首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The thickness of soft tissues over the sacrum of elderly hospital in-patients has been measured using B-mode ultrasound. Forty patients were scanned, of which nine had recognizable superficial pressure sores at the sacrum. No correlation was found between the depth of soft tissue and either age or Norton score. Patients with sores had less soft tissue over the sacrum (p < 0.025). Excluding one patient whose sacral sore appeared to be the final stage of the healing process, the remaining eight all had less than 8.5 mm of sacral soft tissue cover. Five patients without sacral sores also had less than 8.5 mm of sacral soft tissue cover. However, a combination of the presence of incontinence and the depth of sacral soft tissue cover identified seven of the eight patients with sacral sores with no inclusion of patients without sores.  相似文献   

2.
Falls on the outstretched hands are the cause of over 90% of wrist fractures, yet little is known about bone loading during this event. We tested how the magnitude and distribution of pressure over the palm region during a forward fall is affected by foam padding (simulating a glove) and arm configuration, and by the faller's body mass index (BMI) and thickness of soft tissues over the palm region. Thirteen young women with high (n=7) or low (n=6) BMI participated in a "torso release experiment" that simulated falling on both outstretched hands with the arm inclined either at 20° or 40° from the vertical. Trials were acquired with and without a 5 mm thick foam pad secured to the palm. Outcome variables were the magnitude and location of peak pressure (d, θ) with respect to the scaphoid, total impact force, and integrated force applied to three concentric areas, including "danger zone" of 2.5 cm radius centered at the scaphoid. Soft tissue thickness over the palm was measured by ultrasound. The 5mm foam pad reduced peak pressure, and peak force to the danger zone, by 83% and 13%, respectively. Peak pressure was 77% higher in high BMI when compared with low BMI participants. Soft tissue thickness over the palm correlated positively with distance (d) (R=0.79, p=0.001) and force applied outside the danger zone (R=0.76, p=0.002), but did not correlate with BMI (R=0.43, p=0.14). The location of peak pressure was shunted 4 mm further from the scaphoid at 20° than that of 40° falls (d=25 mm (SD 8), θ=-9° (SD 17) in the 20° falls versus d=21 mm (SD 8), θ=-5° (SD 24) in the 40° falls). Peak force to the entire palm was 11% greater in 20° compared with 40° falls. These results indicate that even a 5 mm thick foam layer protects against wrist injury, by attenuating peak pressure over the palm during forward falls. Increased soft tissue thickness shunts force away from the scaphoid. However, soft tissue thickness is not predicted by BMI, and peak pressures are greater in high individuals than that of low BMI individuals. These results contribute to our understanding of the mechanics and prevention of wrist and hand injuries during falls.  相似文献   

3.
Variability of taurine (2-aminoethane sulfonic acid) was studied as a function of size in the mussel Mytilus galloprovincialis and tissue specificity. Isometric and/or allometric relationships were established with regard to total soft mass of the mussels between 20 and 60 mm shell length. Relative amounts of taurine dropped significantly with increasing mass of whole soft tissues with an allometric coefficient value of -0.15. The inverse relationship between taurine and increasing size of mussels was confirmed for gill epithelium and labial palp (allometric coefficient values of -0.16 and -0.10, respectively), tissues that, in turn, represented isometric functions with regard to total soft mass. Although relative amounts of taurine were significantly different in digestive gland, mantle and foot, relationships with increasing size of mussels remained unchanged in these tissues. Gill area of mussels was related to soft mass with an allometric coefficient of 0.70 by 2D Image Analysis, but increased to 0.85 when introducing a third dimension, i.e. gill thickness. Results are discussed according to gill structure analysis and taurine functionality.  相似文献   

4.
软组织厚度作为颅骨面貌复原的基础, 具有重要的应用价值。本文借助计算机技术对西安地区132例成年人颅面数据样本开展软组织测量、分析及应用研究, 结果表明, 1)通过分析特征点处软组织厚度和面部软组织分布图, 发现面部软组织分布具有一定的规律, 额头区域软组织厚度薄且样本间差异小, 脸颊区域软组织厚且样本间差异大; 2)通过比较不同年龄段男性软组织厚度的均值, 发现20-30岁阶段软组织厚度均值最小, 50-60岁阶段软组织厚度均值其次, 30-40岁阶段软组织厚度均值最大, 但30-40岁和40-50岁两个年龄段的软组织厚度近似; 通过比较不同年龄段女性软组织厚度的均值, 发现20-30岁阶段软组织厚度均值最小, 30-40岁阶段软组织厚度均值其次, 40-50岁阶段的软组织厚度均值最大; 3)特征点处软组织厚度标准差可以反映面貌体态的差异, 因此根据10个脸颊特征点的软组织厚度均值和标准差实现面貌体态分类; 4)根据不同性别、年龄、体态对应的软组织平均厚度, 应用计算机技术实现给定颅骨的三维面貌复原, 复原结果相比于传统手工复原的结果更加科学。  相似文献   

5.
Modeling human-object interactions is a necessary step in the ergonomic assessment of products. Fingertip finite element models can help investigating these interactions, if they are built based on realistic geometrical data and material properties. The aim of this study was to investigate the fingertip geometry and its mechanical response under compression, and to identify the parameters of a hyperelastic material property associated to the fingertip soft tissues.Fingertip compression tests in an MRI device were performed on 5 subjects at either 2 or 4 N and at 15° or 50°. The MRI images allowed to document both the internal and external fingertip dimensions and to build 5 subject-specific finite element models. Simulations reproducing the fingertip compression tests were run to obtain the material property parameters of the soft tissues.Results indicated that two ellipses in the sagittal and longitudinal plane could describe the external fingertip geometry. The internal geometries indicated an averaged maximal thickness of soft tissues of 6.4 ± 0.8 mm and a 4 ± 1 mm height for the phalanx bone. The averaged deflections under loading went from 1.8 ± 0.3 mm at 2 N, 50° to 3.1 ± 0.2 mm at 4 N, 15°. Finally, the following set of parameters for a second order hyperelastic law to model the fingertip soft tissues was proposed: C01 = 0.59 ± 0.09 kPa and C20 = 2.65 ± 0.88 kPa.These data should facilitate further efforts on fingertip finite element modeling.  相似文献   

6.
The posterior mandible begins just behind the mental nerve and second bicuspid bilaterally, extends to the posterior edge of the ramus, and then runs superiorly to the zygomatic arch. Augmentation of the posterior mandible is possible by use of a synthetic implant that is tailored individually to each patient's specific needs. Implant plant thickness varies from 4 to 8 mm, with an average thickness of 6 mm. Careful preoperative planning is done based on an aesthetic assessment of the amount of highlighting desired, thickness of the soft tissues, and the use of life-size photographs and cephalometric and Panorex x-rays. A pattern is cut, and the implant is carved to fit the patient. Insertion of the material after careful tailoring to the individual patient's own mandibular size and configuration requires a generous posterior lower buccal sulcus incision. Antibiotic irrigation and systemic antibiotics are essential, and careful closure in two layers completes the procedure. One implant in the series extruded in a patient who had had radiation therapy, and one patient required repositioning of the implant. Otherwise, in 22 patients there were no infections or permanent morbidity. The procedure seems to be a realistic and safe one for both the youthful and aging face, as demonstrated in patients in this series, with ages varying from 16 to 40 years.  相似文献   

7.
Elastohydrodynamic lubrication (EHL) protects soft tissues from damage and wear in many biological systems (e.g. synovial joints, cornea of the eye, and pleural surfaces of the lung and chest wall). Among studies of lubrication of deformable solids, few have examined the effects of external loads, geometry, and material properties on EHL of soft tissues. To examine these effects, we studied the tribology of soft tissues in a two-dimensional finite element simulation of a thin layer of fluid separating a sliding rigid surface from a soft asperity or bump with an initial sinusoidal shape. We computed the frictional force, deformation of the solid, and change in fluid thickness as functions of independent variables: sliding velocity, normal load, material properties, and bump amplitude and length. Double-logarithmic regression was used to determine the exponents of the scaling relationships of friction coefficient and minimum fluid thickness to the independent variables. The analysis showed that frictional shear force is strongly dependent on velocity, viscosity, and load, moderately dependent on bump length and elasticity, and only weakly dependent on the bump amplitude. The minimum fluid thickness is strongly dependent on velocity and viscosity, and changes moderately with load, elasticity, amplitude, and length. The shape of the bump has little effect. The results confirm that the shear-induced deformation of an initially symmetrical shape, including generalizations to other symmetrical geometries such as quadratic or piecewise linear bumps, leads to load-supporting behavior.  相似文献   

8.
Background: The effect of different mucosa characteristics on stress distribution of complete dentures and overdentures remains unknown. Objective: The aim of this study was to evaluate the effect of different mucosa thickness and resiliency on the stress distribution of complete dentures and implant‐retained overdentures using a two‐dimensional finite element analysis. Material and methods: Representative models of the edentulous mandible were constructed on AutoCAD software according to the groups’ characteristics. In group CD, a model of the edentulous mandible supporting a complete denture was obtained while in group IO, a model of edentulous mandible supporting an overdenture over two unsplinted implants with an o’ ring system was constructed. In each group, mucosa assumed three characteristics of thickness (1, 3 and 5 mm) corresponding to the resiliencies hard, resilient and soft respectively. Evaluation was performed on Ansys software with 100N vertical load applied on central incisor teeth. The principal stress was used as analysis criteria. Results: Group IO showed higher stress values than group CD regardless of mucosal thickness and resiliency. Stress decreased at the supporting tissues in both groups as the thickness and resiliency of mucosa increased. In relation to the supporting tissues, cortical bone showed the highest stress values. Conclusion: It was concluded that the use of an attachment system increases stress values and the thickness and resiliency of mucosa influence more on these values.  相似文献   

9.
The average thickness of soft tissues on parts of the face is known, but its variation has not been related to cranial morphology. To investigate this relationship, measurements of facial soft-tissue depths and craniometric dimensions were taken on adult, white Australian cadavers (17 male and 23 female). Significant correlations between many soft-tissue depths and craniometric dimensions were found, suggesting a relationship between the amount of soft tissue present on the face and the size of the underlying bony skeleton. Soft-tissue depths were highly positively correlated with each other; craniometric dimensions were correlated but to a lesser extent. Males had thicker soft tissues and larger craniometric dimensions than females; considerable overlap of ranges was also noted. Multiple regression analysis was used to produce equations predicting the soft-tissue depth at specified areas of the face from craniometric dimensions. A subsample of nine cadavers was examined for the effects of tissue embalming. Embalming caused significant initial increases in facial soft-tissue depths. Cadavers embalmed for less than 6 months had soft-tissue depths significantly greater than for fully embalmed cadavers. The evidence that facial soft-tissue thicknesses vary with craniofacial dimensions has implications for forensic identification, facial aesthetic surgery, and approximation of the facial features of extinct individuals.  相似文献   

10.
洛南盆地的大型石刀   总被引:4,自引:1,他引:3  
以大型石片为毛坯加工而成的修背石刀是非洲大陆旧石器时代早期阿舍利石器工业中较为常见的器物之一,在中国旧石器时代早期遗址中未见报道。1995年春夏之交至2004年2月,在位于陕西省秦岭山地东部的洛南盆地南洛河上游干流及其支流两侧阶地共发现旷野类型旧石器地点268处,获得各类石制品13 581件,从中甄别出大型石刀24件,本文对这类器物的涵义进行了界定,探讨了其加工制作的方式,比较了大型石刀与薄刃斧以及重型刮削器之间的异同,并以此为基础对洛南盆地19处旷野类型旧石器地点中所发现的大型石刀进行了系统研究。  相似文献   

11.
A precise information of the biomechanical properties of soft tissues is required to develop a suitable simulation model, with which the distribution of stress and strain in the complex structures can be estimated. Many soft tissues have been mechanically characterized by stress relaxation tests under unconfined or confined compression. In general, full-thickness samples are extracted to reduce the damage in the tissue as much as possible. However, it is not guaranteed that these samples have a uniform thickness or, in other words, planar parallel faces. In particular, in the articular disc of the temporomandibular joint, many studies can be found testing full-thickness samples for which that thickness is known to be non-uniform, while making the assumption of uniaxial stress state to extract the mechanical properties from those tests. That inaccuracy may have a strong influence in some cases and needs a profound revision. The main goal of this work is to quantify the error committed in that assumption and the influence of the variation of thickness on that error in a particular test: stress relaxation tests under unconfined compression. Based on this error and defining an allowable tolerance, a criterion is established to reject samples depending on their aspect ratio.  相似文献   

12.
Pham A  Hull ML 《Journal of biomechanics》2007,40(14):3223-3229
When used in in vitro studies, soft tissues such as the meniscus and articular cartilage are susceptible to dehydration and its effects, such as changes in size and shape as well as changes in structural and material properties. To quantify the effect of dehydration on the meniscus and articular cartilage, the first two objectives of this study were to (1) determine the percent change in meniscal dimensions over time due to dehydration, and (2) determine the percent change in articular cartilage thickness due to dehydration. To satisfy these two objectives, the third objective was to develop a new laser-based three-dimensional coordinate digitizing system (3-DCDS II) that can scan either the meniscus or articular cartilage surface within a time such that there is less than a 5% change in measurements due to dehydration. The new instrument was used to measure changes in meniscal and articular cartilage dimensions of six cadaveric specimens, which were exposed to air for 120 and 130 min, respectively. While there was no change in meniscal width, meniscal height decreased linearly by 4.5% per hour. Articular cartilage thickness decreased nonlinearly at a rate of 6% per hour after 10 min, and at a rate of 16% per hour after 130 min. The system bias and precision of the new instrument at 0 degrees slope of the surface being scanned were 0.0 and 2.6 microm, respectively, while at 45 degrees slope the bias and precision were 31.1 and 22.6 microm, respectively. The resolution ranged between 200 and 500 microm. Scanning an area of 60 x 80 mm (approximately the depth and width of a human tibial plateau) took 8 min and a complete scan of all five sides of a meniscus took 24 min. Thus, the 3-DCDS II can scan an entire meniscus with less than 2% change in dimensions due to dehydration and articular cartilage with less than 0.4% change. This study provides new information on the amount of time that meniscal tissue and articular cartilage can be exposed to air before marked changes in size and shape, and possibly biomechanical, structural and material properties, occur. The new 3-DCDS II designed for this study provides fast and accurate dimensional measurements of both soft and hard tissues.  相似文献   

13.
A study has been made of the electrical responses to direct stimulation of the exposed cerebral cortex of cats that had been immobilized with neuromuscular blocking drugs, and whose muscle and skin wounds had been locally anesthetized. The characteristics and spread of the first and second surface-negative responses are described. It was found that the first surface-negative response to weak stimuli decays linearly to zero at 3 to 6 mm. from the point of stimulation. Intermediate stimuli cause farther and non-linear spread: responses are re-initiated, or reinforced, at 6 to 10 mm.; and supramaximal stimulation produces reinforcement both at 5 and at 10 mm. The conduction velocity of these responses is uniform for linear spread (0.7 to 2.0 m./sec.), but reinforced responses occur 1 to 3 msec. earlier than would be expected for simple conduction. The phenomenon of re-initiation, or reinforcement, depends upon the excitatory state of the brain; circulation and previous stimulation are important factors. Connections outside the gyrus matter only in so far as they provide other sources of general excitation. It is concluded that two types of transmission: slow and fast, can lead to generation of similar surface-negative responses. The suggestion is made that the slowly conducted surface-negative potentials are due to direct or to synaptic excitation of pyramidal cells; while the responses with shortened latency are initiated synaptically on other pyramidal cells after fast conduction at about 10 m./sec. in tangential fibres.  相似文献   

14.
Abstract

Extant eutherians exhibit a wide range of adult brain sizes and degree of cortical gyrification. Quantitative analysis of parietal isocortical sections held in museum collections was used to compare the pace of somatosensory cortex development relative to body size and pallial thickness among diverse eutherian embryos, foetuses, and neonates. Analysis indicated that, for most eutherians, cortical plate aggregation begins at about 6–18?mm greatest length or about 120–320?µm pallial thickness. Expansion of the proliferative compartment occurs at a similar pace in most eutherians, but exceptionally rapidly in hominoids. Involution of the pallial proliferative zones occurs over a wide range of body sizes (42?mm to over 500?mm greatest length) or when the cerebral cortex reaches a thickness of 1.2–9.8?mm depending on the eutherian group. Many of these values overlap with those for metatherians. The findings suggest that there is less evolutionary flexibility in the timing of cortical plate aggregation than in the rate of expansion of the pallial proliferative compartment and the duration of proliferative zone activity.  相似文献   

15.

Background

Mineralized and permineralized bone is the most common form of fossilization in the vertebrate record. Preservation of gross soft tissues is extremely rare, but recent studies have suggested that primary soft tissues and biomolecules are more commonly preserved within preserved bones than had been presumed. Some of these claims have been challenged, with presentation of evidence suggesting that some of the structures are microbial artifacts, not primary soft tissues. The identification of biomolecules in fossil vertebrate extracts from a specimen of Brachylophosaurus canadensis has shown the interpretation of preserved organic remains as microbial biofilm to be highly unlikely. These discussions also propose a variety of potential mechanisms that would permit the preservation of soft-tissues in vertebrate fossils over geologic time.

Methodology/Principal Findings

This study experimentally examines the role of microbial biofilms in soft-tissue preservation in vertebrate fossils by quantitatively establishing the growth and morphology of biofilms on extant archosaur bone. These results are microscopically and morphologically compared with soft-tissue extracts from vertebrate fossils from the Hell Creek Formation of southeastern Montana (Latest Maastrichtian) in order to investigate the potential role of microbial biofilms on the preservation of fossil bone and bound organic matter in a variety of taphonomic settings. Based on these analyses, we highlight a mechanism whereby this bound organic matter may be preserved.

Conclusions/Significance

Results of the study indicate that the crystallization of microbial biofilms on decomposing organic matter within vertebrate bone in early taphonomic stages may contribute to the preservation of primary soft tissues deeper in the bone structure.  相似文献   

16.
Although lateral retinacular releases are not uncommon, there is very little scientific knowledge about the properties of these tissues, on which to base a rationale for the surgery. We hypothesised that we could identify specific tissue bands and measure their structural properties. Eight fresh-frozen knees were dissected, and the lateral soft tissues prepared into three distinct structures: a broad tissue band linking the iliotibial band (ITB) to the patella, and two capsular ligaments: patellofemoral and patellomeniscal. These were individually tensile tested to failure by gripping the patella in a vice jaw and the soft tissues in a freezing clamp. Results: the ITB–patellar band was strongest, at a mean of 582 N, and stiffest, at 97 N/mm. The patellofemoral ligament failed at 172 N with 16 N/mm stiffness; the patellomeniscal ligament failed at 85 N, with 13 N/mm stiffness. These structural properties suggest that most of the load in-vivo is transmitted to the patella by the transverse fibres that originate from the ITB.  相似文献   

17.
Abstract

Despite many reports concerning processing of ancient soft tissues, scant attention has been paid to optimizing procedures for processing soft tissues that have been altered by taphonomic processes. To determine the best procedures, we investigated the rehydration solution, time of exposure to the solutions, fixative solution and exposure to heat. Processes were evaluated based on the minimum section thickness, degree of tissue fragmentation, definition of tissue architecture and penetration of stains. We found that in desiccated samples, tissue architecture was optimized by using Ruffer's solution for rehydration and Schaffer's solution as fixative, because these tissues require water restoration within the tissues due to their compacted character. Heating enhanced penetration of dyes in these specimens, which improved diagnosis. Saponified tissues that had suffered extensive decomposition were more labile and required slow water uptake. The best histological sections were obtained using Sandison's solution followed by fixation with formaldehyde and avoiding heat. To obtain the best results with paleohistological specimens, the procedure must be determined by the condition of the sample and by accounting for the nature of its damage.  相似文献   

18.
Interfaces between different tissues play an essential role in the biomechanics of native tissues and their recapitulation is now recognized as critical to function. As a consequence, imaging the hard/soft tissue interface has become increasingly important in the area of tissue engineering. Particularly as several biotechnology based products have made it onto the market or are close to human trials and an understanding of their function and development is essential. A range of imaging modalities have been developed that allow a wealth of information on the morphological and physical properties of samples to be obtained non-destructively in vivo or via destructive means. This review summarizes the use of a selection of imaging modalities on interfaces to date considering the strengths and weaknesses of each. We will also consider techniques which have not yet been utilized to their full potential or are likely to play a role in future work in the area.  相似文献   

19.
Transparent human embryos and fetuses whose osseous skeletons are stained in toto by alizarin red S are successfully prepared when the KOH clearing of the soft tissues and the alizarin staining of the bones are performed simultaneously instead of independently. This modification minimizes the possibility of macerating and staining the soft tissues. Fetuses over 50 mm. CR length are skinned, eviscerated, decerebrated, defatted by dissection, fixed in 95% alcohol, bleached in H2O2, cleared and stained simultaneously in an aqueous solution of KOH (from 2% to 10% depending upon the size of the specimen) and .0001 to .00005% alizarin red S (solution has a pale lavender color). This solution is changed periodically to maintain the concentration of the KOH until the clearing of the tissues is complete and of the alizarin until the bones are properly stained. Tissues are dehydrated in increasing concentrations of glycerin and stored in white glycerin plus thymol.  相似文献   

20.
The indentation problem of a thin layer of hydrated soft tissue such as cartilage or meniscus by a circular plane-ended indenter is investigated. The tissue is represented by a biphasic continuum model consisting of a solid phase (collagen and proteoglycan) and a fluid phase (interstitial water). A finite element formulation of the linear biphasic continuum equations is used to solve an axisymmetric approximation of the indentation problem. We consider stress-relaxation problems for which analytic solution is intractable; where the indenter is impermeable (solid) and/or when the interface between the indenter and tissue is perfectly adhesive. Thicknesses corresponding to a thin and thick specimen are considered to examine the effects of tissue thickness. The different flow, pressure, stress and strain fields which are predicted within the tissue, over time periods typically used in the mechanical testing of soft tissues, will be presented. Results are compared with the case of a porous free-draining indenter with a perfectly lubricated tissue-indenter interface, for which an analytic solution is available, to show the effects of friction at the tissue-indenter interface, and the effects of an impermeable indenter. While these effects are present for both thin and thick tissues, they are shown to be more significant for the thin tissue. We also examine the effects of the stiffness of the subchondral bone on the response of the soft tissue and demonstrate that the subchondral bone substrate can be modeled as a rigid, impermeable boundary. The effects of a curved tissue-subchondral bone interface, and the early time response are also studied. For physiologically reasonable levels of curvature, we will show that the curved tissue-subchrondal bone interface has negligible influence on the tissue response away from the interface. In addition, the short-time stress-relaxation responses of the tissue (e.g., at times less than 1s) demonstrate the essential role of the fluid phase in supporting the load applied to the tissue, and by extrapolation to shorter times characteristics of normal joint motion, suggest the essential role of a biphasic model in representing soft tissue behavior in joint response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号