首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Siglec-7 (p75/AIRM1) is an inhibitory receptor on human natural killer cells (NK cells) and monocytes. The cytoplasmic domain of Siglec-7 contains two signaling motifs: a membrane-proximal immunoreceptor tyrosine-based inhibitory motif (ITIM) (Ile435-Gln-Tyr-Ala-Pro-Leu440) and a membrane-distal motif (Asn458-Glu-Tyr-Ser-Glu-Ile463). We report here that, upon pervanadate (PV) treatment, Siglec-7 recruited the protein tyrosine phosphatases Src homology-2 (SH2) domain-containing protein-tyrosine phosphatase-1 (SHP-1) and SHP-2 less efficiently than did other inhibitory receptors such as Siglec-9 and leukocyte-associated Ig-like receptor (LAIR-1). Alignment of the amino acid sequences of the two Siglecs revealed only three amino acids difference in these motifs. To identify the amino acid(s) critical to recruitment efficiency, we prepared a series of Siglec-7-based mutants in which each of the three amino acids were replaced with the corresponding one of Siglec-9 (I435L, P439S, and N458T mutants). P439S and N458T mutants showed pronounced enhancement of SHP recruitment, but I435L mutant had little effect. A double mutant (P439S, N458T) or triple mutant (I435L, P439S, N458T) recruited SHPs as much as did Siglec-9, indicating that Pro439 in the proximal motif and Asn458 in the distal motif of Siglec-7 attenuate its ability to recruit phosphatases. These amino acids appeared to affect not only phosphatase recruitment but also the subsequent attenuation of Syk phosphorylation.  相似文献   

2.
Siglec-5 (CD170) is a member of the recently described human CD33-related siglec subgroup of sialic acid binding Ig-like lectins and is expressed on myeloid cells of the hemopoietic system. Similar to other CD33-related siglecs, Siglec-5 contains two tyrosine-based motifs in its cytoplasmic tail implicated in signaling functions. To investigate the role of these motifs in Siglec-5-dependent signaling, we used transfected rat basophil leukemia cells as a model system. Tyrosine phosphorylation of Siglec-5 led to recruitment of the tyrosine phosphatases SHP-1 and SHP-2, as seen in both pull-down assays and microscopy. Siglec-5 could efficiently inhibit FcepsilonRI-mediated calcium fluxing and serotonin release after co-cross-linking. Surprisingly, a double tyrosine to alanine mutant of Siglec-5 could still mediate strong inhibition of serotonin release in the absence of detectable tyrosine phosphorylation, whereas a double tyrosine to phenylalanine mutant lost all inhibitory activity. In comparison, suppression of Siglec-5-dependent adhesion to red blood cells was reversed by either tyrosine to alanine or tyrosine to phenylalanine mutations of the membrane proximal tyrosine-based motif. Using an in vitro phosphatase assay with synthetic and recombinant forms of the cytoplasmic tail, it was shown that a double alanine mutant of Siglec-5 had weak, but significant SHP-1 activating properties similar to those of wild type, non-phosphorylated cytoplasmic tail, whereas a double phenylalanine mutant was inactive. These findings establish that Siglec-5 can be classified as an inhibitory receptor with the potential to mediate SHP-1 and/or SHP-2-dependent signaling in the absence of tyrosine phosphorylation.  相似文献   

3.
The Siglecs are a subfamily of I-type lectins (immunoglobulin superfamily proteins that bind sugars) that specifically recognize sialic acids. We report the cloning and characterization of human Siglec-9. The cDNA encodes a type 1 transmembrane protein with three extracellular immunoglobulin-like domains and a cytosolic tail containing two tyrosines, one within a typical immunoreceptor tyrosine-based inhibitory motif (ITIM). The N-terminal V-set Ig domain has most amino acid residues typical of Siglecs. Siglec-9 is expressed on granulocytes and monocytes. Expression of the full-length cDNA in COS cells induces sialic-acid dependent erythrocyte binding. A recombinant soluble form of the extracellular domain binds to alpha2-3 and alpha2-6-linked sialic acids. Typical of Siglecs, the carboxyl group and side chain of sialic acid are essential for recognition, and mutation of a critical arginine residue in domain 1 abrogates binding. The underlying glycan structure also affects binding, with Galbeta1-4Glc[NAc] being preferred. Siglec-9 shows closest homology to Siglec-7 and both belong to a Siglec-3/CD33-related subset of Siglecs (with Siglecs-5, -6, and -8). The Siglec-9 gene is on chromosome 19q13.3-13.4, in a cluster with all Siglec-3/CD33-related Siglec genes, suggesting their origin by gene duplications. A homology search of the Drosophila melanogaster and Caenorhabditis elegans genomes suggests that Siglec expression may be limited to animals of deuterostome lineage, coincident with the appearance of the genes of the sialic acid biosynthetic pathway.  相似文献   

4.
Siglec-7 is a sialic acid-binding lectin recently identified as an inhibitory receptor on natural killer cells. Here we characterize the sugar-binding specificity of Siglec-7 expressed on Chinese hamster ovary cells using polyvalent streptavidin-based glyco-probes. Glyco-probes carrying unique oligosaccharide structures such as GD3 (NeuAc alpha 2,8NeuAc alpha 2,3Gal beta 1,4Glc) and LSTb (Gal beta 1,3[NeuAc alpha 2,6]GlcNAc beta 1,3Gal beta 1,4Glc) oligosaccharides bound to Siglec-7 better than those carrying LSTc (NeuAc alpha 2,6Gal beta 1,4GlcNAc beta 1,3Gal beta 1,4Glc) or GD1a (NeuAc alpha 2,3Gal beta 1,3GalNAc beta 1,4[NeuAc alpha 2,3]Gal beta 1,4Glc) oligosaccharides. In contrast, Siglec-9, which is 84% identical to Siglec-7, did not bind to the GD3 and LSTb probes but did bind to the LSTc and GD1a probes. To identify a region(s) responsible for their difference in binding specificity, we prepared a series of V-set domain chimeras between Siglecs-7 and -9. Substitution of a small region, Asn(70)-Lys(75), of Siglec-7 with the equivalent region of Siglec-9 resulted in loss of Siglec-7-like binding specificity and acquisition of Siglec-9-like binding properties. In comparison, a Siglec-9-based chimera, which contains Asn(70)-Lys(75) with additional amino acids derived from Siglec-7, exhibited Siglec-7-like specificity. These results, combined with molecular modeling, suggest that the C-C' loop in the sugar-binding domain plays a major role in determining the binding specificities of Siglecs-7 and -9.  相似文献   

5.
6.
We describe the molecular cloning and characterization of S2V, a novel sialic acid binding immunoglobulin-like lectin. The cDNA of S2V encodes a type 1 transmembrane protein with four extracellular immunoglobulin-like (Ig-like) domains and a cytoplasmic tail bearing a typical immunoreceptor tyrosine-based inhibitory motif (ITIM) and an ITIM-like motif. A unique feature of S2V is the presence of two V-set Ig-like domains responsible for the binding to sialic acid, whereas all other known siglecs possess only one. S2V is predominantly expressed in macrophage. In vivo S2V was tyrosine-phosphorylated when co-expressed with exogenous c-Src kinase. Upon tyrosine phosphorylation, S2V recruits both Src homology 2 (SH2) domain-containing protein-tyrosine phosphatases SHP-1 and SHP-2, two important inhibitory regulators of immunoreceptor signal transduction. These findings suggest that S2V is involved in the negative regulation of the signaling in macrophage by functioning as an inhibitory receptor. When expressed in COS-7 cells, S2V was able to mediate sialic acid-dependent binding to human red blood cells, suggesting that S2V may function through cell-cell interaction.  相似文献   

7.
We describe the molecular cloning and characterization of a novel myeloid inhibitory siglec, MIS, that belongs to the family of sialic acid-binding immunoglobulin-like lectins. A full-length MIS cDNA was obtained from murine bone marrow cells. MIS is predicted to contain an extracellular region comprising three immunoglobulin-like domains (V-set amino-terminal domain followed by two C-set domains), a transmembrane domain and a cytoplasmic tail with two immunoreceptor tyrosine-based inhibitory motif (ITIM)-like sequences. The closest relative of MIS in the siglec family is human siglec 8. Extracellular regions of these two siglecs share 47% identity at the amino acid level. Southern blot analysis suggests the presence of one MIS gene. MIS is expressed in the spleen, liver, heart, kidney, lung and testis tissues. Several isoforms of MIS protein exist due to the alternative splicing. In a human promonocyte cell line, MIS was able to bind Src homology 2-containing protein-tyrosine phosphatases, SHP-1 and SHP-2. This binding was mediated by the membrane-proximal ITIM of MIS. Moreover, MIS exerted an inhibitory effect on FcgammaRI receptor-induced calcium mobilization. These data suggest that MIS can play an inhibitory role through its ITIM sequences.  相似文献   

8.
Siglec-7: a sialic acid-binding lectin of the immunoglobulin superfamily   总被引:5,自引:0,他引:5  
Angata T  Varki A 《Glycobiology》2000,10(4):431-438
The Siglecs are a recently discovered family of sialic acid-binding lectins of the immunoglobulin (Ig) superfamily. We report a molecule showing homology to the six first reported Siglecs, with the closest relationship to Siglec-3(CD33), Siglec-5, and Siglec-6(OBBP-1). The extracellular portion has two Ig-like domains, with the amino-terminal V-set Ig domain including amino acid residues known to be involved in sialic acid recognition by other Siglecs. The cytoplasmic domain has putative sites of tyrosine phosphorylation shared with some Siglecs, including an Immuno-receptor Tyrosine-based Inhibitory Motif (ITIM). Expression of the full-length cDNA induces sialic acid-dependent binding to human erythrocytes. A recombinant chimeric form containing the extracellular Ig domains selectively recognizes the sequence Neu5Acalpha2-6Galbeta1-4Glc, and binding requires the side chain of sialic acid. Mutation of an arginine residue predicted to be critical for sialic acid binding abolishes both interactions. Taken together, our findings justify designation of the molecule as Siglec-7. Analysis of bacterial artificial chromosome (BAC) clones spanning the known human genomic location of Siglec-3 indicates that the Siglec-7 gene is also located on chromosome 19q13.3-13.4. Human tissues show strong expression of Siglec-7 mRNA in spleen, peripheral blood leukocytes, and liver. The combination of an extracellular sialic acid binding site and an intracellular ITIM motif suggests that this molecule is involved in trans-membrane regulatory signaling reactions.  相似文献   

9.
Platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31) is a newly assigned member of the Ig immunoreceptor tyrosine-based inhibitory motif superfamily, and its functional role is suggested to be an inhibitory receptor that modulates immunoreceptor tyrosine-based activation motif-dependent signaling cascades. To test whether PECAM-1 is capable of delivering inhibitory signals in B cells and the functional requirement of protein-tyrosine phosphatases (PTPs) for this inhibitory signaling, we generated chimeric Fc gamma RIIB1-PECAM-1 receptors containing the extracellular and transmembrane portions of murine Fc gamma RIIB1 and the cytoplasmic domain of human PECAM-1. These chimeric receptors were stably expressed in chicken DT40 B cells either as wild-type or mutant cells deficient in SHP-1(-/-), SHP-2(-/-), SHIP(-/-), or SHP-1/2(-/-) and then assessed for their ability to inhibit B cell Ag receptor (BCR) signaling. Coligation of wild-type Fc gamma RIIB1-PECAM-1 with BCR resulted in inhibition of intracellular calcium release, suggesting that the cytoplasmic domain of PECAM-1 is capable of delivering an inhibitory signal that blocks BCR-mediated activation. This PECAM-1-mediated inhibitory signaling correlated with tyrosine phosphorylation of the Fc gamma RIIB1-PECAM-1 chimera, recruitment of SHP-1 and SHP-2 PTPs by the phosphorylated chimera, and attenuation of calcium mobilization responses. Mutational analysis of the two tyrosine residues, 663 and 686, constituting the immunoreceptor tyrosine-based inhibitory motifs in PECAM-1 revealed that both tyrosine residues play a crucial role in the inhibitory signal. Functional analysis of various PTP-deficient DT40 B cell lines stably expressing wild-type chimeric Fc gamma RIIB1-PECAM-1 receptor indicated that cytoplasmic Src homology 2-domain-containing phosphatases, SHP-1 and SHP-2, were both necessary and sufficient to deliver inhibitory negative regulation upon coligation of BCR complex with inhibitory receptor.  相似文献   

10.
The myeloid restricted membrane glycoprotein, CD33, is a member of the recently characterized "sialic acid-binding immunoglobulin-related lectin" family. Although CD33 can mediate sialic acid-dependent cell interactions as a recombinant protein, its function in myeloid cells has yet to be determined. Since CD33 contains two potential immunoreceptor tyrosine-based inhibition motifs in its cytoplasmic tail, we investigated whether it might act as a signaling receptor in myeloid cells. Tyrosine phosphorylation of CD33 in myeloid cell lines was stimulated by cell surface cross-linking or by pervanadate, and inhibited by PP2, a specific inhibitor of Src family tyrosine kinases. Phosphorylated CD33 recruited both the protein-tyrosine phosphatases, SHP-1 and SHP-2. CD33 was dephosphorylated in vitro by the co-immunoprecipitated tyrosine phosphatases, suggesting that it might also be an in vivo substrate. The first CD33 phosphotyrosine motif is dominant in CD33-SHP-1/SHP-2 interactions, since mutating tyrosine 340 in a CD33-cytoplasmic tail fusion protein significantly reduced binding to SHP-1 and SHP-2 in THP-1 lysates, while mutation of tyrosine 358 had no effect. Furthermore, the NH2-terminal Src homology 2 domain of SHP-1 and SHP-2, believed to be essential for phosphatase activation, selectively bound a CD33 phosphopeptide containing tyrosine 340 but not one containing tyrosine 358. Finally, mutation of tyrosine 340 increased red blood cell binding by CD33 expressed in COS cells. Hence, CD33 signaling through selective recruitment of SHP-1/SHP-2 may modulate its ligand(s) binding activity.  相似文献   

11.
Clustering of the mast cell function-associated antigen by its specific monoclonal antibody (G63) inhibits the FcepsilonRI-mediated secretory response. The cytosolic tail of the mast cell function-associated antigen contains a SIYSTL stretch, a potential immunoreceptor tyrosine-based inhibition motif. To investigate the possible functional role of this sequence, as well as identify potential intracellular proteins that interact with it, peptides corresponding to residues 4-12 of the mast cell function-associated antigen's N-terminal cytoplasmic domain, containing the above motif, were synthesized and used in affinity chromatography of mast cell lysates. Both tyrosyl phosphorylated and thiophosphorylated mast cell function-associated antigen peptides bound the src homology domain 2 (SH2)-containing tyrosine phosphatases-1 (SHP-1), -2 (SHP-2) and inositol 5'-phosphatase (SHIP), though with different efficiencies. Neither the nonphosphorylated peptide nor its tyrosyl phosphorylated reversed sequence peptide bound any of these phosphatases. Point mutation analysis of mast cell function-associated antigen pITIM binding requirements demonstrated that for SHP-2 association the amino acid residue at position Y-2 is not restricted to the hydrophobic isoleucine or valine. Glycine and other amino acids with hydrophilic residues, such as serine and threonine, at this position also maintain this binding capacity, whereas alanine and acidic residues abolish it. In contrast, SHP-1 binding was maintained only when serine was substituted by valine, suggesting that the Y-2 position provides selectivity for peptide binding to SH2 domains of SHP-1 and SHP-2. These results were corroborated by surface plasmon resonance measurements of the interaction between tyrosyl phosphorylated mast cell function-associated antigen peptide and recombinant soluble SH2 domains of SHP-1, SHP-2 and SHIP, suggesting that the associations observed in the cell lysates may be direct. Taken together these results clearly indicate that the SIYSTL motif present in mast cell function-associated antigen's cytosolic tail exhibits characteristic features of an immunoreceptor tyrosine-based inhibition motif, suggesting it is a new member of the growing diverse family of immunoreceptor tyrosine-based inhibition motif-containing receptors.  相似文献   

12.
Siglecs--the major subfamily of I-type lectins   总被引:6,自引:0,他引:6  
Varki A  Angata T 《Glycobiology》2006,16(1):1R-27R
Animal glycan-recognizing proteins can be broadly classified into two groups-lectins (which typically contain an evolutionarily conserved carbohydrate-recognition domain [CRD]) and sulfated glycosaminoglycan (SGAG)-binding proteins (which appear to have evolved by convergent evolution). Proteins other than antibodies and T-cell receptors that mediate glycan recognition via immunoglobulin (Ig)-like domains are called "I-type lectins." The major homologous subfamily of I-type lectins with sialic acid (Sia)-binding properties and characteristic amino-terminal structural features are called the "Siglecs" (Sia-recognizing Ig-superfamily lectins). The Siglecs can be divided into two groups: an evolutionarily conserved subgroup (Siglecs-1, -2, and -4) and a CD33/Siglec-3-related subgroup (Siglecs-3 and -5-13 in primates), which appear to be rapidly evolving. This article provides an overview of historical and current information about the Siglecs.  相似文献   

13.
The SH2 domain-containing SHP-1 tyrosine phosphatase has been shown to negatively regulate a broad spectrum of growth factor- and cytokine-driven mitogenic signaling pathways. Included among these is the cascade of intracellular events evoked by stem cell factor binding to c-Kit, a tyrosine kinase receptor which associates with and is dephosphorylated by SHP-1. Using a series of glutathione S-transferase (GST) fusion proteins containing either tyrosine-phosphorylated segments of the c-Kit cytosolic region or the SH2 domains of SHP-1, we have shown that SHP-1 interacts with c-Kit by binding selectively to the phosphorylated c-Kit juxtamembrane region and that the association of c-Kit with the larger of the two SHP-1 isoforms may be mediated through either the N-terminal or C-terminal SHP-1 SH2 domain. The results of binding assays with mutagenized GST-Kit juxtamembrane fusion proteins and competitive inhibition assays with phosphopeptides encompassing each c-Kit juxtamembrane region identified the tyrosine residue at position 569 as the major site for binding of SHP-1 to c-Kit and suggested that tyrosine 567 contributes to, but is not required for, this interaction. By analysis of Ba/F3 cells retrovirally transduced to express c-Kit receptors, phenylalanine substitution of c-Kit tyrosine residue 569 was shown to be associated with disruption of c-Kit–SHP-1 binding and induction of hyperproliferative responses to stem cell factor. Although phenylalanine substitution of c-Kit tyrosine residue 567 in the Ba/F3–c-Kit cells did not alter SHP-1 binding to c-Kit, the capacity of a second c-Kit-binding tyrosine phosphatase, SHP-2, to associate with c-Kit was markedly reduced, and the cells again showed hyperproliferative responses to stem cell factor. These data therefore identify SHP-1 binding to tyrosine 569 on c-Kit as an interaction pivotal to SHP-1 inhibitory effects on c-Kit signaling, but they indicate as well that cytosolic protein tyrosine phosphatases other than SHP-1 may also negatively regulate the coupling of c-Kit engagement to proliferation.  相似文献   

14.
Siglecs are sialic acid-recognizing animal lectins of the immunoglobulin superfamily. We have cloned and characterized a novel human molecule, Siglec-11, that belongs to the subgroup of CD33/Siglec-3-related Siglecs. As with others in this subgroup, the cytosolic domain of Siglec-11 is phosphorylated at tyrosine residue(s) upon pervanadate treatment of cells and then recruits the protein-tyrosine phosphatases SHP-1 and SHP-2. However, Siglec-11 has several novel features relative to the other CD33/Siglec-3-related Siglecs. First, it binds specifically to alpha2-8-linked sialic acids. Second, unlike other CD33/Siglec-3-related Siglecs, Siglec-11 was not found on peripheral blood leukocytes. Instead, we observed its expression on macrophages in various tissues, such as liver Kupffer cells. Third, it was also expressed on brain microglia, thus becoming the second Siglec to be found in the nervous system. Fourth, whereas the Siglec-11 gene is on human chromosome 19, it lies outside the previously described CD33/Siglec-3-related Siglec cluster on this chromosome. Fifth, analyses of genome data bases indicate that Siglec-11 has no mouse ortholog and that it is likely to be the last canonical human Siglec to be reported. Finally, although Siglec-11 shows marked sequence similarity to human Siglec-10 in its extracellular domain, the cytosolic tail appears only distantly related. Analysis of genomic regions surrounding the Siglec-11 gene suggests that it is actually a chimeric molecule that arose from relatively recent gene duplication and recombination events, involving the extracellular domain of a closely related ancestral Siglec gene (which subsequently became a pseudogene) and a transmembrane and cytosolic tail derived from another ancestral Siglec.  相似文献   

15.
Here we characterize the properties and expression pattern of Siglec-9 (sialic acid-binding Ig-like lectin-9), a new member of the Siglec subgroup of the immunoglobulin superfamily. A full-length cDNA encoding Siglec-9 was isolated from a dibutyryl cAMP-treated HL-60 cell cDNA library. Siglec-9 is predicted to contain three extracellular immunoglobulin-like domains that comprise an N-terminal V-set domain and two C2-set domains, a transmembrane region and a cytoplasmic tail containing two putative tyrosine-based signaling motifs. Overall, Siglec-9 is approximately 80% identical in amino acid sequence to Siglec-7, suggesting that the genes encoding these two proteins arose relatively recently by gene duplication. Binding assays showed that, similar to Siglec-7, Siglec-9 recognized sialic acid in either the alpha2,3- or alpha2, 6-glycosidic linkage to galactose. Using a specific mAb, Siglec-9 was found to be expressed at high or intermediate levels by monocytes, neutrophils, and a minor population of CD16(+), CD56(-) cells. Weaker expression was observed on approximately 50% of B cells and NK cells and minor subsets of CD8(+) T cells and CD4(+) T cells. These results show that despite their high degree of sequence similarity, Siglec-7 and Siglec-9 have distinct expression profiles.  相似文献   

16.
Killer cell inhibitory receptors (KIRs) inhibit NK and T cell cytotoxicity when recognizing MHC class I molecules on target cells. They possess two tandem intracytoplasmic immunoreceptor tyrosine-based inhibition motifs (ITIMs) that, when phosphorylated, each bind to the two Src homology 2 domain-bearing protein tyrosine phosphatases SHP-1 and SHP-2 in vitro. Using chimeric receptors having an intact intracytoplasmic KIR domain bearing both ITIMs (N + C-KIR), a deleted domain containing the N-terminal ITIM only (N-KIR), or a deleted domain containing the C-terminal ITIM only (C-KIR), we examined the respective contributions of the two ITIMs in the inhibition of cell activation in two experimental models (a rat mast cell and a mouse B cell line) that have been widely used to analyze KIR functions. We found that the two KIR ITIMs play distinct roles. When coaggregated with immunoreceptor tyrosine-based activation motif-bearing receptors such as high-affinity IgE receptors or B cell receptors, the N + C-KIR and the N-KIR chimeras, but not the C-KIR chimera, inhibited mast cell and B cell activation, became tyrosyl-phosphorylated, and recruited phosphatases in vivo. The N + C-KIR chimera recruited SHP-1 as expected, but also SHP-2. Surprisingly, the N-KIR chimera failed to recruit SHP-1; however, it did recruit SHP-2. Consequently, the N-terminal ITIM is sufficient to recruit SHP-2 and to inhibit cell activation, whereas the N-terminal and the C-terminal ITIMs are both necessary to recruit SHP-1. The two KIR ITIMs, therefore, are neither mandatory for inhibition nor redundant. Rather than simply amplifying inhibitory signals, they differentially contribute to the recruitment of distinct phosphatases that may cooperate to inhibit cell activation.  相似文献   

17.
We report the expression cloning of a novel leptin-binding protein of the immunoglobulin superfamily (OB-BP1) and a cross-hybridizing clone (OB-BP2) that is identical to a recently described sialic acid-binding I-type lectin called Siglec-5. Comparisons to other known Siglec family members (CD22, CD33, myelin-associated glycoprotein, and sialoadhesin) show that OB-BP1, OB-BP2/Siglec-5, and CD33/Siglec-3 constitute a unique related subgroup with a high level of overall amino acid identity: OB-BP1 versus Siglec-5 (59%), OB-BP1 versus CD33 (63%), and OB-BP2/Siglec-5 versus CD33 (56%). The cytoplasmic domains are not as highly conserved, but display novel motifs which are putative sites of tyrosine phosphorylation, including an immunoreceptor tyrosine kinase inhibitory motif and a motif found in SLAM and SLAM-like proteins. Human tissues showed high levels of OB-BP1 mRNA in placenta and moderate expression in spleen, peripheral blood leukocytes, and small intestine. OB-BP2/Siglec-5 mRNA was detected in peripheral blood leukocytes, lung, spleen, and placenta. A monoclonal antibody specific for OB-BP1 confirmed high expression in the cyto- and syncytiotrophoblasts of the placenta. Using this antibody on peripheral blood leukocytes showed an almost exclusive expression pattern on B cells. Recombinant forms of the extracellular domains of OB-BP1, OB-BP2/Siglec-5, and CD33/Siglec-3 were assayed for specific binding of leptin. While OB-BP1 exhibited tight binding (K(d) 91 nM), the other two showed weak binding with K(d) values in the 1-2 microM range. Studies with sialylated ligands indicated that OB-BP1 selectively bound Neu5Acalpha2-6GalNAcalpha (sialyl-Tn) allowing its formal designation as Siglec-6. The identification of OB-BP1/Siglec-6 as a Siglec family member, coupled with its restricted expression pattern, suggests that it may mediate cell-cell recognition events by interacting with sialylated glycoprotein ligands expressed on specific cell populations. We also propose a role for OB-BP1 in leptin physiology, as a molecular sink to regulate leptin serum levels.  相似文献   

18.
Natural killer (NK) cells employ an unconventional mode of recognition: they kill target cells that lack ligands for inhibitory NK cell receptors. Activation of NK cytotoxicity is tightly controlled by inhibitory receptors that recruit and activate the tyrosine phosphatase SHP-1 through the tyrosine-phosphorylated [I/V]xYxxL amino acid sequence in their cytoplasmic tail. This sequence motif, often referred to as an immunoreceptor tyrosine-based inhibitory motif (ITIM), is found in several other receptors that deliver similar negative signals in diverse types of cells. We suggest that this kind of regulation through inhibition is a widespread mechanism for the control of various cellular responses.  相似文献   

19.
Sialic acid-binding immunoglobulin-like lectins (Siglecs) are receptors believed to be important for regulation of cellular activation and inflammation. Several pathogenic microbes bind specific Siglecs via sialic acid-containing structures at the microbial surface, interactions that may result in modulation of host responses. Recently, it was shown that the group B Streptococcus (GBS) binds to human Siglec-5 (hSiglec-5), an inhibitory receptor expressed on macrophages and neutrophils, via the IgA-binding surface β protein, providing the first example of a protein/protein interaction between a pathogenic microbe and a Siglec. Here we show that the hSiglec-5-binding part of β resides in the N-terminal half of the protein, which also harbors the previously determined IgA-binding region. We constructed bacterial mutants expressing variants of the β protein with non-overlapping deletions in the N-terminal half of the protein. Using these mutants and recombinant β fragments, we showed that the hSiglec-5-binding site is located in the most N-terminal part of β (B6N region; amino acids 1-152) and that the hSiglec-5- and IgA-binding domains in β are completely separate. We showed with BIAcore(TM) analysis that tandem variants of the hSiglec-5- and IgA-binding domains bind to their respective ligands with high affinity. Finally, we showed that the B6N region, but not the IgA-binding region of β, triggers recruitment of the tyrosine phosphatase SHP-2 to hSiglec-5 in U937 monocytes. Taken together, we have identified and isolated the first microbial non-sialic acid Siglec-binding region that can be used as a tool in studies of the β/hSiglec-5 interaction.  相似文献   

20.
The siglecs (sialic acid-binding Ig-like lectins) are a distinct subset of the Ig superfamily with adhesion-molecule-like structure. We describe here a novel member of the siglec protein family that shares a similar structure including five Ig-like domains, a transmembrane domain, and a cytoplasmic tail containing two ITIM-signaling motifs. Siglec-10 was identified through database mining of an asthmatic eosinophil EST library. Using the Stanford G3 radiation hybrid panel we were able to localize the genomic sequence of siglec-10 within the cluster of genes on chromosome 19q13.3-4 that encode other siglec family members. We have demonstrated that siglec-10 is an immune system-restricted membrane-bound protein that is highly expressed in peripheral blood leukocytes as demonstrated by Northern, RT-PCR and flow cytometry. Binding assays determined that the extracellular domain of siglec-10 was capable of binding to peripheral blood leukocytes. The cytoplasmic tail of siglec-10 contains four tyrosines, two of which are embedded in ITIM-signaling motifs (Y597 and Y667) and are likely involved in intracellular signaling. The ability of tyrosine kinases to phosphorylate the cytoplasmic tyrosines was evaluated by kinase assay using wild-type siglec-10 cytoplasmic domain and Y-->F mutants. The majority of the phosphorylation could be attributed to Y597 andY667. Further experiments with cell extracts suggest that SHP-1 interacts with Y667 and SHP-2 interacts with Y667 in addition to another tyrosine. This is very similar to CD33, which also binds the phosphatases SHP-1 and SHP-2, therefore siglec-10, as CD33, may be characterized as an inhibitory receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号