首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Neurohormone C (NC) is a glycopeptide isolated from bovine hypothalamus, which inhibits Ca-calmodulin (CaM)-dependent cAMP and cGMP phosphodiesterase (PDE) and is a regulator of Ca in the cell. Distribution of [45Ca]CaCl2 in the mitochondria and reticulum (SR) of heart and brain mitochondria and changes of Ca-binding proteins in these organelles under NC influence have been studied in the myocardium before and after isoproterenol-induced necrosis. Intraperitoneal administration of 80–100 mU of PDE inhibitory activity of NC to rats did not cause any noticeable changes in the protein content of intracellular organelles, but altered the affinity of certain proteins to45Ca2+. This property of NC was especially noticable after isoproterenol necrosis. Necrotic injury of the myocardium induced Ca2+ storage in the mitochondria and SR of brain, and decreased the Ca2+ concentration in myocardial mitochondria. NC injection to the animals with necrosis was followed by Ca2+ release from all the studied organelles.  相似文献   

2.
Human NK cells can be divided into two subsets, CD56dimCD16(+)NK and CD56brightCD16(−)NK cells, based on their expression of CD56 and CD16. In the present study, we analyzed the relationship between CD56dim/CD56bright NK cells and H2O2 in tumor-infiltrating NK cells in patients with gastric (n = 50) and esophageal (n = 35) cancer. The ratio of CD56dim NK cells infiltrating tumors gradually decreased according to disease progression. H2O2 was abundantly produced within tumor microenvironments, and there was an inverse correlation between CD56dim NK cell infiltration and H2O2 production. CD56dim NK cells are more sensitive to apoptosis induced by physiological levels of H2O2 than CD56bright NK cells. Furthermore, the exposure of NK cells to H2O2 resulted in the impairment of ADCC activity. In conclusion, H2O2 produced within tumor microenvironments inversely correlated with the infiltration of CD56dim NK cells, possibly due to their preferentially induced cell death. These observations may explain one of the mechanisms behind NK cell dysfunction frequently observed in tumor microenvironments.  相似文献   

3.
Summary During the solid state fermentation (SSF) of cassava starch by Aspergillus niger estimations were made of total water, consumed water and the residual water remaining in small quantities after 23 h. A theoretical calculation based on the Ross equation showed that the water activity (a w) of the substrate decreased to 0.85 towards the end of the culture. Such low values were assumed to be inhibitory to growth. The a w of the substrate was increased when sugarcane bagasse was used as a high water retention capacity support. Higher growth rates and substrate conversion to biomass were obtained with this system, confirming that water availability is a critical factor in the SSF of starch substrates.Abbreviations A, B Experimental constants - a w Water activity - H2Oc Consumed water - H2OR Residual water - H2OT Total water - IDW Initial dry weight - IMC Initial moisture content - OUR Oxygen uptake rate - S Substrate dry weight - Sc Substrate conversion: consumed substrate/initial substrate - S H Amount of sugars hydrolysed - SSF Solid state fermentation - X Biomass dry weight - W * Amount of solids/g of water  相似文献   

4.
Entry of β-hydroxybutyrate into erythrocytes and thymocytes is facilitated by a carrier (C), as judged from temperature dependence, saturation kinetics, stereospecificity, competition with lactate and pyruvate, and inhibition by moderate concentrations of methylisobutylxanthine, phloretin, or α-cyanocinnamate. We studied the dependence of influx and efflux on internal and external pH and [β-hydroxybutyrate]. Lowering external pH from 8.0 to 7.3 to 6.6 enhanced influx into erythrocytes by lowering entry Km from 29 to 16 to 10 mM, entry V being independent of external pH. Lowering external pH inhibited efflux. At low external pH, external β-hydroxybutyrate enhanced efflux slightly. At high external pH, external β-hydroxybutyrate inhibited efflux. Internal acidification inhibited influx and internal alkalization enhanced influx. Internal β-hydroxybutyrate (βHB) enhanced influx more in acidified than alkalized cells. These data are compatible with coupled βHB?/OH? exchange, βHB? and OH? competing for influx, C : OH? moving faster than C : βHB?, empty C being immobile. They are also compatible with coupled βHB?/H+ copermeation, empty C moving inward faster than H+ : C : βHB?, H+ : C being immobile, and C : βHB? (without H+) being so unstable as not to be formed in significant amounts (relative to C, H+ : C, and H+ : C : βHB?).  相似文献   

5.
The influence of leptin and ghrelin, as well as their combined effects, on the expression of membrane molecules and cytokine production by NK cells from peripheral blood was studied in vitro. The effects of hormones were assayed at the concentrations corresponding to their peripheral blood levels in the course of physiological pregnancy. It was established that the investigated hormones exerted significant effects only at the concentrations typical of the II–III trimester of pregnancy. In particular, leptin and ghrelin and their combination increased the number of CD56brightNKp46+NK cells in the suspension of mononuclear cells and inhibited the expression of homing molecules CCR7 and inhibitor molecules LILRB in NKp46+NK cells. Leptin and its combination with ghrelin increased the expression of L-selectin in CD56brightNKp46+NK cells but inhibited the secretion of IL-10 by NKp46+NK cells. Leptin reduced the production of IL-4 by NKp46+ cells, while ghrelin eliminated this effect. The hormones did not influence the expression of inhibitory molecules NKG2A in NKp46+ cells and the production of TGF-β1, IL-17A, and IFN-γ by these cells. Thus, the investigated hormones at the concentrations typical of the II–III trimester of pregnancy effectively regulate the expression of membrane molecules and cytokine production by NK cells of the peripheral blood.  相似文献   

6.
The effects of exogenous hormones, used for estrus synchronization and ovarian hyper stimulation, on cumulus oocyte complexes (COCs) gene expression in sexually mature rats were determined using microarrays. Gene expression in COCs collected from GnRH (Gtrt), GnRH + eCG (G + Etrt), and GnRH + eCG + hCG (G + E + Htrt) treatments were compared to COCs from naturally cycling (NC) rats before the preovulatory luteninizing hormone surge. There was no significant difference in gene expression among NC, Gtrt, and G + Etrt; however, over 2,600 genes were significantly different between NC and G + E + Htrt (P < 0.05). Genes upregulated in G + E + Htrt encode for: proteins that are involved in prostaglandin synthesis (Ptgs2, Pla2g4a, and Runx1) and cholesterol biosynthesis (Hmgcr, Sc4mol, and Dhcr24); receptors that allow cholesterol uptake (Ldlr and Scarb1), regulate progesterone synthesis (Star), and inactivate estrogen (Sult1e1); and downstream effectors of LH signal (Pgr, Cebpb, Creb3l1, Areg, Ereg, and Adamts1). Conversely, G + E + Htrt downregulated genes encoding proteins involved in: DNA replication and cell cycle progression (Ccne2, Orc5l, Rad50, and Mcm6); reproductive developmental process; and granulosa cell expansion (Gdf9, Bmp15, Amh, Amhr2, Bmpr1b, Tgfb2, Foxl2, Pde3a, Esr2, Fshr, Ybx2, Ccnd2, Ccnb1ip1, and Zp3); maternal effect genes required for embryo development (Zar1, Npm2, Nlrp5, Dnmt1, H1foo, and Zfp57); amino acid degradation; and ketogenesis (Hmgcs2, and Cpt1b). These results from the rat show that hormones used for estrus synchronization (Gtrt) and ovarian hyper stimulation (G + Etrt) had minimal effects on gene expression, whereas induction of ovulation (G + E + Htrt) caused major changes in gene expression of rat COCs. This study provides comprehensive information about regulated genes during late follicle development and ovulation induction. Mol. Reprod. Dev. © 2013 Wiley Periodicals, Inc.  相似文献   

7.
During growth of Methanosarcina barkeri strain Fusaro on a mixture of trimethylamine and acetate, methane production and acetate consumption were biphasic. In the first phase trimethylamine (33 mmol x l-1) was depleted and some acetate (11–14 from 50 mmol x l-1) was metabolized simultaneously. In the second phase the remaining acetate was cleaved stoichiometrically into CH4 and CO2. Kinetic experiments with (2-14C)acetate revealed that only 2.5% of the methane produced in the first phase originated from acetate: 18% of the acetate metabolized was cleaved into CH4 and CO2, 23% of the acetate was oxidized, and 55% was assimilated. Methane produced from CD3–COOH in the first phase consisted of CD2H2 and CD3H in a ratio of 1:1.  相似文献   

8.
The mycotoxin deoxynivalenol (DON), one of the most common food contaminants, primarily targets the gastrointestinal tract to affect animal and human health. This study was conducted to examine the protective function of glutamic acid on intestinal injury and oxidative stress caused by DON in piglets. Twenty-eight piglets were assigned randomly into 4 dietary treatments (7 pigs/treatment): 1) uncontaminated control diet (NC), 2) NC+DON at 4 mg/kg (DON), 3) NC+2% glutamic acid (GLU), and 4) NC+2% glutamic acid + DON at 4 mg/kg (DG). At day 15, 30 and 37, blood samples were collected to determine serum concentrations of CAT (catalase), T-AOC (total antioxidant capacity), H2O2 (hydrogen peroxide), NO (nitric oxide), MDA (maleic dialdehyde), DAO (diamine oxidase) and D-lactate. Intestinal morphology, and the activation of Akt/mTOR/4EBP1 signal pathway, as well as the concentrations of H2O2, MDA, and DAO in kidney, liver and small intestine, were analyzed at day 37. Results showed that DON significantly (P<0.05) induced oxidative stress in piglets, while this stress was remarkably reduced with glutamic acid supplementation according to the change of oxidative parameters in blood and tissues. Meanwhile, DON caused obvious intestinal injury from microscopic observations and permeability indicators, which was alleviated by glutamic acid supplementation. Moreover, the inhibition of DON on Akt/mTOR/4EBP1 signal pathway was reduced by glutamic acid supplementation. Collectively, these data suggest that glutamic acid may be a useful nutritional regulator for DON-induced damage manifested as oxidative stress, intestinal injury and signaling inhibition.  相似文献   

9.
This study was carried out to evaluate the neuroprotective activity of polysaccharide extracts isolated from Perilla frutescens (PEPF) in H2O2-treated HT22 hippocampus cells. The PEPF treatment was found to increase the anti-oxidant activities of HT22 hippocampus cells. PEPF treatment resulted in a significant protection of HT22 hippocampus cells against H2O2-induced neurotoxicity, this protection ultimately occurred through an inhibition of ROS-mediated intracellular Ca2+ levels leading to MAPKs and NF-κB, as well as the accumulation of PI3K/AKT and Nrf2-mediated HO-1/NQO1 pathways. Furthermore, PEPF not only decreased the expression of Bax, cytochrome c, and cleaved caspases-3, -8, and -9, but also increased the expression of PARP and Bcl-2 in the H2O2-treated HT22 hippocampus cells, which overall contributed to the neuroprotective action. PEPF retains its mitochondrial membrane potential and reduces the elevated levels of sub-G1 phase and apoptotic morphological features induced by H2O2. It also reduces the malondialdehyde levels and enhances the intracellular SOD activity.  相似文献   

10.
A ligand for the digitalis receptor located on the membrane-embedded Na,K-ATPase (NKA; EC 3.6.1.37) has been isolated from bovine hypothalamus (hypothalamic inhibitory factor; HIF) and identified as isomeric ouabain (Tymiaket al, 1993,Proc. Natl. Acad. Sci. 90: 8189–8193). In analogy to cardioactive steroids (CS) derived from plants or from toad, HIF inhibits the Na/K-exchange process and the ATPase activity of isolated Na,K-ATPase although by a different molecular action mechanism. In the present work we show that, as plant-derived ouabain, HIF inhibits86Rb-uptake by isolated human lymphocytes with an IC50 of about 20 nM; above this concentration HIF reduces cell viability in contrast to ouabain. The decrease in cell viability by excess HIF is accompanied by discrete morphological alterations (mitochondrial swelling) visible by transmission electron microscopy of ultra-thin sectioned peripheral blood mononuclear cells. Taken together the results show that the hypothalamic NKA inhibitor blocks NKA of isolated human lymphocytes with high potency at nanomolar concentrations without toxicity; concentrations exceeding the ones required to block86Rb-uptake reduce cell viability, probably due to leak formation across the NKA molecule. Thus, lymphocytes constitute a potential target for HIF action and by their altered NKA status a possible messenger between the nervous and the immune system.Abbreviations D-PBS Dulbecco's phosphate buffered saline - HBSS Hank's balanced salt Solution - NKA Na,K-ATPase  相似文献   

11.
Summary The heart, main blood vessels, and associated structures ofLittorina littorea were examined by scanning and transmission electron microscopy. The auricle is subdivided into two compartments, one receiving blood from the gill and opening to the nephridial gland vein, the other connecting with the latter anteriorly and the ventricle posteriorly.Video recordings were made of the beating heart in vivo and revealed that the auricle expelled blood not only to the ventricle, but also the nephridial gland vein at systole and provided further evidence of tidal flow of blood in the vein. There is clear indication that the constant volume mechanism of auricular re-filling is not strictly true inLittorina.Blood pressure in the heart and major vessels was measured using a servo-nulling micropressure system. The rate of formation of urine (derived by filtration of blood through the auricular wall) was measured using [51Cr] EDTA as a blood marker.Basal blood pressure was slightly above ambient (0.7 cm H2O). Peak systolic pressure in the ventricle (3.8 cm H2O) was synchronised with a subambient trough in pericardial pressure (–1.0 cm H2O); these pressure pulses were out of phase with that of the auricle (2.3 cm H2O) at systole. The observations are consistent in broad terms with a constant volume mechanism, but this does not take into account urine formation or filling of the nephridial gland vein.A filtration pressure of 1.5 cm H2O has been demonstrated across the auricular wall throughout the cardiac cycle. Colloidal back pressure appears to be negligible. The mean rate of urine formation is 0.26 l g–1 min–1.  相似文献   

12.
13.
A stable methanogenic mixed culture was enriched from an industrial environment to utilize chloroacetate as sole carbon and energy source for growth. It immobilized spontaneously on activated charcoal and grew reproducibly on this carrier in a fluidized bed reactor when supplied with an anaerobic mineral salts medium. Substrate disappearance was complete. Methane, CO2 and chloride ions were conclusively identified as the metabolic products and quantified. The growth yield from chloroacetate was about 1 g of protein/mol of carbon. The calculated degradation rate in the fluidized bed reactor was 0.2 to 0.8 mmol/l·h. The first metabolic intermediate from [2–13C]monochloroacetate in portions of biofilm-coated carrier was shown by 13C-NMR to be glycolate, from which 13CO2 and 13CH4 were formed. Glycolate was formed in an oxygen-insensitive hydrolysis, but its conversion to CO2 and CH4 was strictly anaerobic and sensitive to inhibition by bromoethanesulfonate. Degradation of [1-14C]-and [2-14C]-chloroacetate each yielded the same amount of [14C]-methane. We thus presume glycolate to be cleaved to CO2 and H2, which were the substrates for methanogenesis. Dehalogenation was limited to chlorobromo-, iodo- and dichloroacetate. These four compounds and glycolate were utilized as the sole carbon and energy sources by the methanogenic mixed culture.  相似文献   

14.
Under anaerobic conditions and in the absence of CO2, the thermophilic blue-green alga Synechococcus lividus Y52-s, evolved hydrogen sulfide in both darkness and light. The mechanism of this process was investigated and compared with photo- and dark reductions in organisms representing several phyla. The photoproduction of H2S from either sulfate or thiosulfate was inhibited by 3-(3,4-dichlorophenyl)-1, 1-dimethyl urea (DCMU) and carbonyl m-chlorophenyl-hydrazone (m-Cl-CCP). The inhibitory effect of DCMU showed the requirement for photosystem II as electron donor. Inhibition by m-Cl-CCP also implicated ATP as an energy source. Monofluoroacetate partially inhibited photoproduction of H2S. This indicated that oxidative metabolism may act us a source of electrons to reduce the photooxidant under certain conditions. Thiosulfate acts only as electron acceptor and is reductively cleaved to S= and SO3=. Thiosulfate and sulfate appeared to replace CO2 in the light and O2 in darkness as electron acceptors. The phosphorylation uncouplers dinitrophenol and m-Cl-CCP stimulated dark H2S production.  相似文献   

15.
Fractionated total lymphoid irradiation (TLI) of adult (BALB/c × C57BL/6)F1 mice resulted in transiently augmented natural killer (NK) and natural cytotoxic (NC) cell activities. Thus, 1 day after completion of TLI, NK and NC activities in the spleens of treated mice were lower than controls but values increased and reached a maximum level of 23- to 190-fold above control at 6 days after irradiation, returning to normal levels 9 days later. Cytotoxicity was enhanced after removal of the plastic adherent population. No cytotoxicity was observed against P 815 target cells, which are sensitive to activated macrophages but not to NK. The significance of this modulation of natural cell-mediated cytotoxicity following TLI is discussed.  相似文献   

16.
In a series of studies on brain functions of histamine, probes to manipulate activities of histaminergic neuronal systems were applied to assess histaminergic function in non-obese normal, and lean and obese Zucker rats. Food intake was suppressed by both activation of H1-receptors and inhibition of H3-receptors in the ventromedial hypothalamic nucleus (VMH) and the paraventricular nucleus, each of which is a satiety center. Feeding circadian rhythm was decreased in its amplitude through histaminergic modulation in the hypothalamus. Histamine neurons in the mesencephalic trigeminal nucleus (Me5) were involved in regulation of masticatory functions, particularly eating speed, while histamine-containing neurons in the VMH controlled intake volume of meals. Energy deficiency in the brain enhanced satiation through histaminergic activation of VMH neurons, which in turn produced glycogenolysis in the hypothalamus to maintain homeostatic control of glucose supply. A very-low-calorie conventional Japanese diet, which is a fiber rich and low energy food source, enhanced satiation by increased mastication and because of the low energy supply of the diet. Hypothalamic histamine neurons were activated by high ambient temperature and also by interleukin-1β, an endogenous pyrogen, to maintain homeostatic thermoregulation. Behavioral and metabolic abnormalities of Zucker obese rats were mediated by a deficit in hypothalamic neuronal histamine, and the Zucker rat was evaluated as an animal model of histamine deficiency. Transplantation of the lean fetal hypothalamus into the third cerebroventricle of host obese Zuckers attenuated the abnormalities.  相似文献   

17.
The terminal d-galactopyranosyl residues of asialoglycopeptides isolated from human α1-acid glycoprotein were oxidized in nearly quantitative yield to the corresponding uronic acid residues by a two-step sequence employing d-galactose oxidase followed by treatment with Tollens reagent, Ag(NH3)2+. Mild acid hydrolysis of the oxidized glycopeptides led to the isolation of the corresponding aldobiuronic acid(s). Structural and colorimetric analysis revealed that only one aldobiuronic acid, 2-amino-2-deoxy-4-O-(β-d-galactopyranosyluronic acid)-d-glucose, was isolated from the oxidized glycopeptides of α1-acid glycoprotein. This method can readily distinguish between the (1→3), (1→4), and (1→6) isomers of the corresponding aldobiuronic acids.  相似文献   

18.
Sulfated glycopeptides in ovomucin, chalazae and yolk membrane were found to activate cultured macrophage-like cells, J774.1, and TGC-induced macrophages from the peritoneal cavity of male mice. The macrophage-stimulating activity was estimated by the growth and morphology of the cells, H2O2 generation, and interleukin-1 (IL-1) production from the cells. The in vitro culture assay with macrophages showed that the protease digests of ovomucin, yolk membrane, and chalazae induced morphologic alteration and increased H2O2 generation and IL-1 production in lower concentration (100 μg/ml). The isolation of the components having macrophage-stimulating activity was attempted to elucidate the molecular mechanism. The O-linked carbohydrate chains, consisting of N-acetylgalactosamine, galactose, N-acetylneuraminic acid and sulfate, in the sulfated glycopeptide were identified as a component having macrophage-stimulating activity.  相似文献   

19.
Summary The effects of increased fluid volume in the closed vascular system on circulation were studied in the leech (Hirudo medicinalis) by intravascular pressure recordings and blood flow measurements.Significant increases in blood volume were achieved by crop loading with hyposmotic (72 mOsmol·kg–1 H2O) or hyperosmotic (300 mOsmol·kg–1 H2O) salt solutions or by infusion of isosmotic saline (200 mOsmol·kg–1) into the vascular system.During the high-pressure (HIP) phase, which maintains the rear-to-front circulation, systolic blood pressure in the heart was not affected. An increase in systolic pressure in the heart was observed during the low-pressure (LOP) phase, which supplies the segmental circulation. Heart rate was not changed by crop loading with hyposmotic saline or by vascular infusion. Heart rate decreased after crop loading with hyperosmotic saline. Blood flow rate in the dorsal vessel was increased by crop loading with hyposmotic saline, but not after crop loading with hyperosmotic saline. In all cases the diameter of the dorsal vessel was not affected. A possible mechanism controlling blood pressure and blood flow in the vascular system is discussed.Abbreviations HIP-phase high-pressure phase - LOP-phase low-pressure phase - CNS central nervous system  相似文献   

20.
Kim DH  Kim SH  Kim HW  Kim MS  Shin HS 《Bioresource technology》2011,102(18):8501-8506
The effect of sewage sludge (SWS) addition on the H2 fermentation of food waste (FW) was investigated. It was found that a slight addition of SWS (10:1 = FW:SWS on a COD basis) significantly enhanced the H2 fermentation performance, not only increasing the total amount of H2 produced but accelerating the whole reaction, shortening the lag period, and increasing the H2 production rate. Substrate degradation and microbial germination were also facilitated by SWS addition. A simple calculation reveals that the increased amount of H2 production derived mostly from FW, indicating that SWS addition synergistically enhanced H2 fermentation performance. This was attributed to the existence of Fe and Ca at much higher concentrations in the SWS compared to the FW. The batch process treating a mixture of FW and SWS was repeated and showed an average H2 yield of 2.11 ± 0.20 mol H2/mol hexoseadded, which was 13% higher than that of FW treated alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号