression is dependent on the state of B-cell activation and that three distinct phases can be defined. A nonsupportive state, which is defined by the failure to produce infection centers, viral proteins, or PFUs, is characteristic of freshly isolated small B cells, B cells cultured 48 h without further stimulation, or B cells in the G1 phase of the cell cycle induced by culture with T-cell-derived lymphokines. This refractory state was not due to a failure of virus uptake. Activation of G0 B cells with anti-immunoglobulin at doses which allow entry into the S phase rendered them capable of synthesizing viral proteins and increased the number of B cells producing infection centers, without enhancing PFU production on a per cell basis. In contrast, B cells stimulated with multiple inductive signals provided by anti-immunoglobulin and lymphokines showed increased infectious particle production (7 PFU per infection center). Lipopolysaccharide stimulation, acting through another induction pathway, caused the maximum increase in the number of infected B cells and production of infectious particles (25 PFU per infection center).  相似文献   

2.
We have identified two mRNA species transcribed from the adenovirus 2 genome section (HindIII-G fragment) believed to harbor genes for initiation and maintenance of cell transformation. The HindIII-G fragment occupies the left 7.5% of the genome and is transcribed from left to right [poly(U:G) r strand]. Poly(A)-terminated labeled mRNA was isolated from polyribosomes of adenovirus 2 early infected KB cells and from the transformed cell line 8617, hybridization purified using the HindIII-G fragment, and electrophoresed on formamide-polyacrylamide gels. Viral mRNA's of 24S (1.2 X 10(6) daltons) and 14S (4.5 X 10(5) daltons) were isolated from early infected cells and of 22S (1.0 X 10(6) daltons) and 14S from 8617 cells. Hybridization competition indicated that HindIII-G-specific mRNA was present in the polysomes at one-sixth the concentration late after infection as compared with early, indicating that the proteins coded by the transforming segment may be synthesized at reduced amounts during late stages. Only 1/10 the amount of RNA labeled late annealed to the G fragment as compared with that labeled early (per weight of RNA). Thus, synthesis of transforming gene mRNA is probably "turned off" late after infection. Both 24S (22S) and 14S mRNA's from infected and 8617 cells were complementary to the Hpa I-E fragment (left 4.1% of genome). The Hpa I-E fragment is too small to encode 24S and 14S species, which implies that the 5'-terminal regions of both species are coded by the same DNA sequences.  相似文献   

3.
Flow cytometry and staining with 7-nitrobenz-2-oxa-1,3-diazole-phallacidin were used to investigate organization of the actin cytoskeleton in rat embryo cells at different stages of normal and adenovirus E1A-induced cell cycles. In uninfected cells in G0-G1 and S phases, actin was predominantly in the form of stress fibers. In G2, this organization changed to peripheral rings of thin filaments, while during mitosis, actin had a diffuse distribution. Infection of quiescent rat cells by adenovirus caused them to enter the cell cycle and replicate DNA and also caused disruption of stress fibers. Rapid disappearance of stress fibers and the appearance of peripheral rings of actin filaments began from 13 h after infection and closely followed synthesis of the E1A proteins. Infected cells began S phase at about 24 h after infection, and cells in G2 and mitosis were seen from 30 to 50 h. Thus, disruption of the actin cytoskeleton is an early effect of E1A and not an indirect consequence of the entry of infected cells into the cell cycle.  相似文献   

4.
Infection of primary murine embryonic cell cultures by adenovirus SA7 (C8) results in an increase in chromatin condensation Average optical density of Feulgen stained nuclei 24 h following virus absorption increased for G0/1, S, and G2 cells by 16.1, 11.3 and 13.1%, respectively. This phenomenon is associated with the stimulation of proliferation, with an increase of the S cell amount by 50% of the control values and a decrease of average cell nuclei areas in all phases of cell cycle.  相似文献   

5.
Measles virus infection of unstimulated B lymphocytes suppresses both proliferation and differentiation into immunoglobulin-secreting cells. However, mitogenic stimulation of these infected cells results in cell volume enlargement, rapid RNA synthesis, and the expression of cell surface activation antigens 4F2, HLA-DS, and transferrin receptor. The cellular genes c-myc and histone 2B are induced during early G1 and S phase of the cell cycle, respectively, and viral RNA synthesis can be detected during this interval. However, total RNA synthesis is decreased at 48 h after stimulation, and the histone 2B RNA steady-state level at 48 h is fivefold less than that in uninfected cells. This sequence of events defines an arrest in the G1 phase of the cell cycle in measles virus-infected B cells.  相似文献   

6.
The synthesis of cell-specific ribonucleic acid (RNA) appeared to be stimulated in human embryonic kidney (HEK) cultures infected with adenovirus 2 or 12. Deoxyribonucleic acid (DNA)-RNA hybridization experiments revealed that by 44 to 70 hr after infection with either virus, the relative amount of pulse-labeled RNA capable of hybridizing with HEK cell DNA increased considerably; such RNA was detected in both nuclear and cytoplasmic fractions. The main increase in apparent host RNA synthesis was preceded by (i) a relatively early transient stimulation of the DNA-dependent RNA polymerase activity in isolated nuclei, and (ii) a small but consistently observed increase in the rate of acetylation of lysine-rich and arginine-rich histone fractions. The Mn2+-(NH4)2SO4 and Mg2+-activated RNA polymerase reactions measured in nuclei isolated from cells infected with adenovirus 2 or 12 were stimulated at about the same time; a rapid loss of polymerase activity followed. The augmentation of the two RNA polymerase reactions found in adenovirus 12-infected cells was independent of protein synthesis. After the initial increase, the acetylation rate of histones of cells infected with adenovirus 2 or 12 declined, until late in infection it was approximately 40 to 70% of the control cell rate.  相似文献   

7.
Mean diameter of nucleolar bodies (nucleoli without the perinucleolar chromatin) per cell was studied in human leukemic myeloblasts represented by K 562 and Kasumi 1 cell lines which originated from chronic and acute myeloid leukaemia. The measurement of mean diameter of nucleolar bodies in specimens stained for RNA was very simple. Such approach eliminated the variability of the perinucleolar chromatin discontinuous shell which might influence the measured nucleolar size as suggested by earlier studies. Ageing of K 562 myeloblasts produced a significant decrease of cells in S+G2 phase of the cell cycle accompanied by a significant reduction of mean diameter of nucleolar bodies (MDNoBs) per cell. In contrast, treatment of Kasumi 1 myeloblasts with histone deacetylase inhibitor - Trichostatin A - produced a large incidence of resistant cells in S+G2 phase which were characterised by a large increase of MDNoBs. Thus, MDNoBs in leukemic myeloblasts might be a helpful tool to estimate the incidence of cells in the S+G2 phase at the single cell level in smear preparations when the number of cells is very small.  相似文献   

8.
1. The total nucleic acid synthesized by normal and by infected S. muscae suspensions is approximately the same. This is true for either lag phase cells or log phase cells. 2. The amount of nucleic acid synthesized per cell in normal cultures increases during the lag period and remains fairly constant during log growth. 3. The amount of nucleic acid synthesized per cell by infected cells increases during the whole course of the infection. 4. Infected cells synthesize less RNA and more DNA than normal cells. The ratio of RNA/DNA is larger in lag phase cells than in log phase cells. 5. Normal cells release neither ribonucleic acid nor desoxyribonucleic acid into the medium. 6. Infected cells release both ribonucleic acid and desoxyribonucleic acid into the medium. The time and extent of release depend upon the physiological state of the cells. 7. Infected lag phase cells may or may not show an increased RNA content. They release RNA, but not DNA, into the medium well before observable cellular lysis and before any virus is liberated. At virus liberation, the cell RNA content falls to a value below that initially present, while DNA, which increased during infection falls to approximately the original value. 8. Infected log cells show a continuous loss of cell RNA and a loss of DNA a short time after infection. At the time of virus liberation the cell RNA value is well below that initially present and the cells begin to lyse.  相似文献   

9.
Previous studies have shown that thymidylate synthase gene expression is regulated over a wide range in response to growth stimulation in cultured mouse fibroblasts. In the present study we show that the gene is also regulated during the cell cycle in continuously growing cells. Our analyses were conducted with a fluorodeoxyuridine-resistant mouse 3T6 cell line that overproduces thymidylate synthase and its mRNA by a factor of 50 due to gene amplification. Cells were synchronized by mitotic selection. RNA blot analyses showed that the amount of thymidylate synthase mRNA increased 5- to 10-fold as cells progressed from G1 through the middle of S phase. S1 nuclease protection assays showed that the pattern of 5' termini of thymidylate synthase mRNA was the same in G1 and S phase. Despite the large increase in thymidylate synthase mRNA content, the level of the enzyme increased only by a factor of 2 as cells progressed from G1 to mid S phase. This apparent discrepancy can be explained by the fact that the enzyme is highly stable.  相似文献   

10.
本文用双参数FCM技术,对同一个细胞的DNA和RNA含量进行相关测量,比较了ACM B对小鼠L_(1210)白血病细胞周期和RNA含量的影响.结果发现在一次给药后8小时可导致早、中期S的积累,并抑制S期细胞的DNA合成;到24小时DNA合成恢复正常,并进入G_2期,但由于G_2期细胞进入M期受阻,造成G_2期细胞的积累,这时被阻断在G_2期的细胞RNA含量显著增加,形成正不平衡生长,而给药剂量较大的实验组(1/1.5LD_(50))S期细胞的RNA含量不随着DNA含量的增加而增加,形成负不平衡生长,ACM A和ACM B对体内Li_(210)细胞周期作用相同.  相似文献   

11.
The expression of genes coding for the four core histones (H2A, H2B, H3, and H4) was studied in tsAF8 cells. These baby hamster kidney-derived cells are a temperature-sensitive (ts) mutant of the cell cycle that arrest in G1 at the restrictive temperature. When serum-deprived tsAF8 cells are stimulated with serum, they enter the S phase at the permissive temperature of 34 degrees C, but are blocked in G1 at the nonpermissive temperature of 39.6 degrees C. Northern blot analysis using cloned human histone DNA probes detected only very low levels of histone RNA either in quiescent tsAF8 cells or in cells serum stimulated at the nonpermissive temperature for 24 h. Cellular levels of histone RNA were markedly increased in cells serum stimulated at 34 degrees C for 24 h. Temperature shift-up experiments after serum stimulation of quiescent populations showed that the amount of histone RNA was related to the number of cells that entered the S phase. Those cells that synthesized histone RNA and entered the S phase were capable of dividing. This is the first demonstration in a mammalian G1-specific ts mutant that the expression of H2A, H2B, H3, and H4 histone genes depends on the entry of cells into the S phase of the cell cycle.  相似文献   

12.
13.
We have studied a panel of 10 genes and cDNA sequences that are expressed in a cell cycle-dependent manner in different types of cells from different species and that are inducible by different mitogens. These include five sequences (c-myc, 4F1, 2F1, 2A9, and KC-1) that are preferentially expressed in the early part of the G1 phase, three genes (ornithine decarboxylase, p53, and c-rasHa) preferentially expressed in middle or late G1, and two genes (thymidine kinase and histone H3) preferentially expressed in the S phase of the cell cycle. We have studied the expression of these genes in nonpermissive (tsAF8) and semipermissive (Swiss 3T3) cells infected with adenovirus type 2. Under the conditions of these experiments, adenovirus type 2 infection stimulates cellular DNA synthesis in both tsAF8 and 3T3 cells. However, four of the five early G1 genes (c-myc, 4F1, KC-1, and 2A9) and one of the late G1 genes (c-ras) are not induced by adenovirus infection, although they are strongly induced by serum. The other sequences (2F1, ornithine decarboxylase, p53, thymidine kinase, and histone H3) are activated by both adenovirus and serum. We conclude that the cell cycle-dependent genes activated by adenovirus 2 are a subset of the cell cycle-dependent genes activated by serum. The data suggest that the mechanisms by which serum and adenovirus induce cellular DNA synthesis are not identical.  相似文献   

14.
15.
The infection of permissive monkey kidney cells (CV-1) with simian virus 40 induces G1 growth-arrested cells into the cell cycle. After completion of the first S phase and movement into G2, mitosis was blocked and the cells entered another DNA synthesis cycle (second S phase). Growth-arrested CV-1 cells replicated significant amounts of viral DNA in the G2 phase with the majority of synthesis occurring during the second S phase. When mimosine-blocked (G1/S) infected cells were released into the cell cycle, a major portion of the viral DNA was detected in G2 with the largest accumulation in the second S phase. The total DNA produced per infected cell was 10-12C with approximately 0.5-2C of viral DNA replicated per cell. Therefore the majority of the DNA per cell was cellular, 4C from the first S phase and approximately 4-6C from the second cellular synthesis phase.  相似文献   

16.
It has been reported that the response of target cells to steroid hormone (SH) stimulation may depend on their position in the cell cycle. The DNA and RNA contents of malignant cells of the endometrium cultured in vitro were measured using flow cytometry (FCM). We also measured estrogen receptor (ER) and progesterone receptor (PR) levels of cells at different positions in the cell cycle. The G1 and S phases of the cell cycle were investigated using cells synchronized by sodium n-butyrate (G1 block), methotrexate (S block), and excess thymidine (S block). For DNA measurements, the cells were stained with propidium iodide following RNase treatment. For RNA measurements (double-stranded RNA) the cells were treated with DNase. We found that S phase synchronization by methotrexate was 136.2% of control (100%). Using the excess thymidine block and release procedure, the S phase fraction was 185.1% of control. G1 phase synchronization by sodium n-butyrate was 134% of control. The estrogen receptor level in G1 phase synchronized cells increased to 5.94 fmol/micrograms DNA in the cytosol and 12.35 fmol/micrograms DNA in the nuclear fraction. These levels represent a sevenfold total increase over that of the control estrogen receptor level. Cells in S phase showed no significant increase in estrogen receptor levels over control cells. Based on this study, the functional increase of the steroid receptor was most significant in the G1 phase.  相似文献   

17.
A capillary electrophoresis (CE)-based technique is reported here to monitor differential RNA synthesis in individual Chinese hamster ovary cells at distinct stages of the cell proliferation cycle. Cell synchronization was achieved by the shake-off method, in which mitotic (M) cells were dislodged, and cells at G(1), S, and G(2) phases were harvested 2.5, 10, and 13 h, respectively, after synchronizing the mitotic cells. Thirty-two cells (eight from each phase) were analyzed by injecting each cell into the capillary, lysing it with dilute surfactant, separating the RNA by capillary electrophoresis, and detecting the peaks with laser-induced fluorescence. The results from single cells show that the total amount of RNA increased at each successive stage (from G(1) to M), while the relative synthetic rates of different RNA fractions varied with progression through the cycle. There was a threefold increase in the synthetic rate of total RNA from S to G(2), compared with G(1) to S. In addition, differential accumulation of specific RNA fractions was observed, with the low-molecular-mass fraction exhibiting a much higher synthetic rate from G(2) to M, relative to the rates of the larger ribosomal RNA (rRNA) fractions. Comparison of the large rRNA fractions with one another reveals that at S phase more 28S rRNA was accumulated than 18S rRNA, and at G(1) and M phases, the synthetic rate of 28S rRNA was slowed compared with that of 18S. Minimal sample preparation, combined with the separation power of CE and single-cell detection sensitivity of laser-induced fluorescence, results in a simple method for assessing differential accumulation of RNA from distinct individual cells.  相似文献   

18.
The concentrations, in copies per cell, of viral RNA sequences complementary to different regions of the genome were determined at 8, 18 and 32 hours after infection of human cells with adenovirus type 2: separated strands of fragments of 32P-labelled adenovirus 2 DNA, generated by cleavage with restriction endonucleases EcoR1, Hpa1 and BamH1, were added to reaction mixtures at sufficient concentrations to drive hybridizations with infected or transformed cell RNA. Under these conditions, the fraction of 32P-labelled DNA entering hybrid is directly proportional to the absolute amount of complementary RNA in the reaction.At 8 hours after infection in the presence of cytosine arabinoside, “early” viral messenger RNA sequences are present at a frequency of 300 to 1000 copies per cell. The abundance of early mRNA sequences in different lines of adenovirus 2-transformed rat cells is markedly lower than their concentration in lytically infected cells. Moreover, the abundance of early mRNA in a given transformed rat cell line reflects the number of copies of its template DNA sequences per diploid quantity of cell DNA. After the onset of the late phase of the lytic cycle, the abundance of one early mRNA species, that coding for a single-stranded DNA binding protein required for viral DNA replication, is amplified. Viral RNA sequences complementary to regions of the genome coding for other early mRNA sequences remain at the level observed at 8 hours after infection.Exclusively “late” viral mRNA sequences are present over a range of concentrations, 500 to 10,000 copies per cell, depending on the region of the genome. By 18 hours after infection, the nucleus contains approximately three times as much total, viral RNA as the cytoplasm. The abundant nuclear, viral RNA sequences at 18 hours are transcribed from a contiguous region, 65% of the genome in length. In some cases, viral RNA sequences complementary to mRNA sequences are very abundant in the nucleus. When cytoplasmic and nuclear fractions are mixed and incubated under annealing conditions, some mRNA sequences will anneal with more abundant, anti-messenger nuclear RNA sequences to form double-stranded RNA. Such annealing of nuclear, viral RNA to early, cytoplasmic mRNA sequences probably accounts for the inability to detect, by filter hybridization, certain classes of early mRNA sequences during the late stage of infection.  相似文献   

19.
Late after adenovirus 2 infection (18 hr), nearly all newly synthesized polysomal messenger ribonucleic acid (mRNA) is viral specified. Large amounts of adenovirus mRNA have been purified by utilizing membrane filtration at high ionic strength. With this procedure, molecules that contain polyadenylic acid [poly (A)] tracts are bound selectively, and ribosomal RNA can be separated from the viral mRNA which contains poly(A). Polysomal RNA synthesized 18 hr after infection was labeled in the presence of 0.02 mug of actinomycin D per ml and extracted at pH 9.0. This RNA annealed 40% to 3 mug of adenovirus 2 deoxyribonucleic acid; the RNA selected by membrane filtration bound 80% under the same conditions. The RNA eluted from membrane filters was 80 to 90% greater than 18S and contained species migrating as 31, 27, and 24S. Binding of polysomal RNA to individual membrane filters was linear, using as much as 300 mug of RNA per membrane. A 1.1-mg amount of viral RNA was prepared from 17.7 mg of polysomal RNA that had been purified by extraction at pH 9.0.  相似文献   

20.
Cells from 14 patients with chronic B cell leukemias were cultured for up to 7 days with TPA (160 nM) in order to induce maturation of the malignant cells. Five cellular parameters, which can be quantitated by flow cytometry were analyzed in such cultures. These parameters were cell size, cell cycle, RNA, neutral esterase activity and dye uptake in mitochondria. Cell size increased in 13/14 cases in TPA treated cells compared to control cells. Cell cycle analysis revealed a low percentage of cells in S and G2/M phase both in control and TPA-treated cultures of chronic B cell leukemias, while in cultures of peripheral blood mononuclear cells TPA caused a large increase of S and G2/M cells. Both in chronic B cell leukemias and in PBMC, TPA induced an increase of RNA staining and neutral esterase activity in all or most cultures. Furthermore the staining of mitochondria increased in most cases. In conclusion, multiple changes can be induced by TPA in chronic B cell leukemias without associated proliferation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号