首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
Effects of furfural on the aerobic metabolism of the yeast Saccharomyces cerevisiae were studied by performing chemostat experiments, and the kinetics of furfural conversion was analyzed by performing dynamic experiments. Furfural, an important inhibitor present in lignocellulosic hydrolysates, was shown to have an inhibitory effect on yeast cells growing respiratively which was much greater than the inhibitory effect previously observed for anaerobically growing yeast cells. The residual furfural concentration in the bioreactor was close to zero at all steady states obtained, and it was found that furfural was exclusively converted to furoic acid during respiratory growth. A metabolic flux analysis showed that furfural affected fluxes involved in energy metabolism. There was a 50% increase in the specific respiratory activity at the highest steady-state furfural conversion rate. Higher furfural conversion rates, obtained during pulse additions of furfural, resulted in respirofermentative metabolism, a decrease in the biomass yield, and formation of furfuryl alcohol in addition to furoic acid. Under anaerobic conditions, reduction of furfural partially replaced glycerol formation as a way to regenerate NAD+. At concentrations above the inlet concentration of furfural, which resulted in complete replacement of glycerol formation by furfuryl alcohol production, washout occurred. Similarly, when the maximum rate of oxidative conversion of furfural to furoic acid was exceeded aerobically, washout occurred. Thus, during both aerobic growth and anaerobic growth, the ability to tolerate furfural appears to be directly coupled to the ability to convert furfural to less inhibitory compounds.  相似文献   

2.
Summary The metabolism of furfural was studied with regard to possible mechanisms by which the chemical induces germination in ascospores. Incubation of ascospores in furfural resulted in the uptake of a small percent of the furfural, and the conversion of the bulk of it to furoic acid which was in turn converted to furfuryl alcohol. Conversion also occurred in Neurospora mycelium and conidia with the order being furfural to furfuryl alcohol to furoic acid. Conversion appears to be a noninducible enzymatic process localized on the outer surface of the cell. Conversion was completely inhibited without preventing germination indicating that conversion is not involved in the breaking of dormancy in Neurospora ascospores.  相似文献   

3.
The influence of aeration, stirring conditions, and the addition of furfural on the yield and productivity of furfural – furfuryl alcohol bioconversion by the yeast strain Saccharomyces cerevisiae 354 was investigated. The formation of furfuryl alcohol increases up to 32 hours of incubation corresponding to the addition of furfural, while the cell growth essentially ceased at 20 hours. The conversion of furfural into furfuryl alcohol under anaerobic and low aeration conditions was 70% and the productivity 0.5g · 1?1 · h?1, when the final concentrationof of furfural amounted to 35 g · 1?1.  相似文献   

4.
Furfural is an important inhibitor of yeast metabolism in lignocellulose-derived substrates. The effect of furfural on the physiology of Saccharomyces cerevisiae CBS 8066 was investigated using anaerobic continuous cultivations. Experiments were performed with furfural in the feed medium (up to 8.3 g/L) using three different dilution rates (0.095, 0.190, and 0.315 h(-1)). The measured concentration of furfural was low (< 0.1 g/L) at all steady states obtained. However, it was not possible to achieve a steady state at a specific conversion rate of furfural, q(f), higher than approximately 0.15 g/g.h. An increased furfural concentration in the feed caused a decrease in the steady-state glycerol yield. This agreed well with the decreased need for glycerol production as a way to regenerate NAD+, i.e., to function as a redox sink because furfural was reduced to furfuryl alcohol. Transient experiments were also performed by pulse addition of furfural directly into the fermentor. In contrast to the situation at steady-state conditions, both glycerol and furfuryl alcohol yields increased after pulse addition of furfural to the culture. Furthermore, the maximum specific conversion rate of furfural (0.6 g/g.h) in dynamic experiments was significantly higher than what was attainable in the chemostat experiments. The dynamic furfural conversion could be described by the use of a simple Michaelis-Menten-type kinetic model. Also furfural conversion under steady-state conditions could be explained by a Michaelis-Menten-type kinetic model, but with a higher affinity and a lower maximum conversion rate. This indicated the presence of an additional component with a higher affinity, but lower maximum capacity, either in the transport system or in the conversion system of furfural.  相似文献   

5.
Summary A survey was conducted with seventeen enteric bacterial strains (including the generaKlebsiella, Enterobacter, Escherichia, Citrobacter, Edwardsiella andProteus) to examine their ability to transform furfural and 5-hydroxymethyl furfural (5-MHF). The enteric bacteria were able to convert furfural to furfuryl alcohol under both aerobic and anaerobic conditions in a relatively short incubation time of 8 h. 5-HMF was transformed by all the enteric bacteria studied to an unidentified compound postulated to be 5-hydroxymethyl furfuryl alcohol, which had an absorbance maximum of 222 nm. These bacteria did not transform furfuryl alcohol or 2-furoic acid. The enteric bacteria did not use furfural, 5-HMF, furfuryl alcohol or 2-furoic acid as sole source of carbon and energy. Biotransformation of furfural and 5-HMF was accomplished by co-metabolism in the presence of glucose and peptone as main substrates. The rate of transformation was similar under both aerobic and anaerobic conditions. These transformations are likely to be of value in the detoxification of furfurals, and in their ultimate conversion to methane and CO2 by anaerobic digestion.  相似文献   

6.
In vivo detoxification of furfural by the oleaginous yeast, Trichosporon fermentans, under lipid-producing (i.e., nitrogen-limited) conditions was evaluated for the first time. During the initial fermentation phase, furfural was rapidly reduced to furfuryl alcohol, which is more toxic to T. fermentans than furfural. Furfuryl alcohol was subsequently oxidized to furoic acid which has low toxicity to T. fermentans and is the end product of the in vivo detoxification of furfural in this organism. These observations explain how T. fermentans can grow and accumulate lipids in medium containing furfural. They also indicate that strategies to minimize the transient production of furfuryl alcohol could further improve the capacity of the strain to produce lipids from furfural-containing lignocellulosic hydrolysates.  相似文献   

7.
Methanococcus deltae (Delta)LH was grown on H(inf2)-CO(inf2) in the presence of various concentrations of furfural. Furfural at higher concentrations, namely, 20 and 25 mM, inhibited growth of this organism. At concentration of 5 and 10 mM, no inhibition of growth was observed. The other methanogens in this study were not inhibited by 10 mM furfural. Among the methanogens tested, M. deltae was capable of transforming furfural, whereas Methanobacterium thermoautotrophicum Marburg, Methanosarcina barkeri 227, Methanococcus thermolithotrophicus, and Methanobrevibacter ruminantium lacked this capability. One hundred percent removal of furfural was observed within 48 h of incubation in M. deltae cultures. The end product observed during furfural metabolism was furfuryl alcohol. An almost stoichiometric amount of furfuryl alcohol was produced by M. deltae. This transformation is likely to be of value in the detoxification of furfural and in its ultimate conversion to methane and CO(inf2) by anaerobic digestion.  相似文献   

8.
The metabolic conversion of furfural by a methanogenic Archaea, Methanococcus sp., strain B was studied. The organism was grown on H2–CO2 in the presence of various concentrations of furfural. Furfural at higher concentrations, namely, 25 and 30 mM inhibited growth of this organism. At concentrations 5, 10, and 15 mM, no inhibition was observed. Furfural was completely (100%) metabolized at the concentration of 15 or <15 mM in the cultures within five days of incubation. The end product observed during furfural metabolism was furfuryl alcohol. An almost stoichiometric quantity of furfuryl alcohol was produced. This biotransformation is likely to be of value in the detoxification of furfural and its ultimate conversion to methane and CO2 by the anaerobic process.  相似文献   

9.
The toxic fermentation inhibitors in lignocellulosic hydrolysates raise serious problems for the microbial production of fuels and chemicals. Furfural is considered to be one of the most toxic compounds among these inhibitors. Here, we describe the detoxification of furfural in Corynebacterium glutamicum ATCC13032 under both aerobic and anaerobic conditions. Under aerobic culture conditions, furfuryl alcohol and 2-furoic acid were produced as detoxification products of furfural. The ratio of the products varied depending on the initial furfural concentration. Neither furfuryl alcohol nor 2-furoic acid showed any toxic effect on cell growth, and both compounds were determined to be the end products of furfural degradation. Interestingly, unlike under aerobic conditions, most of the furfural was converted to furfuryl alcohol under anaerobic conditions, without affecting the glucose consumption rate. Both the NADH/NAD+ and NADPH/NADP+ ratio decreased in the accordance with furfural concentration under both aerobic and anaerobic conditions. These results indicate the presence of a single or multiple endogenous enzymes with broad and high affinity for furfural and co-factors in C. glutamicum ATCC13032.  相似文献   

10.
Sister-chromatid exchanges (SCEs) in human lymphocytes were studied using the FPG technique in order to determine the cytogenetic effect of furfural and furfuryl alcohol. The induction of SCEs was also investigated in workers occupationally exposed to these solvents that are commonly used in the manufacture of furoic resins. The results obtained from the in vitro treatments show that furfural increased the number of SCEs, while furfuryl alcohol did not. In exposed workers, neither of these solvents increased the spontaneous frequency of SCEs per metaphase.  相似文献   

11.
Li Q  Metthew Lam LK  Xun L 《Biodegradation》2011,22(6):1215-1225
Ethanol is a renewable biofuel, and it can be produced from lignocellulosic biomass. The biomass is usually converted to hydrolysates that consist of sugar and sugar derivatives, such as furfural. Yeast ferments sugar to ethanol, but furfural higher than 3 mM is inhibitory. It can take several days for yeast cells to reduce furfural to non-inhibitory furfuryl alcohol before producing ethanol. Bioreduction of furfural to furfuryl alcohol before fermentation may relieve yeast from furfural toxicity. We observed that Cupriavidus necator JMP134, a strict aerobe, rapidly reduced 17 mM furfural to less than 3 mM within 14 min with cell turbidity of 1.0 at 600 nm at 50°C. The rapid reduction consumed ethanol. The “furfural reductase” (FurX) was purified, and it oxidized ethanol to acetaldehyde and reduced furfural to furfuryl alcohol with NAD+ as the cofactor. The protein was identified with mass spectrometry fingerprinting to be a hypothetical protein belonging to Zn-dependent alcohol dehydrogenase family. The furX-inactivation mutant of C. necator JMP134 lost the ability to rapidly reduce furfural, and Escherichia coli producing recombinant FurX gained the ability. Thus, an alcohol dehydrogenase enabled bacteria to rapidly reduce furfural with ethanol as the reducing power.  相似文献   

12.
Genomic adaptation of ethanologenic yeast to biomass conversion inhibitors   总被引:1,自引:0,他引:1  
One major barrier to the economic conversion of biomass to ethanol is inhibitory compounds generated during biomass pretreatment using dilute acid hydrolysis. Major inhibitors such as furfural and 5-hydroxymethylfurfural (HMF) inhibit yeast growth and subsequent fermentation. The ethanologenic yeast Saccharomyces cerevisiae demonstrated a dose-dependant inhibition by the inhibitors and has the potential to transform furfural and HMF into less toxic compounds of furfuryl alcohol and 2,5-bis-hydroxymethylfuran (also termed as furan-2,5-dimethanol (FDM)), respectively. For a sustainable and cost-competitive biomass-to-ethanol industry, it is important to develop more tolerant yeast strains that can, in situ, detoxify the inhibitors and produce ethanol. This study summarizes current knowledge and our understanding of the inhibitors furfural and HMF and discusses metabolic conversion pathways of the inhibitors and the yeast genomic expression response to inhibitor stress. Unlike laboratory strains, gene expression response of the ethanologenic yeast to furfural and HMF was not transient, but a continued dynamic process involving multiple genes at the genome level. This suggests that during the lag phase, ethanologenic yeasts undergo a genomic adaptation process in response to the inhibitors. The findings to date provide a strong foundation for future studies on genomic adaptation and manipulation of yeast to aid more robust strain design and development.The mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the US Department of Agriculture.  相似文献   

13.
14.
Zhang Y  Han B  Ezeji TC 《New biotechnology》2012,29(3):345-351
The ability of fermenting microorganisms to tolerate furan aldehyde inhibitors (furfural and 5-hydroxymethyl furfural (HMF)) will enhance efficient bioconversion of lignocellulosic biomass hydrolysates to fuels and chemicals. The effect of furfural and HMF on butanol production by Clostridium acetobutylicum 824 was investigated. Whereas specific growth rates, μ, of C. acetobutylicum in the presence of furfural and HMF were in the range of 15-85% and 23-78%, respectively, of the uninhibited Control, μ increased by 8-15% and 23-38% following exhaustion of furfural and HMF in the bioreactor. Using high performance liquid chromatography and spectrophotometric assays, batch fermentations revealed that furfural and HMF were converted to furfuryl alcohol and 2,5-bis-hydroxymethylfuran, respectively, with specific conversion rates of 2.13g furfural and 0.50g HMF per g (biomass) per hour, by exponentially growing C. acetobutylicum. Biotransformation of these furans to lesser inhibitory compounds by C. acetobutylicum will probably enhance overall fermentation of lignocellulosic hydrolysates to butanol.  相似文献   

15.
Furfural is one of main inhibitors in hemicellulose hydrolysates such as xylose mother liquor, but its positive effect on the production of validamycin-A (VAL-A), a widely used agricultural antibiotic, was interestingly found in fermentation of Streptomyces hygroscopicus 5008. The furfural level in medium up to 1 g/L was effectively converted to furfuryl alcohol and furoic acid by the microorganism. Both intracellular H2O2 level and ValG enzyme activity of the cells were enhanced by furfural addition. Xylose mother liquor medium with supplementation of about 1 g/L furfural could enhance the VAL-A titer by 39 %. This work is helpful to VAL-A fermentation using the hemicellulose hydrolysate.  相似文献   

16.
Biotransformation of furfural by Saccharomyces cerevisiae 354 was performed in a sugar cane molasses medium containing salts. The furfural added was rapidly reduced to furfuryl alcohol until a final addition of 3%, without inhibition in the cells growth. An efficient conversion of 96% was obtained by feeding 6 g · l?1 every 6 hours.  相似文献   

17.
Use of agricultural residues for ethanol production requires pretreatment of the material to facilitate release of sugars. Physical–chemical pretreatment of lignocellulosic biomass can, however, give rise to side-products that may be toxic to fermenting microorganisms and hinder utilization of sugars obtained from biomass. Potentially problematic compounds include furan aldehydes formed by degradation of sugars, organic acids released from hemicellulose side-groups, and aldehydes and phenolics released from lignin. A fungal isolate, Coniochaeta ligniaria NRRL30616, metabolizes furfural and 5-hydroxymethylfurfural (HMF) as well as aromatic and aliphatic acids and aldehydes. NRRL30616 grew in corn stover dilute-acid hydrolysate, and converted furfural to both furfuryl alcohol and furoic acid. Hydrolysate was inoculated with NRRL30616, and the fate of pretreatment side-products was followed in a time-course study. A number of aromatic and aliphatic acids, aldehydes, and phenolic compounds were quantitated by analytical extraction of corn stover hydrolysate, followed by HPLC–UV–MS/MS analysis. Compounds representing all of the classes of inhibitory side-products were removed during the course of fungal growth. Biological abatement of hydrolysates using C. ligniaria improved xylose utilization in subsequent ethanol fermentations.  相似文献   

18.
Candida stellata is frequently found in wine fermentations and may be used as a yeast starter in beverage production. In order to acquire additional knowledge on the physiology of C. stellata, a study on sugar metabolism in aerobic and anaerobic conditions was carried out. We found that under anaerobic conditions the low growth rate and biomass yield of C. stellata were due to the diversion of carbon flux from ethanol to glycerol. C. stellata had lower ADHI (alcohol dehydrogenase) activity (3-4 fold) and higher GPDH (glycerol-3-phosphate dehydrogenase) activity (40 and 15 times higher in anaerobiosis and aerobiosis respectively) than that of a Saccharomyces cerevisiae control strain. In aerobic sugar-limited chemostat culture C. stellata exhibited lower maximum biomass concentration [5.23 gl(-1) (dry weight)] than other respirofermentative yeasts at very low dilution rates (up to D = 0.042 h(-1)). While glycerol was constantly produced, ethanol and sugar residue appeared at D = 0.042 h(-1) and D = 0.065 h(-1) respectively. The tendency of C. stellata to form glycerol is probably the main cause of its very low growth and fermentation rates.  相似文献   

19.
Lignocellulosic biomass hydrolysis inevitably coproduces byproducts that may have various affects on downstream biotransformation. It is imperative to document the inhibitor tolerance ability of microbial strain in order to utilize biomass hydrolysate more effectively. To achieve better lipid production by Rhodosporidium toruloides Y4, we performed fermentation experiments in the presence of some representative inhibitors. We found that acetate, 5-hydroxymethylfurfural and syringaldehyde had slightly inhibitory effects; p-hydroxybenzaldehyde and vanillin were toxic at a concentration over 10 mM; and furfural and its derivatives furfuryl alcohol and furoic acid inhibited cell growth by 45% at around 1 mM. We further demonstrated that inhibition is generally additive, although strong synergistic inhibitions were also observed. Finally, lipid production afforded good results in the presence of six inhibitors at their respective concentrations usually found in biomass hydrolysates. Fatty acid compositional profile of lipid samples indicated that those inhibitors had little effects on lipid biosynthesis. Our work will be useful for optimization of biomass hydrolysis processes and lipid production using lignocellulosic materials.  相似文献   

20.
We investigated the regulation of the central aerobic and hypoxic metabolism of the biocontrol and non-Saccharomyces wine yeast Pichia anomala. In aerobic batch culture, P. anomala grows in the respiratory mode with a high biomass yield (0.59 g [dry weight] of cells g of glucose(-1)) and marginal ethanol, glycerol, acetate, and ethyl acetate production. Oxygen limitation, but not glucose pulse, induced fermentation with substantial ethanol production and 10-fold-increased ethyl acetate production. Despite low or absent ethanol formation, the activities of pyruvate decarboxylase and alcohol dehydrogenase were high during aerobic growth on glucose or succinate. No activation of these enzyme activities was observed after a glucose pulse. However, after the shift to oxygen limitation, both enzymes were activated threefold. Metabolic flux analysis revealed that the tricarboxylic acid pathway operates as a cycle during aerobic batch culture and as a two-branched pathway under oxygen limitation. Glucose catabolism through the pentose phosphate pathway was lower during oxygen limitation than under aerobic growth. Overall, our results demonstrate that P. anomala exhibits a Pasteur effect and not a Crabtree effect, i.e., oxygen availability, but not glucose concentration, is the main stimulus for the regulation of the central carbon metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号