首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cytochromes P-450b and P-450e are extremely homologous and immunochemically indistinguishable proteins that are coordinately induced by phenobarbital in rat liver. To assess the effect of phenobarbital on mRNA levels for each of these hemoproteins we performed solution hybridization and Northern blot experiments with synthetic oligodeoxynucleotide probes of defined sequence. Our data demonstrate that phenobarbital administration to rats resulted in marked increases in levels of hepatic mRNA for both cytochrome P-450b and cytochrome P-450e, with a 4- to 5-fold greater accumulation of P-450b mRNA vis à vis P-450e mRNA. The level of hepatic mRNA increased from less than 3 molecules/cell of each mRNA in untreated rats, to 630 and 130 molecules/cell for P-450b and P-450e, respectively, in phenobarbital-treated rats. Data obtained in Northern blot hybridization experiments demonstrated that the size of the mRNAs for each protein were identical, being approximately 1800 bases in length.  相似文献   

2.
3.
Administration of ethanol, dimethylsulphoxide, 2-propanol or imidazole to rats caused 2-7-fold increases in the level of hepatic ethanol-inducible cytochrome P-450 (P-450j), without any concomitant enhancement of corresponding mRNA. All the compounds were able to stabilize P-450j in hepatocyte cultures for at least three days, whereas P-450j mRNA rapidly disappeared from the cultures. A correlation was reached between the concentration of Me2SO, ethanol and 2-propanol necessary to maintain P-450j in the cell cultures and their binding affinities to the enzyme. It is suggested that the ligand-bound form of P-450j in the hepatocytes is protected from degradation.  相似文献   

4.
Treatments affecting the loss of cytochrome P-450 in rat hepatocyte culture are reviewed and the way in which these have produced an understanding of the mechanisms involved are discussed extensively. A simple way to prevent the loss of P-450 in hepatocytes is to culture them with 0.5 mM metyrapone which appears to restore the cytochromes' synthesis and degradation to steady state values. Knowledge of this mechanism has led to the formulation of special culture medium and the application of both culture systems to the study of drug metabolism and toxicity are described. Finally the effect of these culture systems on the expression of the multiple forms of cytochrome P-450 are presented to illustrate the potential of cultured hepatocytes in induction studies.  相似文献   

5.
Antibodies to four rat liver forms of cytochrome P-450, two phenobarbital-inducible (PB1 and PB2) and two 3-methylcholanthrene-inducible (MC1 and MC2) proteins, have been used to make a structural and functional comparison of rat and human cytochromes P-450. Proteins from both species were identified on Western blots by their reaction with these antibodies. In the human liver preparations, structurally related proteins to PB1 and to PB2 were identified in all the samples tested with apparent Mr values of 51 800 and 54 800 for PB1 and 53 600 and 57 200 for PB2. Considerable variation in the content of the lower-Mr proteins was measured between samples and, as with the rat enzymes, samples which reacted well with anti-PB1 also reacted with anti-PB2, indicating that these proteins are regulated at least to some degree, co-ordinately. The apparent Mr values of the major human proteins identified with anti-MC1 and anti-MC2 were 54 400 and 57 000 respectively. Only six (of 31) human samples contained significant amounts of these proteins. The same six samples which reacted with anti-MC1 also reacted with anti-MC2, again indicating co-ordinate regulation of these two proteins. Antibody inhibition of microsomal 7-ethoxycoumarin and 7-ethoxyresorufin metabolism demonstrated a degree of conservation of substrate specificity related to specific P-450 isoenzymes between the species. However, the contributions of the different P-450 isoenzymes to the human microsomal activity were not always related to the rat enzyme with the highest activity towards these substrates.  相似文献   

6.
The tissue-specific expression of cytochrome P-450b and P-450e mRNAs was examined with synthetic 18-mer oligomer probes in the liver, lung, kidney, and testis of control and inducer pretreated adult rats. RNAs homologous to the P-450e probe were detected in trace amounts in control and 3-methylcholanthrene (MC) induced livers and at high levels in livers from phenobarbital (PB) induced animals. P-450e mRNA levels were below detection limits in the other tissues examined, regardless of pretreatment. In contrast, mRNAs homologous to the P-450b oligomer were detected at low levels in control and inducer pretreated lung and testis, and at high levels in PB induced liver. No P-450b mRNAs were detected in these assays in RNA isolates from the kidney or from control or MC pretreated liver. Solution hybridization data indicated that the rat lung contained 9-12%, and the testis, 6-9%, respectively, of the levels of P-450b mRNA measured in the PB induced liver. Results from oligo(dT)-cellulose and poly(U)-affinity experiments indicated that the hepatic mRNAs for P-450b and P-450e were present predominantly in the bound, polyadenylated fraction, whereas the homologous lung and testes P-450b mRNAs predominated in the flow-thru fractions.  相似文献   

7.
8.
9.
The cytochrome P-450 content of rat hepatocytes declined rapidly over 72 h in culture, due primarily to denaturation to cytochrome P-420. Six different media were investigated for their ability to conserve cytochrome P-450 during culture, and the most successful was a modified Earle's medium. After 72 h culture in this medium, cytochromes P-450 and b5, NADH-cytochrome b5- and NADPH-cytochrome c-reductases were maintained at 40, 100, 35 and 52% of fresh cell values, respectively. Cytochrome P-450 showed differential functional stability during culture with ethoxyresorufin O-deethylation being more stable than either pentoxyphenoxazone O-depentylation or biphenyl 4-hydroxylation. Monooxygenase than did cytochrome P-450 content. This discrepancy was not explained by loss of flavin nucleotides, FMN or FAD.  相似文献   

10.
Cytochrome P-450 was isolated from liver microsomes of phenobarbital treated rats by an essentially single step immunopurification with a monoclonal antibody (MAb). The amino terminal sequence of the isolated cytochrome P-450 displayed a microheterogeneity of isozymes related to previously identified phenobarbital induced forms, indicating that each of these isozymes possess the MAb-specific epitope. This monoclonal antibody-based approach to isolation and subsequent identification of cytochrome P-450 may serve to classify different isozymes by their content of epitopes that bind to different MAbs.  相似文献   

11.
Utilizing two-dimensional gel electrophoresis, the polypeptide composition of a purified microsomal cytochrome P-450 preparation isolated from phenobarbital-treated Long-Evans rats obtained from Charles River Laboratories has been examined. The purified protein consists of three polypeptides with nearly identical subunit molecular weights (approximately 52,000) but differing in net charge. These three polypeptides can be detected in liver microsomes isolated from phenobarbital-treated rats by immunoblot analysis but are virtually absent in microsomes isolated from untreated rats. All three polypeptides appear to be products of distinct mRNAs since they can be immunoprecipitated from rabbit reticulocyte lysates programmed with poly(A+)-RNA isolated from phenobarbital-treated rats. The amount of functional mRNA specific for the P-450 polypeptides increases dramatically in response to an acute administration of phenobarbital; however, in untreated rats the amount of functional mRNA was below the level of detection by the translational assay. These data are consistent with the very low level of the phenobarbital-inducible cytochromes P-450 in liver microsomes isolated from untreated rats. Finally, the data indicate that all three cytochrome P-450 mRNAs increase rapidly in response to phenobarbital administration and are regulated coordinately.  相似文献   

12.
13.
We used primary nonproliferating cultures of adult rat hepatocytes to investigate the regulation of P-450c and P-450d, immunochemically related protein products of separate cytochromes P-450 genes that are coinduced by 3-methylcholanthrene and related compounds. In cultures of hepatocytes prepared from untreated rats and incubated in media containing 3-methylcholanthrene, β-naphthoflavone, 3,4,3′,4′-tetrachlorobiphenyl, and Aroclor 1254 (a mixture of chlorinated biphenyls) there was a 5-to 15-fold accumulation of P-450c protein (quantitated by immunoblotting), accompanied by an increased rate of P-450c synthesis (measured as incorporation of [3H]leucine into immunoprecipitable protein) and an increased amount of P-450c mRNA hybridizable to a specific cloned cDNA (p210). In contrast, there were no increases in the concentration of P-450d protein, its rate of synthesis, or the amount of P-450d mRNA hybridizable to its specific cDNA (p72). Similarly, when “preinduced” hepatocytes (isolated from rats treated with Aroclor 1254) were incubated for 4 days in culture medium, the amount of P-450c, its rate of synthesis, and the amount of P-450c mRNA remained elevated, whereas synthesis of P-450d and the amount of P-450d mRNA fell precipitously to less than 10% of the initial values despite the presence or absence of Aroclor 1254 or of isosafrole in the medium. However, the loss of P-450d protein in these cultures was almost completely prevented when isosafrole was added to the culture medium and was partially prevented when safrole, Aroclor 1254, and 3,4,5,2′,4′,5′-hexachlorobiphenyl, but not 3-methylcholanthrene, β-naphthoflavone, or 3,4,3′4′-tetrachlorobiphenyl, were in the culture medium. Moreover, in similar cultures of “preinduced” hepatocytes that were pulse-labeled with [3H]leucine, the presence of isosafrole in the culture medium extended the apparent half-life for loss of radioactivity in immunoprecipitable P-450d to a value of 72 h (3-fold longer than in standard medium) but was without effect on the rate of disappearance of radiolabeled P-450c. We conclude that control of P-450d degradation is an important factor in the regulation of this hemoprotein and that induction of P-450c and P-450d proceed by separate pathways that are spontaneously divorced under standard conditions for primary culture of adult rat hepatocytes.  相似文献   

14.
A well-characterized primary rat hepatocyte culture system was used to examine induction patterns of cytochrome 450 gene expression by a series of 4-n -alkyl-methylenedioxybenzene (MDBs) derivatives. Hepatocytes were treated for 24, 48, or 72 hours with 0–500 μ M of the MDB compounds, and total cellular RNA and protein from each treatment was evaluated by hybridization and immunochemical techniques. Exposure to MDB congeners possessing increasing 4-n -alkyl side-chain length (C0–C8) resulted in dose- and structure-dependent activation of CYP2B1, 2B2, 3A1, 1A1, and 1A2 gene expression. At equivalent 100 μ M concentrations, the C6 and C8 MDB congeners were more effective than the prototypical inducer phenobarbital (PB) with respect to induction potency of CYP2B1, CYP2B2, and CYP3A1 gene expression. In contrast to PB, longer side-chain–substituted MDBs effectively induced CYP1A1 and CYP1A2 gene expression, in addition to the CYP2B and CYP3A genes. At equivalent molar concentrations, the catechol derivative of C6-MDB was ineffective in its ability to induce CYP gene expression, indicating the importance of the intact methylenedioxy bridge in the induction mechanism. Levels of MDB-inducible CYP2B1 and CYP2B2 mRNA were highly correlated with CYP2B1/2 apoprotein levels, ascertained by immunoblot analysis of cultured hepatocyte S9 fractions. Compared with results from previous in vivo analysis (12), the current data indicate that pharmacodynamic factors may influence MDB induction profiles and that differences in MDB effects on CYP gene expression result depending on distinct structure-activity relationships. © 1998 John Wiley & Sons, Inc. J Biochem Toxicol 12: 253–262, 1998  相似文献   

15.
16.
Three cDNAs coding for monkey cytochrome P-450 (P450) 2C, 2E and 3A (MKmp13, MKj1 and MKnf2, respectively) were isolated from a lambda gt11 cDNA library of a liver from a 3-methylcholanthrene (3MC)-treated crab-eating monkey, using cDNA fragments for human P450 2C, 2E and 3A as respective probes. MKmp13 and MKnf2 were 1901 and 2032 bp long, containing entire coding regions for polypeptides of 490 and 503 residues, respectively. The deduced N-terminal amino acid sequences of MKmp13 and MKnf2 were identical with those of P450-MK1 and P450-MK2, which had been purified from liver microsomes of untreated and polychlorinated biphenyl (PCB)-treated crab-eating monkeys, respectively. MKj1 was 1508 bp long, encoding a polypeptide of 449 residues, which is presumed to lack N-terminal 45 residues as compared with the sequence for human P450 2E1. Northern blot analysis indicated that monkey P450 2C, 2E and 3A mRNAs were expressed constitutively in monkey livers. P450 2E and 3A mRNAs were induced by both 3MC and PCB, while P450 2C mRNA was induced only by PCB. The deduced amino acid sequences of four monkey cytochrome P-450 cDNAs, including P450 1A1 (MKah1) which we isolated previously, were more than 92% identical with those of corresponding human cytochrome P-450 cDNAs.  相似文献   

17.
18.
Squalestatin1 (SQ1), a potent inhibitor of squalene synthase produced a dose-dependent induction of cytochromes P450 CYP2H1 and CYP3A37 mRNAs in chicken hepatoma cells. The effect of SQ1 was completely reversed by 25-hydroxycholesterol. Bile acids elicited an induction of CYP3A37 and CYP2H1 mRNA. Bile acids also reduced the phenobarbital induction of CYP2H1 but not of CYP3A37 mRNA. The effects of SQ1 and its reversal by 25-hydroxycholesterol and the effects of bile acids were reproduced in reporter gene assays with a phenobarbital-responsive enhancer unit of CYP2H1. These data suggest that an endogenous molecule related to cholesterol homeostasis regulates induction of drug-inducible CYPs.  相似文献   

19.
20.
In this investigation, we examined the effects of insulin on gene induction responsiveness in primary rat hepatocytes. Cells were cultured for 72 hours either in the absence or presence of 1 μM insulin and then exposed to increasing concentrations of phenobarbital (PB; 0.01–3.5 mM). Culturing in the absence of insulin produced 1.5–2‐fold increases in the induction magnitude of CYP2B1 and CYP2B2 mRNA expression resulting from PB exposures, without altering the bell‐shaped dose‐response curve characteristic of this agent. However, for the CYP3A1 gene, insulin removal led to a pronounced shift in both the PB‐induction magnitude and dose‐response relationships of the induction response, with higher levels of CYP3A1 expression resulting from exposures to lower concentrations of inducer. Insulin removal also reduced the time required to attain maximal induction of CYP2B1/2 and CYP3A1 gene expression. The insulin effects were not specific for PB induction, as insulin deprivation similarly enhanced both dexamethasone‐ and β‐naphthoflavone‐inducible CYP3A1 and CYP1A1 expression profiles, respectively. In contrast, the level of albumin mRNA expression was reduced considerably in cells deprived of insulin. We conclude that insulin is an important regulator of inducible and liver‐specific gene expression in primary rat hepatocytes. © 1998 John Wiley & Sons, Inc. J Biochem Toxicol 13: 1–9, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号