首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Partitioning of respiratory mechanics in mechanically ventilated patients.   总被引:3,自引:0,他引:3  
In ten mechanically ventilated patients, six with chronic obstructive pulmonary disease (COPD) and four with pulmonary edema, we have partitioned the total respiratory system mechanics into the lung (l) and chest wall (w) mechanics using the esophageal balloon technique together with the airway occlusion technique during constant-flow inflation (J. Appl. Physiol. 58: 1840-1848, 1985). Intrinsic positive end-expiratory pressure (PEEPi) was present in eight patients (range 1.1-9.8 cmH2O) and was due mainly to PEEPi,L (80%), with a minor contribution from PEEPi,w (20%), on the average. The increase in respiratory elastance and resistance was determined mainly by abnormalities in lung elastance and resistance. Chest wall elastance was slightly abnormal (7.3 +/- 2.2 cmH2O/l), and chest wall resistance contributed only 10%, on the average, to the total. The work performed by the ventilator to inflate the lung (WL) averaged 2.04 +/- 0.59 and 1.25 +/- 0.21 J/l in COPD and pulmonary edema patients, respectively, whereas Ww was approximately 0.4 J/l in both groups, i.e., close to normal values. We conclude that, in mechanically ventilated patients, abnormalities in total respiratory system mechanics essentially reflect alterations in lung mechanics. However, abnormalities in chest wall mechanics can be relevant in some COPD patients with a high degree of pulmonary hyperinflation.  相似文献   

2.
This research investigated whether stretching of lung tissue due to increased positive alveolar pressure swings during mechanical ventilation (MV) at various tidal volumes (V(T)) might affect the composition and/or structure of the glycosaminoglycan (GAG) components of pulmonary extracellular proteoglycans. Experiments were performed in 30 healthy rats: 1) anesthetized and immediately killed (controls, C-0); 2) anesthetized and spontaneously breathing for 4 h (C-4h); and 3) anesthetized, paralyzed, and mechanically ventilated for 4 h with air at 0-cmH(2)O end-expiratory pressure and V(T) of 8 ml/kg (MV-1), 16 ml/kg (MV-2), 24 ml/kg (MV-3), or 32 ml/kg (MV-4), adjusting respiratory rates at a minute ventilation of 270 ml/min. Compared with C-0 and C-4h, a significant reduction of dynamic and static compliance of the respiratory system and of the lung was observed only in MV-4, while extravascular lung water significantly increased in MV-3 and MV-4, but not in MV-1 and MV-2. However, even in MV-1, MV induced a significant fragmentation of pulmonary GAGs. Extraction of covalently bound GAGs and wash out of loosely bound or fragmented GAGs progressively increased with increasing V(T) and was associated with increased expression of local (matrix metalloproteinase-2) and systemic (matrix metalloproteinase-9) activated metalloproteases. We conclude that 1) MV, even at "physiological" low V(T), severely affects the pulmonary extracellular architecture, exposing the lung parenchyma to development of ventilator-induced lung injury; and 2) respiratory mechanics is not a reliable clinical tool for early detection of lung injury.  相似文献   

3.
The application of positive end expiratory pressure (PEEP) in mechanically ventilated (MV) patients with acute respiratory distress syndrome (ARDS) decreases cardiac output (CO). Accurate measurement of CO is highly invasive and is not ideal for all MV critically ill patients. However, the link between the PEEP used in MV, and CO provides an opportunity to assess CO via MV therapy and other existing measurements, creating a CO measure without further invasiveness.  相似文献   

4.
5.
In this Department of Veterans Affairs cooperative study, we examined predictors of in-hospital and 1-year mortality of 612 mechanically ventilated patients from 6 medical intensive care units in a retrospective cohort design. The outcome variable was vital status at hospital discharge and after 1 year. The results showed that 97% of patients were men, the mean age was 63 +/- 11 years (SD), and hospital mortality was 64% (95% confidence interval, 60% to 68%). Within the next year, an additional 38% of hospital survivors died, for a total 1-year mortality of 77% (95% confidence interval, 73% to 80%). Hospital and 1-year mortality, respectively, for patients older than 70 years was 76% and 94%, for those with serum albumin levels below 20 grams per liter it was 92% and 96%, for those with an Acute Physiology and Chronic Health Evaluation II (APACHE II) score greater than 35 it was 91% and 98%, and for patients who were being mechanically ventilated after cardiopulmonary resuscitation it was 86% and 90%. The mortality ratio (actual mortality versus APACHE II-predicted mortality) was 1.15. Conclusions are that patient age, APACHE II score, serum albumin levels, or the use of cardiopulmonary resuscitation may identify a subset of mechanically ventilated veterans for whom mechanical ventilation provides little or no benefit.  相似文献   

6.
The lower inflection point (LIP) on the total respiratory system pressure-volume (P-V) curve is widely used to set positive end-expiratory pressure (PEEP) in patients with acute respiratory failure (ARF) on the assumption that LIP represents alveolar recruitment. The aims of this work were to study the relationship between LIP and recruited volume (RV) and to propose a simple method to quantify the RV. In 23 patients with ARF, respiratory system P-V curves were obtained by means of both constant-flow and rapid occlusion technique at four different levels of PEEP and were superimposed on the same P-V plot. The RV was measured as the volume difference at a pressure of 20 cm H(2)O. A third measurement of the RV was done by comparing the exhaled volumes after the same distending pressure of 20 cm H(2)O was applied (equal pressure method). RV increased with PEEP (P < 0.0001); the equal pressure method compares favorably with the other methods (P = 0.0001 by correlation), although individual data cannot be superimposed. No significant difference was found when RV was compared with PEEP in the group of patients with a LIP < or =5 cm H(2)O and the group with a LIP >5 cm H(2)O (76.9 +/- 94.3 vs. 61.2 +/- 51.3, 267.7 +/- 109.9 vs. 209.6 +/- 73.9, and 428.2 +/- 216.3 vs. 375.8 +/- 145.3 ml with PEEP of 5, 10, and 15 cm H(2)O, respectively). A RV was found even when a LIP was not present. We conclude that the recruitment phenomenon is not closely related to the presence of a LIP and that a simple method can be used to measure RV.  相似文献   

7.
Heart rate and blood pressure variations during spontaneous ventilation are related to the negative airway pressure during inspiration. Inspiratory airway pressure is positive during mechanical ventilation, suggesting that reversal of the normal baroreflex-mediated pattern of variability may occur. We investigated heart rate and blood pressure variability and baroreflex sensitivity in 17 mechanically ventilated patients. ECG (RR intervals), invasive systolic blood pressure (SBP), and respiratory flow signals were recorded. High-frequency (HF) amplitude of RR and SBP time series and HF phase differences between RR, SBP, and ventilatory signals were continuously computed by Complex DeModulation (CDM). Cross-spectral analysis was used to assess the coherence and the gain functions between RR and SBP, yielding baroreflex sensitivity indices. The HF phase difference between SBP and ventilatory signals was nearly constant in all patients with inversion of SBP variability during the ventilator cycle compared with cycling with negative inspiratory pressure to replicate spontaneous breathing. In 12 patients (group 1), the phase difference between RR and ventilatory signals changed over time and the HF-RR amplitude varied. In the remaining five patients (group 2), RR-ventilatory signal phase and HF-RR amplitude showed little change; however, only one of these patients exhibited a RR-ventilatory signal phase difference mimicking the normal pattern of respiratory sinus arrhythmia. Spectral coherence between RR and SBP was lower in the group with phase difference changes. Positive pressure ventilation exerts mainly a mechanical effect on SBP, whereas its influence on HR variability seems more complex, suggesting a role for neural influences.  相似文献   

8.
9.
10.
11.
This study was aimed at measuring shear moduli in vivo in mechanically ventilated rats and comparing them to global lung mechanics. Wistar rats (n = 28) were anesthetized, tracheally intubated, and mechanically ventilated in supine position. The animals were randomly assigned to the healthy control or the lung injury group where lung injury was induced by bronchoalveolar lavage. The respiratory system elastance E(rs) was analyzed based on the single compartment resistance/elastance lung model using multiple linear regression analysis. The shear modulus (G) of alveolar parenchyma was studied using a newly developed endoscopic system with adjustable pressure at the tip that was designed to induce local mechanostimulation. The data analysis was then carried out with an inverse finite element method. G was determined at continuous positive airway pressure (CPAP) levels of 15, 17, 20, and 30 mbar. The resulting shear moduli of lungs in healthy animals increased from 3.3 ± 1.4 kPa at 15 mbar CPAP to 5.8 ± 2.4 kPa at 30 mbar CPAP (P = 0.012), whereas G was ~2.5 kPa at all CPAP levels for the lung-injured animals. Regression analysis showed a negative correlation between G and relative E(rs) in the control group (r = -0.73, P = 0.008 at CPAP = 20 mbar) and no significant correlation in the lung injury group. These results suggest that the locally measured G were inversely associated with the elastance of the respiratory system. Rejecting the study hypothesis the researchers concluded that low global respiratory system elastance is related to high local resistance against tissue deformation.  相似文献   

12.
13.
Respiratory muscle training (RMT) improves functional capacity in chronic heart-failure (HF) patients, but the basis for this improvement remains unclear. We evaluate the effects of RMT on the hemodynamic and autonomic function, arterial baroreflex sensitivity (BRS), and respiratory mechanics in rats with HF. Rats were assigned to one of four groups: sedentary sham (n = 8), trained sham (n = 8), sedentary HF (n = 8), or trained HF (n = 8). Trained animals underwent a RMT protocol (30 min/day, 5 day/wk, 6 wk of breathing through a resistor), whereas sedentary animals did not. In HF rats, RMT had significant effects on several parameters. It reduced left ventricular (LV) end-diastolic pressure (P < 0.01), increased LV systolic pressure (P < 0.01), and reduced right ventricular hypertrophy (P < 0.01) and pulmonary (P < 0.001) and hepatic (P < 0.001) congestion. It also decreased resting heart rate (HR; P < 0.05), indicating a decrease in the sympathetic and an increase in the vagal modulation of HR. There was also an increase in baroreflex gain (P < 0.05). The respiratory system resistance was reduced (P < 0.001), which was associated with the reduction in tissue resistance after RMT (P < 0.01). The respiratory system and tissue elastance (Est) were also reduced by RMT (P < 0.01 and P < 0.05, respectively). Additionally, the quasistatic Est was reduced after RMT (P < 0.01). These findings show that a 6-wk RMT protocol in HF rats promotes an improvement in hemodynamic function, sympathetic and vagal heart modulation, arterial BRS, and respiratory mechanics, all of which are benefits associated with improvements in cardiopulmonary interaction.  相似文献   

14.

Background

Swallowing accelerometry has been suggested as a potential non-invasive tool for bedside dysphagia screening. Various vibratory signal features and complementary measurement modalities have been put forth in the literature for the potential discrimination between safe and unsafe swallowing. To date, automatic classification of swallowing accelerometry has exclusively involved a single-axis of vibration although a second axis is known to contain additional information about the nature of the swallow. Furthermore, the only published attempt at automatic classification in adult patients has been based on a small sample of swallowing vibrations.

Methods

In this paper, a large corpus of dual-axis accelerometric signals were collected from 30 older adults (aged 65.47 ± 13.4 years, 15 male) referred to videofluoroscopic examination on the suspicion of dysphagia. We invoked a reputation-based classifier combination to automatically categorize the dual-axis accelerometric signals into safe and unsafe swallows, as labeled via videofluoroscopic review. From these participants, a total of 224 swallowing samples were obtained, 164 of which were labeled as unsafe swallows (swallows where the bolus entered the airway) and 60 as safe swallows. Three separate support vector machine (SVM) classifiers and eight different features were selected for classification.

Results

With selected time, frequency and information theoretic features, the reputation-based algorithm distinguished between safe and unsafe swallowing with promising accuracy (80.48 ± 5.0%), high sensitivity (97.1 ± 2%) and modest specificity (64 ± 8.8%). Interpretation of the most discriminatory features revealed that in general, unsafe swallows had lower mean vibration amplitude and faster autocorrelation decay, suggestive of decreased hyoid excursion and compromised coordination, respectively. Further, owing to its performance-based weighting of component classifiers, the static reputation-based algorithm outperformed the democratic majority voting algorithm on this clinical data set.

Conclusion

Given its computational efficiency and high sensitivity, reputation-based classification of dual-axis accelerometry ought to be considered in future developments of a point-of-care swallow assessment where clinical informatics are desired.  相似文献   

15.
Summary The aim of this study is to evaluate the variations of respiratory gas concentration with transcutaneous blood gas measurements (tcm PO2; tcm PCO2) during intermittent positive pressure ventilation (I.P.P.V.) and aerosol therapy in patients (5 female, 5 male; 43–75 years) with chronic obstructive pulmonary diseases (COPD) with haemo gas analysis values PO2<76 mmHg. The subjects underwent transcutaneous blood gas monitoring, 16 minutes during therapy (I.P.P.V. or aerosol) and 14 minutes of recovery. ANOVA analysis of variance was used for statistical analysis. During I.P.P.V. tcm PO2 increase from the base value (60.6±9 mmHg) already after 2 minutes until the 16th minute (69.7±9); 2 minutes after the end of I.P.P.V. tcm PO2 falls below the basic one (57.6±7) and then exceeds the basic value until the 14th minute (63.5±10) (p=ns). The base tcm PCO2 (41.2±7) decreases reaching the maximum decrement at the 16th minute of therapy (32±6.6); at the end of I.P.P.V. it increases without exceeding the base value (39.5±7) (p<0.01). During aerosol therapy, tcm PO2 increases from the basic one (62.4±10) (maximum after 16 minutes 70±9.5), then it decreases (64±11) and increases againg reaching the maximum growth after 14 minutes of recovery (65.7±11) (p=ns). The tcm PCO2 values show a decrement below the base value (42.7±4.5) reaching its maximum at the 16th minute of therapy (38.8±7); at the end of aerosol the tem PCO2 increases (42.5±4.6) (p=ns). The tcm PO2 variations (I.P.P.V. vs aerosol) did not show any significant statistical difference. At the end of the therapies the tcm PO2 falls a little more after I.P.P.V. than after aerosol (57.6±7.3 vs 64±11, p=ns); the tcm PCO2 base values are similar during the two therapies (41.2±7 vs 42.7±4.5, p=ns), but the tcm PCO2 decrements reach a significant statistical difference after 8–10–12–16 minutes (p<0.05); during the recovery time after 2 minutes (34±6.5 vs 40±6.3, p<0.05) and this difference disappeared at the last recording. We calculate the tcm PO2 increment and the tcm PCO2 decrement from the base value. The tcm PO2 increment is higher during I.P.P.V. than during aerosol therapy. The tcm PCO2 decrement shows how the tcm PCO2 falls during I.P.P.V. and how these values remain below the base one until the end of the rest time. Data reported here demonstrate that mechanical physiokinesi therapy improves COPD ventilation so that the respiratory pattern could be ameliorated and preserved.  相似文献   

16.
A newly designed gas-sampling device using end-tidal CO(2) to separate dead space gas from alveolar gas was evaluated in 12 mechanically ventilated patients. For that purpose, CO(2)-controlled sampling was compared with mixed expiratory sampling. Alveolar sampling valves were easily controlled via CO(2) concentration. Concentrations of four volatile substances were determined in the expired and inspired gas. Isoflurane and isoprene, which did not occur in the inspired air, had ratios of end-tidal to mixed expired concentrations of 1.75 and 1.81, respectively. Acetone and pentane, found in both the inspired and expired air, showed ratios of 0.96 and 1.0, respectively. Precision of concentration measurements was between 2.4% (isoprene) and 11.2% (isoflurane); reproducibility (as coefficient of variation) was 5%. Because the only possible source of isoflurane and isoprene in this setting was patients' blood, selective enrichment of alveolar gas was demonstrated. By using the new sampling technique, sensitivity of breath analysis was nearly doubled.  相似文献   

17.
18.
Changes in respiratory mechanics with age   总被引:5,自引:0,他引:5  
  相似文献   

19.

Background

Baroreflex allows to reduce sudden rises or falls of arterial pressure through parallel RR interval fluctuations induced by autonomic nervous system. During spontaneous breathing, the application of positive end-expiratory pressure (PEEP) may affect the autonomic nervous system, as suggested by changes in baroreflex efficiency and RR variability. During mechanical ventilation, some patients have stable cardiorespiratory phase difference and high-frequency amplitude of RR variability (HF-RR amplitude) over time and others do not. Our first hypothesis was that a steady pattern could be associated with reduced baroreflex sensitivity and HF-RR amplitude, reflecting a blunted autonomic nervous function. Our second hypothesis was that PEEP, widely used in critical care patients, could affect their autonomic function, promoting both steady pattern and reduced baroreflex sensitivity.

Methods

We tested the effect of increasing PEEP from 5 to 10 cm H2O on the breathing variability of arterial pressure and RR intervals, and on the baroreflex. Invasive arterial pressure, ECG and ventilatory flow were recorded in 23 mechanically ventilated patients during 15 minutes for both PEEP levels. HF amplitude of RR and systolic blood pressure (SBP) time series and HF phase differences between RR, SBP and ventilatory signals were continuously computed by complex demodulation. Cross-spectral analysis was used to assess the coherence and gain functions between RR and SBP, yielding baroreflex-sensitivity indices.

Results

At PEEP 10, the 12 patients with a stable pattern had lower baroreflex gain and HF-RR amplitude of variability than the 11 other patients. Increasing PEEP was generally associated with a decreased baroreflex gain and a greater stability of HF-RR amplitude and cardiorespiratory phase difference. Four patients who exhibited a variable pattern at PEEP 5 became stable at PEEP 10. At PEEP 10, a stable pattern was associated with higher organ failure score and catecholamine dosage.

Conclusions

During mechanical ventilation, stable HF-RR amplitude and cardiorespiratory phase difference over time reflect a blunted autonomic nervous function which might worsen as PEEP increases.  相似文献   

20.
Abstract

A well-defined relationship has to exist between substance concentrations in blood and in breath if blood-borne volatile organic compounds (VOCs) are to be used as breath markers of disease or health. In this study, the impact of inspired substances on this relationship was investigated systematically. VOCs were determined in inspired and expired air and in arterial and mixed venous blood of 46 mechanically ventilated patients by means of SPME, GC/MS. Mean inspired concentrations were 25% of expired concentrations for pentane, 7.5% for acetone, 0.7% for isoprene and 0.4% for isoflurane. Only if inspired concentrations were <5% did substance disappearance rates from blood and exhalation rates correlate well. Exhaled substance concentrations depended on venous and inspired concentrations. Patients with sepsis had higher n-pentane and lower acetone concentrations in mixed venous blood than patients without sepsis (2.27 (0.37–8.70) versus 0.65 (0.33–1.48) nmol L?1 and 69 (22–99) versus 18 (6.7–56) µmol L?1). n-Pentane and acetone concentrations in breath showed no differences between the patient groups, regardless whether or not expired concentrations were corrected for inspired concentrations. In mechanically ventilated patients, concentration profiles of volatile substances in breath may considerably deviate from profiles in blood depending on the relative amount of inspired concentrations. A simple correction for inspired substance concentrations was not possible. Hence, substances having inspired concentrations >5% of expired concentrations should not be used as breath markers in these patients without knowledge of concentrations in blood and breath.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号