首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Buruli ulcer is an indolent, slowly progressing necrotizing disease of the skin caused by infection with Mycobacterium ulcerans. In the present study, we applied a redesigned technique to a vast panel of M. ulcerans disease isolates and clinical samples originating from multiple African disease foci in order to (i) gain fundamental insights into the population structure and evolutionary history of the pathogen and (ii) disentangle the phylogeographic relationships within the genetically conserved cluster of African M. ulcerans. Our analyses identified 23 different African insertion sequence element single nucleotide polymorphism (ISE-SNP) types that dominate in different areas where Buruli ulcer is endemic. These ISE-SNP types appear to be the initial stages of clonal diversification from a common, possibly ancestral ISE-SNP type. ISE-SNP types were found unevenly distributed over the greater West African hydrological drainage basins. Our findings suggest that geographical barriers bordering the basins to some extent prevented bacterial gene flow between basins and that this resulted in independent focal transmission clusters associated with the hydrological drainage areas. Different phylogenetic methods yielded two well-supported sister clades within the African ISE-SNP types. The ISE-SNP types from the “pan-African clade” were found to be widespread throughout Africa, while the ISE-SNP types of the “Gabonese/Cameroonian clade” were much rarer and found in a more restricted area, which suggested that the latter clade evolved more recently. Additionally, the Gabonese/Cameroonian clade was found to form a strongly supported monophyletic group with Papua New Guinean ISE-SNP type 8, which is unrelated to other Southeast Asian ISE-SNP types.  相似文献   

2.
Mealybugs (Hemiptera, Coccoidea, Pseudococcidae) are plant sap-sucking insects that have within their body cavities specialized cells containing prokaryotic primary endosymbionts (P-endosymbionts). The P-endosymbionts have the unusual property of containing within their cytoplasm prokaryotic secondary endosymbionts (S-endosymbionts) [C. D. von Dohlen, S. Kohler, S. T. Alsop, and W. R. McManus, Nature (London) 412:433-436, 2001]. Four-kilobase fragments containing 16S-23S ribosomal DNA (rDNA) were obtained from the P-endosymbionts of 22 mealybug species and the S-endosymbionts of 12 representative species. Phylogenetic analyses of the P-endosymbionts indicated that they have a monophyletic origin and are members of the β-subdivision of the Proteobacteria; these organisms were subdivided into five different clusters. The S-endosymbionts were members of the γ-subdivision of the Proteobacteria and were grouped into clusters similar to those observed with the P-endosymbionts. The S-endosymbiont clusters were distinct from each other and from other insect-associated bacteria. The similarity of the clusters formed by the P- and S-endosymbionts suggests that the P-endosymbionts of mealybugs were infected multiple times with different precursors of the S-endosymbionts and once the association was established, the P- and S-endosymbionts were transmitted together. The lineage consisting of the P-endosymbionts of mealybugs was given the designation “Candidatus Tremblaya” gen. nov., with a single species, “Candidatus Tremblaya princeps” sp. nov. The results of phylogenetic analyses of mitochondrial DNA fragments encoding cytochrome oxidase subunits I and II from four representative mealybug species were in agreement with the results of 16S-23S rDNA analyses, suggesting that relationships among strains of “Candidatus T. princeps” are useful in inferring the phylogeny of their mealybug hosts.  相似文献   

3.
The Ghanaian cocoa bean heap fermentation process was studied through a multiphasic approach, encompassing both microbiological and metabolite target analyses. A culture-dependent (plating and incubation, followed by repetitive-sequence-based PCR analyses of picked-up colonies) and culture-independent (denaturing gradient gel electrophoresis [DGGE] of 16S rRNA gene amplicons, PCR-DGGE) approach revealed a limited biodiversity and targeted population dynamics of both lactic acid bacteria (LAB) and acetic acid bacteria (AAB) during fermentation. Four main clusters were identified among the LAB isolated: Lactobacillus plantarum, Lactobacillus fermentum, Leuconostoc pseudomesenteroides, and Enterococcus casseliflavus. Other taxa encompassed, for instance, Weissella. Only four clusters were found among the AAB identified: Acetobacter pasteurianus, Acetobacter syzygii-like bacteria, and two small clusters of Acetobacter tropicalis-like bacteria. Particular strains of L. plantarum, L. fermentum, and A. pasteurianus, originating from the environment, were well adapted to the environmental conditions prevailing during Ghanaian cocoa bean heap fermentation and apparently played a significant role in the cocoa bean fermentation process. Yeasts produced ethanol from sugars, and LAB produced lactic acid, acetic acid, ethanol, and mannitol from sugars and/or citrate. Whereas L. plantarum strains were abundant in the beginning of the fermentation, L. fermentum strains converted fructose into mannitol upon prolonged fermentation. A. pasteurianus grew on ethanol, mannitol, and lactate and converted ethanol into acetic acid. A newly proposed Weissella sp., referred to as “Weissella ghanaensis,” was detected through PCR-DGGE analysis in some of the fermentations and was only occasionally picked up through culture-based isolation. Two new species of Acetobacter were found as well, namely, the species tentatively named “Acetobacter senegalensis” (A. tropicalis-like) and “Acetobacter ghanaensis” (A. syzygii-like).  相似文献   

4.
Bacterial wilt of tomato caused by Ralstonia solanacearum (Smith) Yabuuchi et al. (Microbiol Immunol 39:897–904, 1995) is a serious disease, which causes losses up to 60 % depending on environmental conditions, soil property, and cultivars. In present investigation, nucleotide sequences of virulence, hypersensitive response and pathogenicity (hrp) gene were used to design a pair of primer (Hrp_rs 2F: 5′-AGAGGTCGACGCGATACAGT-3′ and Hrp_rs 2R: 5′-CATGAGCAAGGACGAAGTCA-3′) for amplification of bacterial genome. The genomic DNA of 27 isolates of R. solanacearum race 1 biovar 3 & 4 was amplified at 323 bp. The specificity of primer was tested on 13 strains of R. solanacearum with other group of bacteria such as Xanthomonas oryzae pv. oryzae, X. campestris pv. campestris, and X. citri subsp. citri. Primer amplified DNA fragment of R. solanacearum at 323 bp. The sensitivity of the primer was 200 cfu/ml and improved further detection level by using non-specific enrichment medium casamino acids-pepton-glucose broth followed by PCR (BIO-PCR). Out of 130 samples of asymptomatic tomato plants, irrigation water, and soil collected from bacterial wilt infested field in different agro-climatic regions of India, R. solanacearum was detected from 86.9, 88.5, and 90.9 per cents samples using BIO-PCR, respectively. The primer was found specific for detecting viable and virulent strains of R. solanacearum and useful for the diagnosis of R. solanacearum in tomato seedlings and monitoring of pathogen in irrigation water and soil.  相似文献   

5.
There have been many attempts to control bacterial wilt with antagonistic bacteria or spontaneous nonpathogenic mutants of Pseudomonas solanacearum that lack the ability to colonize the host, but they have met with limited success. Since a large gene cluster (hrp) is involved in the pathogenicity of P. solanacearum, we developed a biological control strategy using genetically engineered Hrp- mutants of P. solanacearum. Three pathogenic strains collected in Guadeloupe (French West Indies) were rendered nonpathogenic by insertion of an ω-Km interposon within the hrp gene cluster of each strain. The resulting Hrp- mutants were tested for their ability to control bacterial wilt in challenge inoculation experiments conducted either under growth chamber conditions or under greenhouse conditions in Guadeloupe. Compared with the colonization by a pathogenic strain which spread throughout the tomato plant, colonization by the mutants was restricted to the roots and the lower part of the stems. The mutants did not reach the fruit. Moreover, the presence of the mutants did not affect fruit production. When the plants were challenge inoculated with a pathogenic strain, the presence of Hrp- mutants within the plants was correlated with a reduction in disease severity, although pathogenic bacteria colonized the stem tissue at a higher density than the nonpathogenic bacteria. Challenge inoculation experiments conducted under growth chamber conditions led, in some cases, to exclusion of the pathogenic strain from the aerial part of the plant, resulting in high protection rates. Furthermore, there was evidence that one of the pathogenic strains used for the challenge inoculations produced a bacteriocin that inhibited the in vitro growth of the nonpathogenic mutants.  相似文献   

6.
The present work describes the use of randomly amplified polymorphic DNA (RAPD) for the characterization of 172 dominant Lactobacillus isolates from present and previous studies of Ghanaian maize fermentation. Heterofermentative lactobacilli dominate the fermentation flora, since approximately 85% of the isolates belong to this group. Cluster analysis of the RAPD profiles obtained showed the presence of two main clusters. Cluster 1 included Lactobacillus fermentum, whereas cluster 2 comprised the remaining Lactobacillus spp. The two distinct clusters emerged at the similarity level of <50%. All isolates in cluster 1 showed similarity in their RAPD profile to the reference strains of L. fermentum included in the study. These isolates, yielding two distinct bands of approximately 695 and 773 bp with the primers used, were divided into four subclusters, indicating that several strains are involved in the fermentation and remain dominant throughout the process. The two distinct RAPD fragments were cloned, sequenced, and used as probes in Southern hybridization experiments. With one exception, Lactobacillus reuteri LMG 13045, the probes hybridized only to fragments of different sizes in EcoRI-digested chromosomal DNA of L. fermentum strains, thus indicating the specificity of the probes and variation within the L. fermentum isolates.  相似文献   

7.
The ultrastructural features of two groups of filamentous sulfur bacteria, Thiothrix spp. and an unnamed organism designated “type 021N,” were examined by transmission electron microscopy. Negative staining of whole cells and filaments with uranyl acetate revealed the presence of tufts of fimbriae located at the ends of individual gonidia of Thiothrix sp. strain A1 and “type 021N” strain N7. Holdfast material present at the center of mature rosettes was observed in thin sections stained with ruthenium red. A clearly defined sheath enveloped the trichomes of two of three Thiothrix strains but was absent from “type 021N” filaments. The outer cell wall appeared more complex in “type 021N” strains than in Thiothrix isolates. Bulbs or clusters of irregularly shaped cells, often present in filaments of “type 021N” bacteria, appeared to result from crosswalls which formed at angles oblique to the filament axis. The multicellular nature of these sulfur bacteria was apparent in that only the cytoplasmic membrane and peptidoglycan layer of the cell wall were involved in the septation process. Sulfur inclusions which developed in the presence of sodium thiosulfate were enclosed by a single-layered envelope and located within invaginations of the cytoplasmic membrane.  相似文献   

8.
The FtsLB complex is a key regulator of bacterial cell division, existing in either an off state or an on state, which supports the activation of septal peptidoglycan synthesis. In Escherichia coli, residues known to be critical for this activation are located in a region near the C-terminal end of the periplasmic coiled-coil domain of FtsLB, raising questions about the precise role of this conserved domain in the activation mechanism. Here, we investigate an unusual cluster of polar amino acids found within the core of the FtsLB coiled coil. We hypothesized that these amino acids likely reduce the structural stability of the domain and thus may be important for governing conformational changes. We found that mutating these positions to hydrophobic residues increased the thermal stability of FtsLB but caused cell division defects, suggesting that the coiled-coil domain is a “detuned” structural element. In addition, we identified suppressor mutations within the polar cluster, indicating that the precise identity of the polar amino acids is important for fine-tuning the structural balance between the off and on states. We propose a revised structural model of the tetrameric FtsLB (named the “Y-model”) in which the periplasmic domain splits into a pair of coiled-coil branches. In this configuration, the hydrophilic terminal moieties of the polar amino acids remain more favorably exposed to water than in the original four-helix bundle model (“I-model”). We propose that a shift in this architecture, dependent on its marginal stability, is involved in activating the FtsLB complex and triggering septal cell wall reconstruction.  相似文献   

9.
The base composition of deoxyribonucleic acid (DNA) prepared from four Betabacterium strains and four Streptobacterium strains was determined. Per cent GC values (guanine + cytosine/total bases) of the DNA were evaluated from the “melting-temperatures” (Tm) of the nucleic acids. For the Betabacterium strains, these values ranged from 44 to 51.5% GC, and those for the Streptobacterium strains ranged from 43 to 47.5% GC. The taxonomic division into these two subgenera is not, therefore, supported by these findings.  相似文献   

10.
Genes homologous to avrBs3 of Xanthomonas were detected in 309 strains of Ralstonia solanacearum biovars 3, 4, and 5 but not biovar 1 or 2. A statistically significant association between the originating plant species and internal repeats of the gene was found. Sequences of repeats and variation between nearly clonal strains revealed evidence of frequent recombination.  相似文献   

11.
BackgroundDiet is an important factor in the prevention of chronic diseases. Analysis of secular trends of dietary patterns can be biased by energy under-reporting. Therefore, the objective of the present study was to analyse the impact of energy under-reporting on dietary patterns and secular trends in dietary patterns defined by cluster analysis.ResultsThree clusters, “healthy”, “mixed” and “western”, were identified for both surveys. The “mixed” cluster was the predominant cluster in both surveys. Excluding EUR reduced the proportion of the “mixed” cluster up to 6.40% in the 2000 survey; this caused secular trend increase in the prevalence of the “mixed” pattern. Cross-classification analysis of all participants and PER’ data showed substantial agreement in cluster assignments: 68.7% in 2000 and 84.4% in 2005. Excluding EUR did not cause meaningful (≥15%) changes in the “healthy” pattern. It provoked changes in consumption of some food groups in the “mixed” and “western” patterns: mainly decreases of unhealthy foods within the 2000 and increases of unhealthy foods within the 2005 surveys. Secular trend effects of EUR were similar to those within the 2005 survey. Excluding EUR reversed the direction of secular trends in consumption of several food groups in PER in the “mixed” and “western” patterns.ConclusionsEUR affected distribution of participants between dietary patterns within and between surveys, secular trends in food group consumption and amount of food consumed in all, but not in the “healthy” pattern. Our findings emphasize threats from energy under-reporting in dietary data analysis.  相似文献   

12.
Serratia plymuthica A30 is a Gram-negative bacterium expressing antagonistic activity toward blackleg- and soft rot-causing Dickeya sp. biovar 3 (“Dickeya solani”). Here, we present the draft genome sequence of strain A30, which has been isolated from rotten potato tuber tissue.  相似文献   

13.
Marginal chlorosis is a new disease of strawberry in which the uncultured phloem-restricted proteobacterium “Candidatus Phlomobacter fragariae” is involved. In order to identify the insect(s) vector(s) of this bacterium, homopteran insects have been captured. Because a PCR test based on the 16S rRNA gene (rDNA) applied to these insects was unable to discriminate between “P. fragariae” and other insect-associated proteobacteria, isolation of “P. fragariae” genes other than 16S rDNA was undertaken. Using comparative randomly amplified polymorphic DNAs, an amplicon was specifically amplified from “P. fragariae”-infected strawberry plants. It encodes part of a “P. fragariae” open reading frame sharing appreciable homology with the spoT gene from other proteobacteria. A spoT-based PCR test combined with restriction fragment length polymorphisms was developed and was able to distinguish “P. fragariae” from other insect bacteria. None of the many leafhoppers and psyllids captured during several years in and around infected strawberry fields was found to carry “P. fragariae.” Interestingly however, the “P. fragariae” spoT sequence could be easily detected in whiteflies proliferating on “P. fragariae”-infected strawberry plants under confined greenhouse conditions but not on control whiteflies, indicating that these insects can become infected with the bacterium.  相似文献   

14.
The type III secretion system (T3SS) is required for virulence in the gram-negative plant pathogen Pseudomonas syringae pv. tomato DC3000. The alternative sigma factor HrpL directly regulates expression of T3SS genes via a promoter sequence, often designated as the “hrp promoter.” Although the HrpL regulon has been extensively investigated in DC3000, it is not known whether additional regulon members remain to be found. To systematically search for HrpL-regulated genes, we used chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-Seq) and bulk mRNA sequencing (RNA-Seq) to identify HrpL-binding sites and likely hrp promoters. The analysis recovered 73 sites of interest, including 20 sites that represent new hrp promoters. The new promoters lie upstream of a diverse set of genes encoding potential regulators, enzymes and hypothetical proteins. PSPTO_5633 is the only new HrpL regulon member that is potentially an effector and is now designated HopBM1. Deletions in several other new regulon members, including PSPTO_5633, PSPTO_0371, PSPTO_2130, PSPTO_2691, PSPTO_2696, PSPTO_3331, and PSPTO_5240, in either DC3000 or ΔhopQ1-1 backgrounds, do not affect the hypersensitive response or in planta growth of the resulting strains. Many new HrpL regulon members appear to be unrelated to the T3SS, and orthologs for some of these can be identified in numerous non-pathogenic bacteria. With the identification of 20 new hrp promoters, the list of HrpL regulon members is approaching saturation and most likely includes all DC3000 effectors.  相似文献   

15.
Mating type in the Gibberella fujikuroi species complex is controlled by a single locus with two alleles and is usually identified following sexual crosses with standard, female-fertile tester isolates. The mating type alleles have been arbitrarily designated “+” and “−” within each biological species, and the nomenclature is tied to the standard tester strains. We developed a pair of PCR primers that can be used to amplify a unique fragment of one of the mating type alleles (MAT-2) from at least seven of the biological species in this species complex. Based on the amplification pattern, we propose a replacement for the existing, arbitrary +/− terminology that is presently in use. The new terminology is based on DNA sequence similarities between the mating type allele fragments from the biological species of the G. fujikuroi species complex and the corresponding fragments from other filamentous ascomycetes.  相似文献   

16.
In a fraction of patients surgically treated for cleft lip/palate, excessive scarring disturbs maxillary growth and dento-alveolar development. Since certain genes are involved in craniofacial morphogenesis as well as tissue repair, a primary defect causing cleft lip/palate could lead to altered wound healing. We performed in vitro wound healing assays with primary lip fibroblasts from 16 cleft lip/palate patients. Nine foreskin fibroblast strains were included for comparison. Cells were grown to confluency and scratch wounds were applied; wound closure was monitored morphometrically over time. Wound closure rate showed highly significant differences between fibroblast strains. Statistically, fibroblast strains from the 25 individuals could be divided into three migratory groups, namely “fast”, “intermediate”, and “slow”. Most cleft lip/palate fibroblasts were distributed between the “fast” (5 strains) and the “intermediate” group (10 strains). These phenotypes were stable over different cell passages from the same individual. Expression of genes involved in cleft lip/palate and wound repair was determined by quantitative PCR. Transforming growth factor-α mRNA was significantly up-regulated in the “fast” group. 5 ng/ml transforming growth factor-α added to the culture medium increased the wound closure rate of cleft lip/palate strains from the “intermediate” migratory group to the level of the “fast”, but had no effect on the latter group. Conversely, antibody to transforming growth factor-α or a specific inhibitor of its receptor most effectively reduced the wound closure rate of “fast” cleft lip/palate strains. Thus, fibroblasts from a distinct subgroup of cleft lip/palate patients exhibit an increased migration rate into wounds in vitro, which is linked to higher transforming growth factor-α expression and attenuated by interfering with its signaling.  相似文献   

17.
Three upland soils from Thailand, a natural forest, a 16-year-old reforested site, and an agricultural field, were studied with regard to methane uptake and the community composition of methanotrophic bacteria (MB). The methane uptake rates were similar to rates described previously for forest and farmland soils of the temperate zone. The rates were lower at the agricultural site than at the native forest and reforested sites. The sites also differed in the MB community composition, which was characterized by denaturing gradient gel electrophoresis (DGGE) of pmoA gene fragments (coding for a subunit of particulate methane monooxygenase) that were PCR amplified from total soil DNA extracts. Cluster analysis based on the DGGE banding patterns indicated that the MB communities at the forested and reforested sites were similar to each other but different from that at the farmland site. Sequence analysis of excised DGGE bands indicated that Methylobacter spp. and Methylocystis spp. were present. Sequences of the “forest soil cluster” or “upland soil cluster α,” which is postulated to represent organisms involved in atmospheric methane consumption in diverse soils, were detected only in samples from the native forest and reforested sites. Additional sequences that may represent uncultivated groups of MB in the Gammaproteobacteria were also detected.  相似文献   

18.
In the heart, electrical stimulation of cardiac myocytes increases the open probability of sarcolemmal voltage-sensitive Ca2+ channels and flux of Ca2+ into the cells. This increases Ca2+ binding to ligand-gated channels known as ryanodine receptors (RyR2). Their openings cause cell-wide release of Ca2+, which in turn causes muscle contraction and the generation of the mechanical force required to pump blood. In resting myocytes, RyR2s can also open spontaneously giving rise to spatially-confined Ca2+ release events known as “sparks.” RyR2s are organized in a lattice to form clusters in the junctional sarcoplasmic reticulum membrane. Our recent work has shown that the spatial arrangement of RyR2s within clusters strongly influences the frequency of Ca2+ sparks. We showed that the probability of a Ca2+ spark occurring when a single RyR2 in the cluster opens spontaneously can be predicted from the precise spatial arrangements of the RyR2s. Thus, “function” follows from “structure.” This probability is related to the maximum eigenvalue (λ 1) of the adjacency matrix of the RyR2 cluster lattice. In this work, we develop a theoretical framework for understanding this relationship. We present a stochastic contact network model of the Ca2+ spark initiation process. We show that λ 1 determines a stability threshold for the formation of Ca2+ sparks in terms of the RyR2 gating transition rates. We recapitulate these results by applying the model to realistic RyR2 cluster structures informed by super-resolution stimulated emission depletion (STED) microscopy. Eigendecomposition of the linearized mean-field contact network model reveals functional subdomains within RyR2 clusters with distinct sensitivities to Ca2+. This work provides novel perspectives on the cardiac Ca2+ release process and a general method for inferring the functional properties of transmembrane receptor clusters from their structure.  相似文献   

19.
Bacterial wilt, caused by Ralstonia solanacearum species complex is a key yield‐limiting factor on crops in Guangdong province, China. The genetic diversity of 110 R. solanacearum strains collected from 16 host plants in different areas of Guangdong province was analysed using biovar and phylotype classification schemes. Of 110 strains, fifty‐five strains belong to biovar 3, fifty‐two strains belong to biovar 4, two strains belong to biovar 2 and one strain belonged to biovar 1. Phylotype‐specific multiplex PCR showed that 108 strains belonged to phylotype I (biovars 1, 3, 4) and two strains belonged to phylotype II (biovar 2). The result of phylogenetic relationships analysis based on egl gene sequences demonstrated that 108 strains of phylotype I were grouped into nine previously described sequevars and a new sequevar 57, and two strains of phylotype II were grouped into sequevar 1. Sequevars 15, 34 and 44 widely distributed in Guangdong were predominant sequevars. Sequevar 45 was first reported on potato and pumpkin in China. These results revealed the genetic structure and phylogenetic relationships of R. solanacearum population in Guangdong and will be helpful in bacterial wilt‐resistance breeding.  相似文献   

20.
The environmental distribution and phylogeny of “Korarchaeota,” a proposed ancient archaeal division, was investigated by using the 16S rRNA gene framework. Korarchaeota-specific primers were designed based on previously published sequences and used to screen a variety of environments. Korarchaeota 16S rRNA genes were amplified exclusively from high temperature Yellowstone National Park hot springs and a 9°N East Pacific Rise deep-sea hydrothermal vent. Phylogenetic analyses of these and all available sequences suggest that Korarchaeota exhibit a high level of endemicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号