首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biological soil crusts (BSCs) are ubiquitous lichen–bryophyte microbial communities, which are critical structural and functional components of many ecosystems. However, BSCs are rarely addressed in the restoration literature. The purposes of this review were to examine the ecological roles BSCs play in succession models, the backbone of restoration theory, and to discuss the practical aspects of rehabilitating BSCs to disturbed ecosystems. Most evidence indicates that BSCs facilitate succession to later seres, suggesting that assisted recovery of BSCs could speed up succession. Because BSCs are ecosystem engineers in high abiotic stress systems, loss of BSCs may be synonymous with crossing degradation thresholds. However, assisted recovery of BSCs may allow a transition from a degraded steady state to a more desired alternative steady state. In practice, BSC rehabilitation has three major components: (1) establishment of goals; (2) selection and implementation of rehabilitation techniques; and (3) monitoring. Statistical predictive modeling is a useful method for estimating the potential BSC condition of a rehabilitation site. Various rehabilitation techniques attempt to correct, in decreasing order of difficulty, active soil erosion (e.g., stabilization techniques), resource deficiencies (e.g., moisture and nutrient augmentation), or BSC propagule scarcity (e.g., inoculation). Success will probably be contingent on prior evaluation of site conditions and accurate identification of constraints to BSC reestablishment. Rehabilitation of BSCs is attainable and may be required in the recovery of some ecosystems. The strong influence that BSCs exert on ecosystems is an underexploited opportunity for restorationists to return disturbed ecosystems to a desirable trajectory.  相似文献   

2.
Propagule pressure is commonly considered a primary driver of invasive plant establishment and spread. However, the physical size or condition (i.e., quality) of propagules may also affect establishment, particularly under unfavorable habitat conditions such as low light environments. We used an outdoor mesocosm experiment to test the relative contribution of propagule size (number of individuals introduced) and quality (number of rhizome nodes) to the establishment and performance of the highly invasive cogongrass (Imperata cylindrica) under experimental sun and shade treatments. We found that the introduction of higher quality propagules (rhizome segments ≥3 nodes in length) significantly enhanced establishment across both light treatments, and increased final tiller count in the sun treatment. The sun treatment also enhanced rhizome growth, an effect that could increase spread rates and invasion success. Thus, while cogongrass is likely to establish in both sun and shade, introductions of large propagule sizes or large rhizomes in high light environments likely poses the greatest threat to native habitats. Our results demonstrate that propagule quality promoted both establishment and performance of a highly invasive grass species and suggest that propagule quality may play an important but underappreciated role in the invasion process.  相似文献   

3.
The success of plant invasions may be limited by the availability of propagules and/or of suitable microsites, with microsite availability being affected by, for example, disturbance and interspecific competition. A mechanistic understanding of the contributions of propagule pressure and microsite limitation to plant invasions is therefore required to minimise future invasions. Here, we investigated the relative roles of propagule pressure, the availability of microsites, and their interaction on the establishment of an invasive herb, Lupinus polyphyllus, in two geographic regions representing different climate and growth conditions in Finland (a more productive southern region and a harsher central region). We carried out a field experiment in 14 L. polyphyllus populations, in which we manipulated both propagule pressure and disturbance. In a complementary greenhouse experiment, we manipulated propagule pressure and interspecific competition. Seedling establishment of L. polyphyllus was higher in the more productive southern region than in the harsher central region. The number of L. polyphyllus seedlings increased with increasing propagule pressure regardless of disturbance or interspecific competition. However, the number of L. polyphyllus seedlings per sown seed (relative establishment) tended to decrease with increasing propagule pressure, indicating that the positive effect of propagule pressure on early invasion is partially counteracted by density-dependent mortality at high seed densities. Our results highlight the dominant role of propagule pressure over disturbance and interspecific competition in the establishment of L. polyphyllus, suggesting that the early stage of invasion is limited by the availability of propagules rather than the availability of suitable microsites.  相似文献   

4.
Toshihiko Sato 《Oikos》2002,96(3):453-462
Reproductive resource investment among vegetative propagules and male and female sexual function and their size-dependence were investigated in a perennial forest herb, Laportea bulbifera . A theoretical model based on fitness gain curves predicts that optimal investments in three reproductive modes will increase with plant size if fitness returns in all three modes increase but become saturated with investment. In a field population, large plants of L. bulbifera produced both male and female inflorescences with propagules, while small plants produced only vegetative propagules. Biomass of propagules, male inflorescences, and infructescences with achenes were all positively correlated with plant size. The increase in investment with plant size was larger for propagule production than for sexual reproduction. The relationship between propagule biomass and plant size was constant irrespective of year, while the relationship between the biomass of sexual reproductive organs and plant size differed between two successive years. Annual change of individual sex expression was investigated for 25 transplanted plants. Although each plant changed its sex expression variously among male, female and bisexual from year to year, 23 out of 25 plants produced both male and female inflorescences in at least one year. The number of viable (germinated and survived) offspring from seeds was not significantly different from the number from propagules. The production cost of a propagule was higher than that of a seed. Resource allocation theory does not seem to be applicable to size-dependent resource allocation, especially the allocation between seeds and propagules in this species.  相似文献   

5.
Sousa WP  Kennedy PG  Mitchell BJ 《Oecologia》2003,135(4):564-575
Variation in rates of seedling recruitment, growth, and survival can strongly influence the rate and course of forest regeneration following disturbance. Using a combination of field sampling and shadehouse experiments, we investigated the influence of propagule size and predispersal insect damage on the establishment and early growth of the three common mangrove species on the Caribbean coast of Panama: Avicennia germinans, Laguncularia racemosa, and Rhizophora mangle. In our field samples, all three species exhibited considerable intraspecific variation in mature propagule size, and suffered moderate to high levels of predispersal attack by larval insects. Rates of insect attack were largely independent of propagule size both within and among trees. Our experimental studies using undamaged mature propagules showed that, for all three species, seedlings established at high rates regardless of propagule size. However, propagule size did have a marked effect on early seedling growth: seedlings that developed from larger propagules grew more rapidly. Predispersal insect infestations that had destroyed or removed a substantial amount of tissue, particularly if that tissue was meristematic or conductive, reduced the establishment of propagules of all three species. The effect of sublethal tissue damage or loss on the subsequent growth of established seedlings varied among the three mangrove species. For Avicennia, the growth response was graded: for a propagule of a given size, the more tissue lost, the slower the growth of the seedling. For Laguncularia, the response to insect attack appeared to be all-or-none. If the boring insect penetrated the outer spongy seed coat and reached the developing embryo, it usually caused sufficient damage to prevent a seedling from developing. On the other hand, if the insect damaged but did not penetrate the seed coat, a completely healthy seedling developed and its growth rate was indistinguishable from a seedling developing from an undamaged propagule of the same size. Similar to Avicennia, if an infestation did not completely girdle a Rhizophora seedling, it survived, but grew at a reduced rate. In summary, our experiments demonstrated that natural levels of variation in propagule size and predispersal damage by insects translate into significant differences in seedling performance in terms of establishment and/or early growth. Such differences are sufficiently large that they could influence the intensity and outcome of competitive interactions during forest regeneration.  相似文献   

6.
Dominance by free‐floating plants results in a loss of plant species in many waters. An important source for re‐establishment of non‐floating aquatic plants can be the propagule bank. This study focuses on whether the propagule bank of free‐floating plant–dominated ditch sediments can serve as potential source for recovery of a diverse plant community. The first objective was to determine differences in propagule germination from sediments of ditches in the Netherlands that differ in vegetation composition through a seedling‐emergence experiment. The second objective was to analyze the effect of sediment disturbance on the number of germinating propagules. The results show that, compared to sediments from ditches with submerged vegetation, sediments from free‐floating plant–dominated ditches produced significantly lower numbers of individuals and species of submerged and emergent plants, while numbers of individuals and species of free‐floating plants were higher. These results suggest that sediments from free‐floating plant–dominated ditches have lower potential to recover a diverse plant community probably resulting from positive feedback mechanisms caused by the vegetation present, maintaining the free‐floating plant–dominated state. Sediment disturbance strongly favors the germination of free‐floating plant propagules, especially from free‐floating plant–dominated ditch sediments. Ditch maintenance activities such as mowing and dredging will therefore likely favor persistence of the free‐floating plant–dominated state. To shift from dominance by free‐floating plants to a more diverse plant community, alternative maintenance methods should be considered that cause less sediment disturbance together with measures that promote colonization such as temporary drawdown or re‐introduction of species.  相似文献   

7.
Plant invasions are a significant threat to fragmented native plant communities in many agricultural regions. Fire potentially facilitates invasions, but in landscapes historically subject to recurrent fires, exclusion of fire is also likely to result in loss of biodiversity. We investigated the relationship between fire, fragmentation and alien plant invasion in mallee communities of the Western Australian wheatbelt. We hypothesized that invasion is limited by lack of propagules and the low soil nutrient levels of this old, infertile landscape, but that fire and/or fragmentation disrupt these limits. We tested the effects of three factors on establishment and abundance of alien annuals: ± fire, ± post-fire seeding with the locally invasive Avena barbata (propagule availability) and three landscape contexts. The three landscape contexts, exploring site limitations, were reserve interiors, perimeter edges adjacent to agricultural land and internal reserve roadside edges. Our first hypothesis was supported: Avena establishment was consistently greater in seeded plots, but away from perimeter edges, growth was poor. Our second hypothesis was supported only for perimeter edges: neither fire nor fragmentation by interior roads enhanced invasive plant establishment or biomass. At perimeter edges, invasive plant biomass was significantly greater. This was associated with higher propagule availability and elevated soil nutrient levels but was not enhanced by fire. We conclude that fire is unlikely to promote invasion by alien annuals in low-nutrient ecosystems such as mallee, hence is a viable disturbance strategy for biodiversity conservation away from nutrient-enriched edges.  相似文献   

8.
In many plant and sessile marine invertebrate (SMI) taxa, population and community dynamics are heavily influenced by processes occurring during the dispersal and establishment phases. The Janzen–Connell (J–C) hypothesis predicts increased survival of early life stages with decreasing conspecific density and increased distance from conspecific adults. Evidence of J–C effects in maintaining diversity is common in plant communities, but its importance in SMI communities remains unclear. Under controlled aquarium conditions, we examined the effect of density-dependence and adult conspecific water treatments (absent/present) on propagule settlement success and settler post-settlement survival, along with associated spatial patterns, for six broadcast-spawning, reef-building coral species from three families. We also tested if settlement success was linked to increasing propagule species diversity for three coral species from two families. We found that the probability of settlement was density independent and not influenced by adult present water treatments. Yet, adult present water treatments and settler density did have a synergistic negative effect on the probability of short-term settler survival for all species examined. Settlers also showed greater spatial aggregation as their numbers increased, but were less aggregated in adult present water treatments compared to those in adult absent water treatments. We further show evidence of significant species interactions among propagules, as settlement in single-species trials was four-fold higher compared to mixed-species trials. Our findings from controlled experimental arenas indicate that the early establishment of corals was predominantly limited by density-dependent settler–adult interactions among conspecifics and propagule–propagule interactions among heterospecifics. Thus, the proximity to established conspecific adults, settler density and species diversity of propagules are relevant drivers of local coral community diversity and structure. Based on these outcomes, we suggest that the J–C hypothesis, with demonstrated importance for plants, is partially upheld for reef corals.  相似文献   

9.
William J. Platt 《Oecologia》1976,22(4):399-409
Summary Some perennial fugitive plants that colonize badger disturbances in xeric prairies have a limited dispersal capacity, and consequently propagules are dispersed over a small area. I hypothesized that high density-dependent mortality might occur early in the life history of such species, and thus increased survival might occur in subsequent age classes because intraspecific competition would be reduced. These hypotheses were tested using natural and experimental cohorts of Mirabilis hirsuta (Pursh) MacM. From these data and field observations, inferences were obtained concerning selective forces operating upon life history characteristics of this species.The distance between individuals of M. hirsuta increases in successive age classes; the greatest decrease in density occurs between the propagule and seedling age classes. Mortality of propagules due to predation by ants and mice was density-dependent. Predation rates were highest at high propagule densities and predation upon propagules located on badger disturbances was higher than the mortality of propagules at similar densities in undisturbed prairie. The results of mortality in the propagule age class are seedlings present only at low densities and located away from parent plants. Seedlings survive to maturity only if they are located on badger disturbances; this species apparently can not successfully compete with plants present in undistrubed prairie. On badger disturbances seedlings present at low densities have much higher survival (roughly 50%) to maturity than do seedlings present at high densities (essentially zero). Thus, if high densities of propagules occur on a disturbance, predation upon propagules results, indirectly, in increased survival of seedlings to maturity. Such predation potentially could have important effects upon interspecific competition of M. hirsuta with other fugitives also colonizing badger disturbances.Reproductive success of M. hirsuta on the Cayler Prairie Preserve is contingent upon successful colonization of disturbance sites. It would appear that selection has operated upon the life history characteristics to favor both successful immigration onto new sites and establishment of seedlings on those sites. Relatively few, but large propagules are produced annually over a long adult life span. While large propagules enhance seedling establishment on xeric sites, production of few propagules annually for a number of years increases the likelihood of immigration onto sites that are variable in the time of appearance within the dispersal range of the plant.  相似文献   

10.
1. The way light stress controls the recruitment of aquatic plants (phanerogams and charophytes) is a key process controlling plant biodiversity, although still poorly understood. Our aim was to investigate how light stress induced by phytoplankton, that is, independent from the aquatic plants themselves, determines the recruitment and establishment of plant species from the propagule bank. The hypotheses were that an increase in light stress (i) decreases abundance and species richness both of established aquatic plants and of propagules in the bank and (ii) decreases the recruitment success of plants from this bank. 2. These hypotheses were tested in 25 shallow lakes representing a light stress gradient, by sampling propagule banks before the recruitment phase and when the lakes are devoid of actively growing plants (i.e. at the end of winter), established vegetation at the beginning of the summer and phytoplankton biomass (chlorophyll a) during the recruitment and establishment phase. 3. The phytoplankton biomass was negatively correlated with the richness and abundance of established vegetation but was not correlated with the propagule bank (neither species richness nor propagule abundance). The similarity between the propagule bank and established vegetation decreased significantly with increasing phytoplankton biomass. 4. The contrast in species composition between the vegetation and the propagule bank at the highest light stress suggests poor recruitment from the propagule bank but prompts questions about its origin. It could result from dispersal of propagules from neighbouring systems. Propagules could also originate from a persistent propagule bank formerly produced in the lake, suggesting strong year‐to‐year variation in light stress and, as a consequence, in recruitment and reproductive success of plants.  相似文献   

11.
Taylor DL  Bruns TD 《Molecular ecology》1999,8(11):1837-1850
We have investigated colonization strategies by comparing the abundance and frequency of ectomycorrhizal fungal species on roots in a mature Pinus muricata forest with those present as resistant propagules colonizing potted seedlings grown in the same soil samples. Thirty-seven fungal species were distinguished by internal transcribed spacer (ITS) restriction fragment length polymorphisms (RFLPs); most were identified to species level by sporocarp RFLP matches or to genus/family level by using sequence databases for the mitochondrial and nuclear large-subunit rRNA genes. The below-ground fungal community found in the mature forest contrasted markedly with the resistant propagule community, as only four species were found in both communities. The dominant species in the mature forest were members of the Russulaceae, Thelephorales and Amanitaceae. In contrast, the resistant propagule community was dominated by Rhizopogon species and by species of the Ascomycota. Only one species, Tomentella sublilacina (Thelephorales), was common in both communities. The spatial distribution of mycorrhizae on mature roots and propagules in the soil differed among the dominant species. For example, T. sublilacina mycorrhizae exhibited a unique bias toward the organic horizons, Russula brevipes mycorrhizae were denser and more clumped than those of other species and Cenococcum propagules were localized, whereas R. subcaerulescens propagules were evenly distributed. We suggest that species differences in resource preferences and colonization strategies, such as those documented here, contribute to the maintenance of species richness in the ectomycorrhizal community.  相似文献   

12.
Schmalholz M  Hylander K 《Oecologia》2011,167(4):1093-1101
The extent to which a plant assemblage might recolonize a disturbed system is in general related to the availability of propagule sources and sites with appropriate conditions for establishment. Both these factors might be sensitive to aspects of spatial heterogeneity. Microtopographic variation may enhance initial resistance by reducing the impact of the disturbance and facilitating establishment of incoming propagules by providing shaded “safe-sites”. This study explores the influence of microtopographic heterogeneity (caused by variation in surface boulder cover) on the recolonization of closed-canopy forest floor bryophytes using a chronosequence of 75 spruce-dominated forests in south-central Sweden (2–163 years after clear-cutting). We found that high boulder cover did increase survival and subsequent persistence in young forests at both investigated scales (i.e. 1,000 and 100 m2), although this pattern became less evident on the smaller spatial scale. Species accumulation in boulder-poor subplots was not different when surrounded by boulder-rich compared with boulder-poor subplots suggesting short-distance recolonization from boulder-created refugia to be of little importance during recolonization. To conclude, it seems that boulders increase initial resistance to clear-cutting for this bryophyte guild, but that the subsequent recolonization process is more likely to depend on external propagule sources and factors affecting establishment such as the microclimate in the developing stand.  相似文献   

13.
Resource availability and propagule supply are major factors influencing establishment and persistence of both native and invasive species. Increased soil nitrogen (N) availability and high propagule inputs contribute to the ability of annual invasive grasses to dominate disturbed ecosystems. Nitrogen reduction through carbon (C) additions can potentially immobilize soil N and reduce the competitiveness of annual invasive grasses. Native perennial species are more tolerant of resource limiting conditions and may benefit if N reduction decreases the competitive advantage of annual invaders and if sufficient propagules are available for their establishment. Bromus tectorum, an exotic annual grass in the sagebrush steppe of western North America, is rapidly displacing native plant species and causing widespread changes in ecosystem processes. We tested whether nitrogen reduction would negatively affect B. tectorum while creating an opportunity for establishment of native perennial species. A C source, sucrose, was added to the soil, and then plots were seeded with different densities of both B. tectorum (0, 150, 300, 600, and 1,200 viable seeds m−2) and native species (0, 150, 300, and 600 viable seeds m−2). Adding sucrose had short-term (1 year) negative effects on available nitrogen and B. tectorum density, biomass and seed numbers, but did not increase establishment of native species. Increasing propagule availability increased both B. tectorum and native species establishment. Effects of B. tectorum on native species were density dependent and native establishment increased as B. tectorum propagule availability decreased. Survival of native seedlings was low indicating that recruitment is governed by the seedling stage.  相似文献   

14.
The evolution of parasite virulence is thought to involve a trade‐off between parasite reproductive rate and the effect of increasing the number of propagules on host survivorship. Such a trade‐off should lead to selection for an intermediate level of within‐host reproduction (λ). Here I consider the effects of parasite propagule number on selection affecting λ when (i) the effect of each propagule is independent of propagule number, and (ii) when the effect of each propagule changes as a function of propagule number. Virulence evolves in these models as a correlated response to selection on λ. If each propagule has the same effect (s) as all previous propagules, the survivorship of infected hosts is reduced by more than 60% at equilibrium, independent of the value of s. If, instead, each propagule has a more negative effect on host survivorship than previous propagules, host survivorship at equilibrium is expected to increase as the effect becomes more pronounced. These results are directly parallel to results derived for population mean fitness at mutation‐selection balance; and they suggest that high virulence should be associated with parasites for which the effect of adding propagules either remains constant or diminishes with propagule number.  相似文献   

15.
Colonization is of longstanding interest in theoretical ecology and biogeography, and in the management of weeds and other invasive species, including insect pests and emerging infectious diseases. Due to accelerating invasion rates and widespread economic costs and environmental damages caused by invasive species, colonization theory has lately become a matter of considerable interest. Here we review the concept of propagule pressure to inquire if colonization theory might provide quantitative tools for risk assessment of biological invasions. By formalizing the concept of propagule pressure in terms of stochastic differential equation models of population growth, we seek a synthesis of invasion biology and theoretical population biology. We focus on two components of propagule pressure that affect the chance of invasion: (1) the number of individuals initially introduced, and (2) the rate of subsequent immigration. We also examine how Allee effects, which are expected to be common in newly introduced populations, may inhibit establishment of introduced propagules. We find that the establishment curve (i.e., the chance of invasion as a function of initial population size), can take a variety of shapes depending on immigration rate, carrying capacity, and the severity of Allee effects. Additionally, Allee effects can cause the stationary distribution of population sizes to be bimodal, which we suggest is a possible explanation for time lags commonly observed between the detection of an introduced population and widespread invasion of the landscape.  相似文献   

16.
Successful ecological restoration is expected to be accompanied by change in the propagule bank. We tested for temporal change in the soil propagule bank at two Bracken (Pteridium aquilinum)‐infested sites in the United Kingdom (acid grassland and heathland), each with replicate experiments. A combination of bracken control (cutting, spraying, and combinations) and vegetation restoration treatments (seeding, fertilizer, harrowing) were applied. Soil propagule banks were sampled in 1998, 4–5 years after the start, and in 2003 after a further 5 years. We used univariate and multivariate statistical methods to investigate the response of the propagule bank to experimental treatment in space and time. Few effects were found in 1998, but after a further 5 years, the propagule bank size and composition changed significantly, implying that propagule bank development lags behind vegetation development. The effect of treatment on the propagule bank differed within sites. Thus, ecosystem development is occurring at different speeds and directions even in closely adjacent areas. Coupling between the propagule bank and vegetation changed between sampling times with either some new coupling or decoupling. At both sites, the propagule bank contained propagules of the target community and thus propagule bank development during restoration provides increased potential for vegetation recovery. However, it can take a considerable time for management effects to be detected in the propagule bank. Moreover, the effect or speed of effect is spatially variable. Continuing application of restoration treatments is recommended at heathland where there is a deep bracken litter layer.  相似文献   

17.
Mangroves in disparate families produce viviparous seedlings (propagules) that are attacked by many crab and insect predators both before and after dispersal. While post-dispersal predation is viewed as an important factor in structuring many mangrove communities, pre-dispersal predation rates and agents have been characterized for few species. Ten species of mangrove and 3299 propagules were surveyed for pre-dispersal propagule predation at 42 sites around the world. Pre-dispersal predation rates were variable among sites and species, ranging from 0 to 93 percent within sands, with a global total predation rate of 23.3 percent (across all propagules examined) and a mean level of 28.3 percent across sites. Grapsid crabs, Coleoptera and Lepidoptera were the primary predators identified. Forests near human population centers and stands occurring at high intertidal sites exhibited higher levels of propagule predation than those in unpopulated or low-intertidal sites. Predation rates on a species were weakly, negatively correlated with conspecific seedling density at a site. To explore temporal variation in, and ramifications of pre-dispersal predation for propagule growth and abscission dynamics, Rhizophora mangle propagules were monitored over two years at three sites in Belize, Central America. Predation did not significantly reduce hypocotylar growth of germinated propagules on the parent tree, but nearly doubled the abscission rate of premature propagules. Pre-dispersal propagule predation is a ubiquitous feature of mangrove forests world-wide, and must be accounted for in estimates of reproductive output, stand health, and propagule availability for forestry and restoration efforts.  相似文献   

18.
Vegetative propagule pressure may affect the establishment and structure of aquatic plant communities that are commonly dominated by plants capable of clonal growth. We experimentally constructed aquatic communities consisting of four submerged macrophytes (Hydrilla verticillata, Ceratophyllum demersum, Elodea nuttallii and Myriophyllum spicatum) with three levels of vegetative propagule pressure (4, 8 and 16 shoot fragments for communities in each pot) and two levels of water depth (30 cm and 70 cm). Increasing vegetative propagule pressure and decreasing water level significantly increased the growth of the submerged macrophyte communities, suggesting that propagule pressure and water depth should be considered when utilizing vegetative propagules to re-establish submerged macrophyte communities in degraded aquatic ecosystems. However, increasing vegetative propagule pressure and decreasing water level significantly decreased evenness of the submerged macrophyte communities because they markedly increased the dominance of H. verticillata and E. nuttallii, but had little impact on that of C. demersum and M. spicatum. Thus, effects of vegetative propagule pressure and water depth are species-specific and increasing vegetative propagule pressure under lower water level can facilitate the establishment success of submerged macrophyte communities.  相似文献   

19.
Although knowledge on dispersal patterns is essential for predicting long-term population dynamics, critical information on the modalities of passive dispersal and potential interactions between vectors is often missing. Here, we use mangrove propagules with a wide variety of morphologies to investigate the interaction between water and wind as a driver of passive dispersal. We imposed 16 combinations of wind and hydrodynamic conditions in a flume tank, using propagules of six important mangrove species (and genera), resulting in a set of dispersal morphologies that covers most variation present in mangrove propagules worldwide. Additionally, we discussed the broader implications of the outcome of this flume study on the potential of long distance dispersal for mangrove propagules in nature, applying a conceptual model to a natural mangrove system in Gazi Bay (Kenya). Overall, the effect of wind on dispersal depended on propagule density (g l-1). The low-density Heritiera littoralis propagules were most affected by wind, while the high-density vertically floating propagules of Ceriops tagal and Bruguiera gymnorrhiza were least affected. Avicennia marina, and horizontally floating Rhizophora mucronata and C. tagal propagules behaved similarly. Morphological propagule traits, such as the dorsal sail of H. littoralis, explained another part of the interspecific differences. Within species, differences in dispersal velocities can be explained by differences in density and for H. littoralis also by variations in the shape of the dorsal sail. Our conceptual model illustrates that different propagule types have a different likelihood of reaching the open ocean depending on prevailing water and wind currents. Results suggest that in open water, propagule traits (density, morphology, and floating orientation) appear to determine the effect of water and wind currents on dispersal dynamics. This has important implications for inter- and intraspecific variation in dispersal patterns and the likelihood of reaching suitable habitat patches within a propagule''s viable period.  相似文献   

20.
Current evidence suggests regular overland transport of different freshwater invertebrates by wind, mainly over short distances. Yet, very little is known about the mechanism and scale of this process or about differences in wind dispersal dynamics and capacities among taxa and propagule types. We investigated wind dispersal of freshwater invertebrates in a cluster of temporary rock pools (spatial scale: 9,000 m2) in South Africa. Dispersing propagules and propagule bank fragments (i.e. aggregates of sediments and propagules) were intercepted during 1 month using a combination of windsocks (1.5 m above ground level) and sticky traps (ground level). The potential movement of propagule bank fragments (i.e. aggregates of propagules and sediments) was also simulated by tracking inter-pool movements of differently sized artificial substrate fragments similar to dry propagule bank fragments. We detected differences in the composition of dispersing communities intercepted at different altitudes (ground level and at 1.5 m). Comparison of dispersal distance distributions also revealed significant differences among taxa. Overall, larger propagule types (e.g. adult ostracods and oribatid mites) dominantly travelled near ground level while small resting eggs and cryptobiotic life stages of copepods were most frequently collected at higher altitudes (1.5 m) and dispersed over the longest distances. Finally, not only dispersal of single propagules but also ground level transport of propagule bank fragments was shown to contribute to local dispersal dynamics in temporary aquatic habitats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号