首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本文探讨膜毒素对鼠肝线粒体Ca~(++)传递和Ca~(++)结合亲和力的影响。当膜毒素的浓度为7.14毫微克分子/毫克线粒体蛋白时,处理过的线粒体传递Ca~(++)能力下降至原来一半左右。本实验做Ca~(++)结合膜毒素处理线粒体的Scatchard图呈直线(K_d=48.2μM,结合Ca~(++)数目N=341毫微克分子/毫克线粒体蛋白)。就是说,膜毒素抑制线粒体高亲和力Ca~(++)结合部位,而不影响低亲和力Ca~(++)结合部位。我们认为膜毒素作用位点在于线粒体高亲和力Ca~(++)结合部位。  相似文献   

2.
Effect of alpha-blocker, bunazosinhydrochloride on cytosolic Ca++ concentration of rat aortic smooth muscle cells (SMC) was studied. Marked and sustained decrease in cytosolic Ca++ concentration of SMC was observed following the addition of 10(-7) M bunazosinhydrochloride. Furthermore, 10(-7) M bunazosinhydrochloride completely blocked the phenylephrine induced increase in cytosolic Ca++ of rat aortic SMC. It is of interest that a decrease in cytosolic Ca++ of vascular SMC was caused by alpha-blocker.  相似文献   

3.
The 5,6-; 8,9-; 11,12- and 14,15-epoxyeicosatrienoic acids and their respective hydration products, the vic-diols, recently reported as metabolites of arachidonic acid in rat liver microsomes, were examined for effect on release of 45Ca from canine aortic smooth muscle microsomes. At 10(-6) M, the diols had no effect, but the 5,6-; 11,12- and 14,15-epoxyacids increased the loss of 45Ca. Further studies with the 14,15-epoxyacid demonstrated a dose-dependent decrease of Ca++ uptake (ATP present) in canine aortic microsomes in 0.03 mM Ca++, whereas Ca++ binding (ATP absent) was not affected. Ca++ uptake, binding and release in rat liver microsomes was similarly affected by the 14,15-epoxyacid, the major epoxyeicosatrienoic acid derivative produced by rat liver microsomal incubations. It is suggested that alterations in Ca++ metabolism might be a possible mechanism of action for these derivatives of arachidonic acid.  相似文献   

4.
The possibility of Ca++ acting as second messenger for insulin in rat liver was investigated using the net stimulation of 14C-glucose incorporation into glycogen by isolated hepatocytes as an index of insulin action. An insulin effect could be partially sustained in the virtual absence of Ca++ and Mg++ and a maximal insulin effect could be observed in the presence of either Ca++ or Mg++, suggesting that extracellular Ca++ is not required for insulin action. Inhibiting the activity of calmodulin, an intracellular mediator of Ca++ action, with trifluoperazine had little effect on insulin action. The efflux of 45Ca from prelabeled hepatocytes was not altered by the presence of insulin arguing against insulin-induced changes in Ca++ fluxes. Collectively, these results do not support the role of Ca++ as second messenger for insulin action in liver.  相似文献   

5.
Laser light scattered by nonstimulated rat cardiac muscle bathed in physiological saline containing a [Ca++] of 0.4-2.5 mM displays scattered-light intensity fluctuations (SLIF); the frequencies of both SLIF and resting force are Ca++ dependent. Direct inspection of these muscles by phase-contrast microscopy under incoherent illumination revealed the presence of spontaneous asynchronous cellular motions that are also Ca++ dependent. The physical properties of the scattered light are compatible with the hypothesis that SLIF are due to the diastolic motion, except for the dependence on scattering angle, which may be perturbed because the muscles are optically thick. To determine whether diastolic SLIF and motion are an intrinsic property of activated myofilaments, photon-counting auto-correlation of the scattered light was performed both in rat right-ventricular papillary muscles skinned with the detergent Triton X-100 (1%) and in muscles with intact membranes under conditions that alter cellular Ca++ fluxes. In skinned muscles activated over a range of Ca++ from threshold to maximum force production, neither SLIF nor asynchronous motion was observed when Ca++ was buffered to constant values. In intact muscles the frequency of SLIF and the amplitude of diastolic motion were (a) markedly increased by substituting K+ or Li+ for Na+ in the bath; (b) not altered by verapamil (1 microM); and (c) reversibly abolished by caffeine (greater than or equal to 10 mM). These properties are exactly those of mechanical oscillations that have been observed in isolated cardiac cell fragments, which are the result Ca++ oscillations caused by Ca++ release from the sarcoplasmic reticulum (SR). We infer that mechanical oscillations caused by spontaneous Ca++-induced Ca++ release from the SR occur in intact nonstimulated cardiac muscle even in the absence of Ca++ overload and are the principle cause of SLIF, and that myoplasmic [Ca++] in "resting" muscle is not in a microscopic steady state.  相似文献   

6.
Exposure of rat atrial slices to 10(-5) M norepinephrine (NE) for 10 minutes increases 45Ca++ accumulation from 1.64 +/- 0.10 to 2.23 +/- 0.06 nmol/mg tissue. In the presence of leucine enkephalin (10(-8) M), NE-stimulated 45Ca++ uptake is reduced to 1.44 +/- 0.10 nmol/mg tissue. The effect of leu-enkephalin is reversed in the presence of 10(-7) M naloxone, NE-stimulated 45Ca++ uptake being increased to 2.17 +/- 0.15 nmol/mg tissue. The results support a direct interaction of leu enkephalin with beta-agonist-stimulated Ca++ flux in rat atria, and correlate with the previously reported enkephalin antagonism of NE-induced positive chronotropy in the same tissue.  相似文献   

7.
Ca++-ATPase in the central nervous system: an EM cytochemical study   总被引:1,自引:0,他引:1  
Ca++-ATPase plays an important role in regulation of the intracellular Ca++ concentration. Biochemical studies of brain have demonstrated that Ca++-ATPase co-purifies with synaptosomes, with synaptic plasma membrane and synaptic vesicle fractions. To better understand the role of this enzyme in normal brain function, we used an electron microscopic (EM) cytochemical method to determine the localization of Ca++-ATPase in rat brain. Reaction product occurred along cytoplasmic membranes. Specific areas of increased reaction product were seen at many but not all post-synaptic densities. Intracellular Ca++-ATPase reaction product was associated with all synaptic vesicles examined and with the Golgi and smooth endoplasmic reticulum (SER). Unlike the situation in peripheral nerve, Ca++-ATPase at the node of Ranvier in the CNS localized preferentially to the nodal axolemma. The localization of Ca++-ATPase at synaptic vesicles agrees with the biochemical evidence for its localization and with the cytochemical evidence for Ca++-ATPase sequestration in those vesicles. The restricted localization at postsynaptic densities suggests that it may be involved in extrusion of Ca++ at synapses where neurotransmitter release causes Ca++ influx.  相似文献   

8.
Bundles of cells from rat right ventricular myocardium were made "hyperpermeable" by an overnight soak in 10 mM EGTA (McClellan and Winegrad. 1978. J. Gen. Physiol. 72:737-764). In this preparation the cytoplasmic concentration of Ca++ and ATP could be controlled while sarcolemmal receptors and enzymes were retained. The Ca sensitivity of the tissues (as indicated by the pCa for 50% maximum activation) was altered to different extents in the presence of [32Pgamma]ATP by treatment with cyclic nucleotides, catecholamines, or a low concentration of nonionic detergent. The proteins of the tissue were then isolated by SDS-polyacrylamide gel electrophoresis, and the identity of 32P-labeled proteins was determined. The Ca sensitivity is inversely related to the relative amount of 32P incorporated into the inhibitory subunit of troponin (TNI). Extrapolation of the relation to the lowest Ca sensitivity observed gives a stoichiometry of about 0.8 mol PO4 per mol TNI. These results support the hypothesis that Ca sensitivity of cardiac myofibrils is regulated by a phosphrylation of TNI that is stimulated by cyclic AMP (cAMP) and inhibited by cGMP.  相似文献   

9.
Vanadate in the range 0-5 mM has positive inotropic effects on myocardial strips of frog and to a lesser extent on those of rat. Inhibiting the sarcolemmal Na+, Ca2+ exchange by a solution free of Ca2+ and Na+ caused a drop in 45Ca efflux and a transient increase in resting tension. These effects were more expressed for the frog than for the rat myocardium, which suggests that the Na+ for Ca2+ exchange across the cell membrane is more important in the frog than in the rat myocardium. A subsequent addition of vanadate at 2 or 5 mM had no effect on 45Ca efflux, while it increased the resting tension. This increase was higher for the frog than for the rat myocardium. These results suggest that the inotropic effects of vanadate may be due to an effect on membrane-bound Ca2+-ATPase.  相似文献   

10.
The effects of the thyroid status on the Ca++-transporting capabilities of rat slow skeletal muscle (m.soleus) were studied. The oxalate supported Ca++-uptake activity and Ca++-loading capacity of muscle homogenates from hyperthyroid rats showed an approximate 4.2 and 2.5 fold increase, respectively, as compared to values found in the hypothyroid group. Muscle homogenates of euthyroid rats gave intermediate values. The specific activity of oxalate supported Ca++ uptake, but not the Ca++-loading capacity, of membrane preparations enriched with respect to sarcoplasmic reticulum (SR) increased in proportion to the thyroid status. This was paralleled by a 3.5 fold increase in the amount of active Ca++ pumps in the SR preparations in the transition from hypothyroidism to hyperthyroidism as determined by measurement of Ca++-dependent 32P incorporation. These observations are not explained by differences in degree of purification of the examined SR preparations. Protein profiles of the membrane preparations obtained by gel electrophoresis indicated a thyroid-hormone dependent increase in Ca++-pump content relative to other SR proteins. The results suggest that thyroid hormone stimulates the proliferation of the SR and possibly also increases the Ca++-pump density in the SR membrane.  相似文献   

11.
M A Khan 《Histochemistry》1976,48(1):29-32
The effect of Ca++ ions on the histochemical activity of creatine kinase (CK) was investigated in striated muscle and cerebellum of the rat. The intensity and pattern of CK activity was unchanged in the striated muscle when Ca++ was present in the incubation medium instead of Mg++. In the cerebellum, however, Ca++ inhibited the enzymatic activity except in the Purkinje cells.  相似文献   

12.
A fluorimetric method for the study of intracellular Ca++ metabolism in rat pancreatic acini is described. Following previous reports on the utilization of the new intracellularly trapped fluorescent dye fura2 in human lymphocytes, the authors point out the relevance of the cellular and fura2 concentration as critical issues for an accurate evaluation of Ca++ homeostasis. A dose-response curve to both carbamoylcholine and cholecystokinin is reported, demonstrating the ability of the cells to respond to hormonal stimulation with a transient Ca++ peak. The almost complete absence of noise in the recorded traces allow to carry out an evaluation of the intracellular mechanism related to Ca++ mobilization with a very high sensitivity.  相似文献   

13.
Effects of EGF and calcium on adult parenchymal hepatocyte proliferation   总被引:3,自引:0,他引:3  
Adult rat hepatocytes were grown in serum-free medium containing 0.05-4 mM Ca++ and 40 ng/ml EGF. After 48 hours of cultivation the mitotic index and the percentage of second division metaphases were determined. The results demonstrated a maximum proliferation response to EGF at a Ca++ concentration of 0.4 mM. With lower and higher external Ca++ concentrations the fraction of cells undergoing more than one cell division decreased. At lower Ca++ concentrations this decrease appears to result from a reduced viability. In contrast, the low response to EGF at higher Ca++ concentrations--especially in the physiological range--may reflect the influence of Ca++ on the state of hepatocyte differentiation.  相似文献   

14.
The present study investigated the effects of mibefradil, a novel T-type channel blocker, on ventricular function and intracellular Ca(2+) handling in normal and hypertrophied rat myocardium. Ca(2+) transient was measured with the bioluminescent protein, aequorin. Mibefradil (2 microM) produced nonsignificant changes in isometric contraction and peak systolic intracellular Ca(2+) concentration ([Ca(2+)](i)) in normal rat myocardium. Hypertrophied papillary muscles isolated from aortic-banded rats 10 weeks after operation demonstrated a prolonged duration of isometric contraction, as well as decreased amplitudes of developed tension and peak Ca(2+) transient compared with the sham-operated group. Additionally, diastolic [Ca(2+)](i) increased in hypertrophied rat myocardium. The positive inotropic effect of isoproterenol stimulation was blunted in hypertrophied muscles despite a large increase in Ca(2+) transient amplitude. Afterglimmers and corresponding aftercontractions were provoked with isoproterenol (10(-5) and 10(-4) M) stimulation in 4 out of 16 hypertrophied muscles, but were eliminated in the presence of mibefradil (2 microM). In addition, hypertrophied muscles in the presence of mibefradil had a significant improvement of contractile response to isoproterenol stimulation and a reduced diastolic [Ca(2+)](I), although a mild decrease of peak Ca(2+)-transient was also shown. However, verapamil (2 microM) did not restore the inotropic and Ca(2+) modulating effects of isoproterenol in hypertrophied myocardium. Mibefradil partly restores the positive inotropic response to beta-adrenergic stimulation in hypertrophied myocardium from aortic-banded rats, an effect that might be useful in hypertrophied myocardium with impaired [Ca(2+)](i) homeostasis.  相似文献   

15.
In vivo administration of glucagon, insulin or epinephrine, respectively, gives rise to an increase of Ca++-retention time as well as of the Ca++-uptake rate in subsequently isolated rat liver mitochondria. Whereas the changes of Ca++-transport properties after pretreatment with glucagon or epinephrine occur already 6--15 min after their administration, the effect of insulin is observed not earlier than 30 min after its application. Under diabetic and starving conditions the Ca++-retention time of isolated liver mitochondria is prolonged, whereas no alteration of the uptake rate occurs. Since alloxan as well as streptozotocin induced qualitatively similar changes, a specific action of alloxan on liver mitochondria can be ruled out. Application of insulin 60--90 min prior to decapitation normalizes the changes of mitochondrial Ca++-transport observed under chronic alloxan diabetic conditions. Cycloheximide abolishes the prolongation of Ca++-retention in mitochondria from alloxan diabetic rats, but has no influence on the changes induced by glucagon pretreatment.  相似文献   

16.
Depolarizing response of rat parathyroid cells to divalent cations   总被引:2,自引:0,他引:2       下载免费PDF全文
Membrane potentials were recorded from rat parathyroid glands continuously perfused in vitro. At 1.5 mM external Ca++, the resting potential averages -73 +/- 5 mV (mean +/- SD, n = 66). On exposure to 2.5 mM Ca++, the cells depolarize reversibly to a potential of -34 +/- 8 mV (mean +/- SD). Depolarization to this value is complete in approximately 2-4 min, and repolarization on return to 1.5 mM Ca++ takes about the same time. The depolarizing action of high Ca++ is mimicked by all divalent cations tested, with the following order of effectiveness: Ca++ greater than Sr++ greater than Mg++ greater than Ba++ for alkali-earth metals, and Ca++ greater than Cd++ greater than Mn++ greater than Co++ greater than Zn++ for transition metals. Input resistance in 1.5 mM Ca++ was 24.35 +/- 14 M omega (mean +/- SD) and increased by an average factor of 2.43 +/- 0.8 after switching to 2.5 mM Ca++. The low value of input resistance suggests that cells are coupled by low-resistance junctions. The resting potential in low Ca++ is quite insensitive to removal of external Na+ or Cl-, but very sensitive to changes in external K+. Cells depolarize by 61 mV for a 10- fold increase in external K+. In high Ca++, membrane potential is less sensitive to an increase in external K+ and is unchanged by increasing K+ from 5 to 25 mM. Depolarization evoked by high Ca++ may be slowed, but is unchanged in amplitude by removal of external Na+ or Cl-. Organic (D600) and inorganic (Co++, Cd++, and Mn++) blockers of the Ca++ channels do not interfere with the electrical response to Ca++ changes. Our results show remarkable parallels to previous observations on the control of parathormone (PTH) release by Ca++. They suggest an association between membrane voltage and secretion that is very unusual: parathyroid cells secrete when fully polarized, and secrete less when depolarized. The extraordinary sensitivity of parathyroid cells to divalent cations leads us to hypothesize the existence in their membranes of a divalent cation receptor that controls membrane permeability (possibly to K+) and PTH secretion.  相似文献   

17.
Villin, a 95,000 dalton polypeptide of intestinal brush border which is known to bundle or sever actin filaments in a Ca++-dependent manner, was localized in rat and chicken intestinal epithelium by means of immunocytochemistry at the light- and electron-microscopic levels. Specific antibodies to villin were raised in rabbits immunized with villin purified from chicken intestinal epithelium. Anti-villin bound selectively to the microvillus filament bundle from its tip down to the rootlets. These findings indicate that the well-known stability of rootlet filaments towards elevated Ca++ ion concentrations cannot be explained by the absence of villin. Therefore additional factors must exist which prevent the rootlets from Ca++-villin mediated disassembly.  相似文献   

18.
Resumption of meiotic maturation was induced in follicle-enclosed rat-oocytes by treatment with the divalent cationophore A23187 (10(-5)M). However, the same effect was attained by incubation in Ca++-deficient medium, even in the presence of EDTA or EGTA (1mM). The stability of the first polar body was increased under Ca++-deficient conditions. Neither the ionophore nor Ca++-deficient medium interfered with the spontaneous maturation of isolated oocytes of the rat. The experiments with cultured follicles suggest that redistribution of divalent cations may participate in the physiological control of meiosis in mammalian oocytes.  相似文献   

19.
Endothelin and Ca++ agonist Bay K 8644: different vasoconstrictive properties   总被引:12,自引:0,他引:12  
The mechanism of vasoconstriction induced by endothelin was investigated in rat isolated aorta in comparison with the Ca++ agonist, Bay K 8644. Endothelin (EC50 = 4 nM) induced a slow and sustained contraction in control medium whereas the one elicited by Bay K 8644 (EC50 = 14 nM) necessitating a partly K+ depolarized medium was fast with superimposed rhythmic contraction. By opposition with Bay K 8644, endothelin contraction was not inhibited by the calcium antagonists (1 microM), nifedipine, diltiazem and D 600, and substantially persisted in Ca++ free medium or after depletion of intracellular Ca++ by phenylephrine (1 microM). These data show that endothelin does not act as an activator of potential dependent Ca++ channels but probably through specific receptor(s) as suggested by its mode of vasoconstriction.  相似文献   

20.
The plant lectin, concanavalin A (Con-A), and the ionophore, A-23187 (specific for divalent cations), stimulated glucose transport in rat thymocytes. Con-A stimulation developed more slowly and was somewhat less extensive than that of stimulation developed more slowly and was somewhat less extensive than that of A-23187. Both responses showed saturation dose dependencies. The two responses were poorly additive, suggesting that A-23187 may saturate regulatory processes shared by the two stimulatory mechanisms. Doses of methylisobutylxanthine (MIX) and prostaglandin E2 which raised adenosine 3':5'-monophosphate (cAMP) levels in these cells also antagonized the Con-A stimulation of glucose transport but did not inhibit basal glucose transport or the A-23187 stimulation. Dibutyryl-cAMP and 8-bromo-cAMP also natagonized Con-A stimulation without inhibiting basal glucose transport. MIX antagonized high Con-A doses about as strongly as it did low Con-A doses, suggesting that MIX did not compete in the Con-A binding step or other process saturable by Con-A. [3H-A1Con-A binding was not affected by MIX. The stimulatory effects of Con-A and A-23187 were reduced by reduction of Ca++ in the medium. Both Con-A and A-23187 enhanced 45Ca++ influx and cellular Ca++ content. The A-23187 dose, which was saturating for glucose transport stimulation, enhanced Ca++ influx and cellular Ca++ content more than did the Con-A dose which was saturating for glucose transport stimulation. The dose fo MIX which specifically antagonized Con-A stimulation of glucose transport proved also to reduce Ca++ influx and cellular Ca++ in the presence of Con-A but not in the presence of A-23187. Thus, glucose transport correlates rather well with cellular Ca++. These results are compatible with the view that Ca++ in a cellular compartment can promote glucose transport, the Con-A's enhancement of Ca++ entry contributes to its stimulation of glucose transport, and the MIX antagonized Con-A action at least partly by reducing Ca++ entry. The action of MIX is apparently mediated by cAMP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号