首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A specific and sensitive method for analysis of brain pyrrolidine, a volatile amine with potent synaptotropic actions on the peripheral and central nervous systems, was devised. The method involves the isolation of volatile amines by steam distillation and the qualification and quantification of pyrrolidine by gas chromatography/mass spectrometry (gcms) including a selected ion monitoring technique with deuterium-labeled pyrrolidine as an internal standard. The lower limit of quantification for the method was 2 pmol, and the mean concentration of pyrrolidine in the rat whole brain was determined to be 95 pmol/g of tissue.  相似文献   

2.
Monoamine oxidase activity measurements using radioactive substrates   总被引:2,自引:0,他引:2  
The use of Amberlite CG-50, Dowex 50 and solvent extraction for separation of the oxidation products of the biogenic amines are compared, and measurements of monoamine oxidase activity using 14C-labeled biogenic amines are described. Km data for tyramine, dopamine, tryptamine, and serotonin for monoamine oxidase activity of rabbit brain mitochondria are reported. Rates of product formation from [14C]tyramine are compared with polarographic measurements of oxygen utilization using purified MAO and intact mitochondria from rabbit liver and brain. Difficulties in comparative measurements of monoamine oxidase activity and some reasons for wide variations in published data are discussed.  相似文献   

3.
DETERMINATION of homovanillic acid (HVA) and 5-hydroxy-indole acetic acid (5HIAA) in human lumbar cerebrospinal fluid (CSF) is becoming an important tool in the study of the metabolism in the brain of their respective precursors, dopamine and 5-hydroxytryptamine and in the interpretation of the effects of drugs on these substances. The assumption that the concentration of the acidic metabolites HVA and 5HIAA in the lumbar CSF gives a measure of the amount of turnover of the parent amines in the brain is supported by several findings. (1) Amine metabolite concentrations in the lateral ventricular CSF of the dog correlate with their concentrations in adjacent brain areas1. (2) Peripherally administered HVA only penetrates slightly or not at all to lateral ventricular CSF in the cat2 or dog3, similar results being obtained for 5HIAA in the dog4. (3) Drugs which alter brain amine turnover in laboratory animals also alter the concentrations of the acidic metabolites in dog3, rabbit5 and human6 CSF in the appropriate direction. (4) In Parkinsonism and in senile and presenile dementia, conditions in which there is evidence of defective turnover of amines in the brain, low concentrations of HVA and 5HIAA are found in the CSF7.  相似文献   

4.
The administration of L-dopa to mice causes an increase in the brain concentrations of dopa and dopamine which is related temporally to a reduction in the brain concentration of 5HT. These effects occur concurrently with a reduction in the conversion of intravenously administered 3H-tryptophan to 3H-5HT without an alteration in the accumulation of 3H-tryptophan in the brain. The L-dopa-induced changes in the brain concentrations of dopa, dopamine and 5HT are not altered by pretreatment with drugs (imipramine, chlorimipramine, benztropine, cocaine) which inhibit the neuronal uptake of amines. Current evidence suggests that L-dopa is decarboxylated in 5HT neurons to dopamine, which displaces 5HT from intraneuronal storage sites.  相似文献   

5.
N5-Methyltetrahydrofolate, but not N5-formyltetrahydrofolate, can be measured in biological fluids by ligand-binding radioassay. Therefore, in order to measure N5-formyltetrahydrofolate by radioassay, it is chemically converted to N5-methyltetrahydrofolate by acidification followed by reduction with borohydride. By this method, 70–113% of N5-formyltetrahydrofolate added to serum and urine was recovered. The plasma clearance of the mixture of diastereoisomer of N5-formyltetrahydrofolate (Leucovorin) following intravenous administration to two normal subjects was rapid for the first 30 min, but then plateaued and cleared very slowly over the next 90 min, most probably because of the accumulation of the inactive isomer which was slowly excreted in the urine during this time period.  相似文献   

6.
Several new 99mTc aminodithiols were prepared and evaluated comparatively in experimental animals. The ligands were diamine, triamine or tetramine dithiols. Substituents were either attached on one of the nitrogens or introduced in between the two nitrogens of diamino dithiol (DADT) backbone. 99mTc-derivatives prepared by coupling DADT to secondary amines via ethylene group showed in mice high initial brain uptake and significant retention in brain tissue. These preparations were mixtures of more than one 99mTc-complex differing in brain uptake and clearance from the brain. The highest brain retention (brain to blood ratio 2.53, 15 min p.i.) was achieved with the 99mTc-complex prepared by coupling DADT with ethylene pyrrolidine. Lengthening the chain between the nitrogens of DADT moiety by introducing methyl or amino alkyl groups resulted in 99mTc-complexes with poor brain accumulation.  相似文献   

7.
A simple radioassay for dihydroorotate dehydrogenase (DHO-DHase; EC 1.3.3.1) has been developed. l-[carboxy-14C]Dihydroorotate was prepared from [carboxy-14C]orotic acid using DHO-DHase derived from Zymobacterium oroticum and was purified by elution from DEAE-Sephadex A-25 with 0.2 m ammonium formate, pH 7. DHO-DHase activity in human spleen mitochondria was determined by the release of 14CO2 from the carboxy-14C-labeled l-dihydroorotate, the reaction being coupled with added orotate phosphoribosyltransferase and orotidylate decarboxylase. An apparent Km value of ~5 μm for l-dihydroorotate was established using the radioassay. This value correlated well with results from other methods.  相似文献   

8.
Regulation of catecholamine synthesis in rat brain synaptosomes   总被引:9,自引:9,他引:0  
Abstract— Catecholamine synthesis in synaptosomal preparations of rat striatum, cortex and brain stem was investigated. The striatum had much higher activity than either the cortex or brain stem. Equilibration of labelled tyrosine between tissue and incubation medium was completed within 2 min. The apparent Km of tyrosine hydroxylase (EC 1.14.3a) and of the overall catecholamine synthetic pathway were both approximately 5 ± 10?6m for tyrosine. The following amines were found to inhibit striatal dopamine synthesis: dopamine, 25% inhibition at 5 ± 10?7m ; noradrenaline, 25% inhibition at 5 ± 10?6m ;and serotonin, 30% inhibition at 10?5m . The catecholamine-induced inhibition of synthesis was antagonized by pre-incubation with cocaine. Increasing the potassium concentration from 5 to 55 mm caused a release of amines into the medium which was accompanied by a 40% increase in dopamine synthesis, when synthesis was measured during the first 5 min of exposure to elevated potassium. These results indicate that synaptosomal catecholamine synthesis is inhibited by increases in intra-synaptosomal amine levels, and that short-term exposure to depolarizing concentrations of potassium can increase synthesis.  相似文献   

9.
The hydroxylated phenylethylamines p-tyramine, m-tyramine, octopamine, metaraminol and norepinephrine were accumulated by homogenates of rat brain much more vigorously than β-phenethylamine or amphetamine. The affinity concentrations (Km) for initial (5-min) uptake by homogenates of whole brain were 0.5, 3 and 6 μM for DL-norepine-phrine, p-tyramine and DL-octopamine, respectively. The uptake of these three hydroxylated compounds was much more vigorous in striatal tissue than in cortical tissue, and in both tissues the rate of uptake decreased in the sequence: norepinephrine > tyramine > octopamine. The uptake of these three substances was inhibited by reduced temperature, by lack of glucose, by CN- and DNP, and by desmethylimipramine, cocaine and ouabain. The uptake of norepinephrine and octopamine appeared to require Na+. Pretreatment of rats with reserpine or 6-hydroxydopamine decreased the ability of brain to take up norepinephrine or octopamine. Previously accumulated labelled phenylethylamines migrated in sucrose density gradients with a peak of radioactivity corresponding to an equilibrium position of catecholamine-containing nerve endings. The magnitude of the retention of [3H]amine in this synaptosornal peak decreased in the order: norepinephrine > octopamine > tyramine. The accumulated amines were released by sonic, osmotic and thermal stresses which disrupt neuronal membranes. The presence of a β-hydroxyl group appeared to protect amines from destruction by monoamine oxidase, presumably by virtue of uptake in presynaptic storage vesicles. During superfusion, tyramine and metaraminol appeared to displace [3H]norepinephrine from binding sites in brain slices.  相似文献   

10.
In an effort to understand the role of biogenic amines in insect development, changes in the levels of octopamine (OA), dopamine (DA), epinephrine (E), norepinephrine (NE), and serotonin (5-HT) in the brain, the optic lobes and the haemolymph of different developmental stages of Acherontia styx were analyzed using HPLC with electrochemical detector. In the brain, OA was the most abundant monoamine. DA, OA, and E levels in larvae peaked around the wandering stage (W). A dramatic increase in DA, 5-HT, and E levels was observed in the brain of the adult as compared to the pupal stage. NE, however, was not detected in the brain of most stages of the insect, except in the brain of 20-day-old pupae and adults. A 3-fold increase in OA levels was observed in the optic lobes of the adult as compared to late pupal stage. No changes were observed for E, DA, and 5-HT. NE was not detected in the optic lobes. In the haemolymph of 5th instar larvae, OA was also the most abundant amine. Both DA and OA peaked prior to the onset of the W stage. In contrast, E and NE concentrations decreased with development of the 5th instar larvae. 5-HT was not detected in the haemolymph. Finally, different profiles for amine levels were observed for the two forms of the 5th instar larvae (green vs brown). These results are interpreted in the light of the role of biogenic amines and their relation to development in the nervous system of lepidopteran insects.  相似文献   

11.
A method for radiolabeling marine bacteria with d-[U-14C] glucose and a radiotracer method for measuring ingestion and metabolism of bacterial biomass by ciliated protozoa and other microzooplankton are presented. Problems associated with using live bacterial tracers, i.e., label retention, label recycling, tracer cell size and morphology, and intracellular distribution of label are evaluated.Bacterioplankton assemblages collected from field samples incorporated and retained label as efficiently as coastal isolates which were selected for glucose incorporation. Under grazing experimental conditions, labeled bacteria retained a high proportion of the label (hourly net loss = 1.2%). Bacterial recycling of released dissolved organic 14C (DO14C) was 0–2.2% of total 14C per h. Addition of labeled assemblages to nearshore water samples did not detectably alter mean cell size or size frequency distribution of the attendant bacterioplankton assemblages.In grazing experiments with cultured ciliates (Euplotes sp. and Uronema sp.), radioassay parameters varied as direct functions of predator and prey concentrations. Microautoradiographic analysis corroborated that 14C incorporation measured in the radioassay by filtration techniques primarily represented ingested bacterial biomass and that problems associated with attached and adsorbed labeled bacteria were minimized. Grazing experiments conducted with bacteria labeled with [U-14C]glucose yielded ingestion rates comparable to bacteria labeled with [U-14C]thymidine and additionally provided respiration and exudation rates.  相似文献   

12.
Investigations have been carried out on regional and developmental variations in the properties of adenylate cyclase systems in participate preparations from rat brain. EGTA was routinely included in the assay medium to minimize differences in the state of activation of these systems resulting from variations in their exposure to endogenous Ca2+. At birth, adenylate cyclase activity was much higher in the hindbrain-medullary preparations than in comparable fractions from cerebellum, cerebral cortex or subcortex (including midbrain, corpus striatum, hypothalamus and hippocampus). Adenylate cyclase activity increased during early development in preparations from all areas of the brain. Maximal levels were reached at 14 days of age or later. These levels were not greatly altered in the young adult animal, except in the hindbrain-medullary area, where a decrease in activity was observed. Adenylate cyclase systems in cerebral cortical and subcortical preparations were activated by norepinephrine and dopamine throughout development. Serotonin also stimulated adenylate cyclase activity in these preparations from young animals but was much less effective in comparable fractions from adult rats. The response to dopamine was diminished with age in cerebral cortical preparations, but not in subcortical fractions. The responses to norepinephrine increased in both brain regions during early development. Adenylate cyclase systems in particulate preparations from the cerebellum and hindbrain-medullary areas exhibited relatively poor responses to the biogenic amines. Detailed studies of the properties of the cerebral cortical adenylate cyclase systems revealed enhancement of activity by Ca2+ and F? at all stages of development with the maximal activation at 2–3 weeks of age. The results suggest that developmental differences in hormonal sensitivity of adenylate cyclase systems from diverse areas of the brain are related to changes in the proportions of the receptor-enzyme complexes responsive to the different biogenic amines.  相似文献   

13.
Abstract— The thermodynamic stabilities of the coordinate binding of Cu2+ ion with adenosinetriphos-phate (ATP) and several biogenic amines have been determined in aqueous model systems in an attempt to examine the possible correlation between metal-amine binding and the in vivo affinities of the amines for granule-binding. In each of the ternary chelate systems consisting of Cu2+-ATP-amine (1:1:1), the Cu2+ ion is preferentially bound by ATP in the pH range 3–5 with a stability constant of Log KML= 517. In the pH range 5–8 each of the biogenic amines coordinates with Cu2+ -ATP chelate to form the respective ternary chelate. The nature and strength of binding of fourteen different amines with Cu2+-ATP have been evaluated on the basis of the stabilities of the ternary chelates. On the basis of the quantitative equilibrium data generated in this study, it appears that both pyrocatechol moiety and the ethanolamine side-chain of the catechol amines are involved in the coordination of copper. The metal-binding stabilities of the biogenic amines are then correlated with the molecular structure, donor basicities and the in vivo affinities of the amines for granule-binding in order to rationalize the possible involvement of metal chelates in the monoamine binding, storage and transport.  相似文献   

14.
The effects of central (intracerebroventricular, 9 g fish–1) and peripheral (intraperitoneal, 4 mg kg–1) administration of bovine insulin, as well as the effect of hyperglycemia (oral administration of 1 g glucose fish–1) and brain glucodeprivation (intracerebroventricular administration of 2-deoxy-D-glucose) on food intake and levels of brain (telencephalon, preoptic area, and hypothalamus) biogenic amines (serotonin, dopamine, noradrenaline and their metabolites 5-hydroxyindoleacetic acid, and dihydroxyphenylacetic acid) were assessed on rainbow trout (Oncorhynchus mykiss). Treatment with insulin inhibited food intake after 26 or 52 h of administration, central or peripheral, respectively. This effect was still apparent after 74 h of central treatment. When assessing changes in the levels of biogenic amines after 26 h of central insulin administration, there was a significant increase in the levels of 5-hydroxyindoleacetic acid, and in the ratio of dihydroxyphenylacetic acid/dopamine of insulin-treated fish, in telencephalon and hypothalamus, respectively. These results suggest that peripherally administered insulin is involved in a feedback regulatory loop with food intake and body weight. Moreover, at least part of the effects of insulin could be mediated by hypothalamic dopaminergic activity. The strong hyperglycemia induced by oral administration of glucose did not induce significant changes either on food intake (control versus treated), or in brain levels of biogenic amines. The intracerebroventricular administration of 2-deoxy-D-glucose induced an increase in food intake without altering plasma glucose levels, suggesting that fish brain possesses a control system for detecting hypoglycemia in plasma and therefore keep brain glucose levels high enough for brain function.Abbreviations 2-DG 2 Deoxy-D-glucose - 5-HIAA 5-Hydroxyindoleacetic acid - 5-HT 5-Hydroxytryptamine or serotonin - DA Dopamine - DOPAC Dihydroxyphenylacetic acid - EDTA Ethylenediaminetetraacetic acid - FI Food intake - HPLC High pressure liquid chromatography - icv Intracerebroventricular - i.p. Intraperitoneal - MS 222 3-Aminobenzoic acid ethyl esther methanesulfonate salt - NA Noradrenaline  相似文献   

15.
A radioassay has been developed to quantify the uptake and initial metabolism of adenosine (Ado) or deoxyadenosine (dAdo) by human erythrocytes. Cell suspension and [3H]Ado are mixed at 3-s intervals with a novel dual-syringe apparatus, and uptake and metabolism of Ado is stopped by centrifuging the cells through a dibutylphthalate layer into perchloric acid. The neutralized cell extract is analyzed by two-dimensional chromatography on poly(ethyleneimine)-cellulose plates by two procedures using combinations of solvents optimised for the separation of nucleosides and nucleobases, and for nucleotides derived from the exogenous [3H]Ado.  相似文献   

16.
Disposition of fucose in brain   总被引:6,自引:4,他引:2  
Abstract— Labelled fucose administered to rats in vivo was rapidly incorporated into brain glycoproteins, but not into any other brain constituents, including glycolipids and acid mucopolysaccharides. Maximum incorporation of tritium-labelled fucose into brain glyco-proteins occurred 3–6 h after intraperitoneal injection in young or adult rats, and the half-time for the turnover of glycoprotein-fucose in young rats was approximately 2 weeks. Within 3 h after the administration of either [1-3H]fucose or fucose generally labelled with tritium, 75 per cent of the total acid-soluble radioactivity in plasma and brain was found to be volatile, and by 24 h after injection more than 90 per cent of the acid-soluble radioactivity was volatile. The tritium in labelled fiicose appears to undergo arapid exchange reaction with hydrogen atoms in body water, although the tritium in fucose glycosidically- linked to glycoproteins is biologically stable. The rapid disappearance of labelled free fucose from the plasma and tissues of the rat precludes the possibility of any significant degree of reutilization of labelled precursor, and provides support for other data indicating that the turnover of fucose in brain glycoproteins is relatively slow in comparison to that of hexosamine and sialic acid. Activities of α-L-fucosidase in rat brain, with pH optima at 40 and 6.0, had essentially the same Km (4 × 10?4 M and 3.2 × 10?4 M, respectively) with p-nitrophenyl-α-L-fucopyranoside as substrate. Activities of both were competitively inhibited by L-fucose. However, the Kt measured at pH 4 (1.9 × 10?2) was almost ten times greater than that measured at pH 6 (1.5 × 10?4).  相似文献   

17.
A radioassay for the rapid determination of GM1, ganglioside concentration in small volumes of CSF from individual patients is described. The assay utilizes the high-affinity interaction between cholera enterotoxin and GM1 ganglioside. The lower detection limit of GM1 ganglioside by this radioassay under the described incubation conditions is 2.5 ng/ml. The radioassay-determined lumbar CSF GM1 ganglioside concentrations in a small group of patients with diverse neurologic disorders are presented. The radioassay GM1 ganglioside concentration is in good agreement with the GM1 ganglioside concentration determined, in one patient, by the tlc-densitometry technique.  相似文献   

18.
Isotope dilution analysis, using a probe of 35S-labeled BaSO4, is proposed for the determination of sulfate in hydrolysates of glycoproteins and other glycoconjugates. A scaled-down version of the method of Klockow is presented. A modified radioassay in strongly acidic conditions, effective in the range of 0.5 to 10 nmol sulfate per sample, has been developed.  相似文献   

19.
Abstract— Radioactive hydroxylated phenylethylamines were released in vitro by electrical stimulation of minces of brain tissues from several anatomically discrete areas, while labelled urea and amphetamine were poorly released from all regions. Release of [3H]norepinephrine occurred in the order hypothalamus > caudate nucleus ≥ cerebral cortex, thus in parallel with the distribution of endogenous norepinephrine. In contrast, [3H]tyramine was poorly released from cortical tissues but readily released from minces of caudate nucleus or hypothalamus. [3H]Octopamine was released from all areas, but was most readily released from thecaudatenucleus. Results for cerebral cortex were similar to those for coronal slices or minces of whole brain; release occurred in the order: norepinephrine > octopamine > tyramine in all three preparations. We suggest that certain β-hydroxylated phenolic phenylethyl-amines may be released from norepinephrine- or dopamine-containing nerve endings in the brain, and that their non-β-hydroxylated congeners may be released from neurons in which endogenous amines are not β-hydroxylated.  相似文献   

20.
A purification procedure for rat and mouse brain histamine N-methyltransferase (HMT, EC 2.1.1.8) is described which achieves the preparation of 87-fold purified rat brain and 166-fold purified mouse brain enzyme. The purified HMT (MW 29,000) is inhibited by a number of physiologically and pharmacologically active amines, among them several methylated indoleamines, at concentrations above 5 ± 10-6M. At concentrations below 1 ± 10-7M, most of the methylated indoleamines stimulate HMT , provided histamine is maintained at, or close to, its optimal concentration as an HMT substrate, namely 1 ± 10-5M. A study of the nature of the inhibitory process revealed a non-competitive inhibition of HMT by dopamine as against a competitive inhibition of the enzyme by most methylated indoleamines. Increasing the concentration of histamine beyond the optimal value, i.e. to inhibitory levels, resulted in less stimulation. The findings support the notion that MSO elicits the formation in selected brain cells of supranormal amounts of several methylated indoleamines which are able to stimulate HMT (and possibly other methyltransferases, see Salas et al., 1977), thereby causing the depletion of the cerebral levels of S-adenosyl-L-methionine, reported previously (Schatz & Sellinger , 1975b).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号