首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Radiation inactivation analysis was utilized to estimate the sizes of the units catalyzing the various activities of hepatic microsomal glucose-6-phosphatase. This technique revealed that the target molecular weights for mannose-6-P phosphohydrolase, glucose-6-P phosphohydrolase, and carbamyl-P:glucose phosphotransferase activities were all about Mr 75,000. These results are consistent with the widely held view that all of these activities are catalyzed by the same protein or proteins. Certain observations indicate that the molecular organization of microsomal glucose-6-phosphatase is better described by the conformational hypothesis which envisions the enzyme as a single covalent structure rather than by the substrate transport model which requires the participation of several physically separate polypeptides. These include the findings: 1) that the target sizes for glucose-6-P phosphohydrolase and carbamyl-P:glucose phosphotransferase activities were not larger than that for mannose-6-P phosphohydrolase in intact microsomes and 2) that the target size for glucose-6-P phosphohydrolase in disrupted microsomes was not less than that observed in intact microsomes. These findings are most consistent with a model for glucose-6-phosphatase of a single polypeptide or a disulfide-linked dimer which spans the endoplasmic reticulum with the various activities of this multifunctional enzyme residing in distinct protein domains.  相似文献   

2.
R C Nordlie 《Life sciences》1979,24(26):2397-2404
Glucose-6-phosphatase is a multifunctional enzyme, displaying potent ability to synthesize as well as hydrolyze Glc-6-P. These multifunctional characteristics have been exploited in studies of the extended distribution of the enzyme, and their physiological significance has been examined. The enzyme is considerably more widely distributed than previously suspected. It has been found in pancreas, adrenals, lung, testes, spleen, and brain as well as in liver, kidney, and mucosa of small intestine. Approximately 15–20% of total hepatic glucose-6-phosphatase-phosphotransferase is present in nuclear membrane, 75–80% is found in endoplasmic reticulum, and small amounts have been detected also in plasma membrane and repeatedly-washed mitochondria. Both hydrolytic and synthetic functions, in constant proportions, have been found in livers of 21 species of birds, amphibia, reptiles, crustacea, fishes, and mammals (including man) studied. With 5 mM phosphoryl donor and 100 mM D-glucose as substrates, carbamyl-P:glucose phosphotransferase activity of glucose-6-phosphatase exceeded that of glucokinase by 5–50 fold. While latencies of activities of isolated microsomal preparations are extensive, those of nuclear membranes are not. Latencies of activities of intact endoplasmic reticulum of permeable hepatocytes are 28% for Glc-6-P phosphohydrolase and 56% for carbamyl-P:glucose phosphotransferase. Studies with isolated perfused livers from fasted rats suggest rather convincingly that such phosphotransferase activities may function as an hepatic glucose-phosphorylating system supplemental to glucokinase and hexokinase. This conclusion is based both on comparisons of rates of glucose uptake with hepatic enzyme levels (glucokinase, hexokinase, phosphotransferase), and on observed inhibitibility of glucose uptake by ornithine and 3-0-methyl-D-glucose. The question of availability of adequate concentrations of suitable phosphoryl donor(s) in cytosol of the liver cell constitutes a principal focus for continuing studies regarding physiological functions of this enzyme.  相似文献   

3.
Discontinuities in Arrhenius plots occuring at 18° for both carbamyl-P:glucose phosphotransferase and glucose-6-P phosphohydrolase activities of D-glucose-6-P phosphohydrolase (EC 3.1.3.9) are either eliminated (phosphotransferase) or shifted (phosphohydrolase) by 1 mM spermidine, spermide, or putrescine. Since the observed discontinuity is due to physical changes in the microsomal membrane at 18°, alteration or elimination of the discontinuity upon the addition of polyamine is interpreted to be a result of charge neutralization occurring from the interaction of the polycation with the negative charges on the membrane surface.  相似文献   

4.
Carbamyl-P:glucose and PPi:glucose phosphotransferase, but not inorganic pyrophosphatase, activities of the hepatic microsomal glucose-6-phosphatase system demonstrate a time-dependent lag in product production with 1 mM phosphate substrate. Glucose-6-P phosphohydrolase shows a similar behavior with [glucose-6-P] less than or equal to 0.10 mM, but inorganic pyrophosphatase activity does not even at the 0.05 or 0.02 mM level. The hysteretic behavior is abolished when the structural integrity of the microsomes is destroyed by detergent treatment. Calculations indicate that an intramicrosomal glucose-6-P concentration of between 20 and 40 microM must be achieved, whether in response to exogenously added glucose-6-P or via intramicrosomal synthesis by carbamyl-P:glucose or PPi:glucose phosphotransferase activity, before the maximally active form of the enzyme system is achieved. It is suggested that translocase T1, the transport component of the glucose-6-phosphatase system specific for glucose-6-P, is the target for activation by these critical intramicrosomal concentrations of glucose-6-P.  相似文献   

5.
Copper deficiency has been reported to cause glucose intolerance in rats by interfering with normal glucose utilization. Accordingly, copper deficiency was produced in rats to study its effects on glucose-6-P phosphohydrolase and carbamyl-P: glucose phosphotransferase activities of hepatic glucose-6-phosphatase (EC 3.1.3.9), a major enzyme involved in maintaining glucose homeostasis. When measured in homogenates treated with deoxycholate, total glucose-6-P phosphohydrolase was 23% lower and total carbamyl-P:glucose phosphotransferase was 17% lower in copper-deficient rats compared to controls. Latency, or that portion of total activity that is not manifest unless the intact membranous components are disrupted with deoxycholate also was lower in copper-deficient rats. Glucose-6-P phosphohydrolase was 5% latent in copper-deficient rats compared to 24% in controls and carbamyl-P : glucose phosphotransferase was 55% latent in copper-deficient rats compared to 65% in controls. The decrease in latency appears to compensate for the lower total enzyme activities in such a manner as to allow the net expression of these activities in the intact membranous components of the homogenate to remain unaltered by copper deficiency. It thus appears unlikely that copper deficiency affects glucose homeostasis in vivo by altering the net rate of glucose-6-P hydrolysis or synthesis by glucose-6-phosphatase. These observations are interpreted on the basis of a multicomponent glucose-6-phosphatase system in which the total enzyme activity expressed in intact membranous preparation is limited by substrate specific translocases that transport substrate to the membrane-bound catalytic unit. A decrease in latency can then be interpreted as a functional increase in translocase activity and may constitute a compensating mechanism for maintaining constant glucose homeostasis when glucose-6-phosphatase catalytic activity is depressed as it is in copper deficiency.  相似文献   

6.
(1). The capacity for the synthesis of glucose 6-phosphate from PPi and glucose as well as for glucose-6-P hydrolysis, catalyzed by rat liver microsomal glucose-6-phosphatase, increases rapidly from low prenatal levels to a maximum between the second and fifth day, then slowly decreases to reach adult levels. When measured in enzyme preparations optimally activated by hydroxyl ions, the maximum neonatal activities were 4--5-fold higher than in adult animals and several-fold higher than had previously been observed for the unactivated enzyme. (2) The latencies of two catalytic activities associated with the same membrane-bound enzyme show strikingly different age-related changes. The latency of PPi-glucose phosphotransferase activity reaches high levels (60--80% latent) soon after birth and remains high throughout life, while the latency of glucose-6-P phosphohydrolase decreases with age. The phosphohydrolase is 2--3 times more latent in the liver of the neonatal animal than in the adult. (3). The well established neonatal overshoot of liver glucose-6-phosphatase is almost entirely due to changes in the enzyme in the rough microsomal membranes. The enzyme activity in the rough membrane reaches a maximum and then decreases after day 2, while that in the smooth membrane is still slowly increasing. Despite the great differences in absolute specific activities and in the pattern of early enzyme development between the rough and smooth microsomes, enzyme latency in the two subfractions remains parallel, glucose-6-P phosphohydrolase being only slightly more latent, while PPi-glucose phospho-transferase is much more latent in smooth than in rough membranes throughout life. (4). Kidney glucose-6-P phosphohydrolase and PPi-glucose phosphotransferase activities were found to change in a parallel fashion with age, showing a small neonatal peak between days 2 and 7 before rising to adult levels. Kidney phosphotransferase activity, like that of liver, remained highly latent throughout life. In contrast to liver, the glucose-6-P phosphohydrolase of kidney did not show a characteristic decrease in latency with age and in the adult remained appreciably more latent than in liver. (5). An improved method was devised for the separation of smooth microsomes from liver homogenates.  相似文献   

7.
Carbamyl-P: glucose phosphotransferase, mannose-6-P: glucose phosphotransferase, and mannose-6-P and glucose-6-P phosphohydrolase activities of D-glucose-6-P phosphohydrolase (EC 3.1.3.9) have been demonstrated in avian and mammalian liver (and kidney) nuclear membrane. In marked contrast with activities of this enzyme of fragmented endoplasmic reticulum (“microsomes”), those of the intact membrane of isolated nuclei are totally, or nearly-totally, manifest without the need for preliminary activation by detergents or similar treatments. Disruption of nuclei and isolation of nuclear membranes results in the acquisition of detergent-sensitivity of such activities. Physiological implications of these observations are discussed.  相似文献   

8.
The interactions of Pi, PPi, and carbamyl-P with the hepatic glucose-6-phosphatase system were studied in intact and detergent-disrupted microsomes. Penetration of PPi and carbamyl-P into intact microsomes was evidenced by their reactions with the enzyme located exclusively on the luminal surface. Lack of effects of carbonyl cyanide m-chlorophenylhydrazone and valinomycin + KCl indicated that pH gradients and/or membrane potentials that could influence the kinetics of the system are not generated during metabolism of PPi and glucose-6-P by intact microsomes. With disrupted microsomes, only competitive interactions were seen among glucose-6-P, Pi, PPi, and carbamyl-P. With intact microsomes, Pi, PPi, and carbamyl-P were relatively weak, noncompetitive inhibitors of glucose-6-phosphatase, and PPi hydrolysis was inhibited competitively by Pi and carbamyl-P but noncompetitively by glucose-6-P. Analysis of the kinetic data in combination with findings from other studies that a variety of inhibitors of the glucose-6-P translocase (T1) does not affect PPi hydrolysis provide compelling evidence that permeability of microsomes to Pi, PPi, and carbamyl-P is mediated by a second translocase (T2). Some properties of the microsomal anion transporters are described. If the characteristics of the glucose-6-phosphatase system as presently defined in intact microsomes apply in vivo, glucose-6-P hydrolysis appears to be the predominant, if not the exclusive, physiologic function of the system. Both the "noncompetitive character" and the relative ineffectiveness of Pi as an inhibitor of glucose-6-phosphatase of intact microsomes result from the rate limitation imposed by T1 that prevents equilibration of glucose-6-P across the membrane. In microsomes from fed rats, where T1 is less rate restricting, about one-half as much Pi was required to give 50% inhibition compared with microsomes from fasted or diabetic rats. Thus, any treatment or agent that alters the kinetic relationship between transport and hydrolysis of glucose-6-P (e.g. endocrine or nutritional status) is an essential consideration in analyses of kinetic data for the glucose-6-phosphatase system.  相似文献   

9.
The role of phospholipids in the glucose-6-phosphatase system, including glucose-6-P phosphohydrolase and glucose-6-P translocase, was studied in rat liver microsomes by using phospholipases C and detergents. In the time course experiments on detergent exposure, the maximal activation of glucose-6-P phosphohydrolase varied according to the nature of the detergent used. On treatment of microsomes with phospholipase C of C. perfringens, the activity of glucose-6-P phosphohydrolase without detergent (i.e. without rupture of translocase activity) was gradually decreased with the progressive hydrolysis of phosphatidylcholine and phosphatidylethanolamine on the microsomal membrane, and was restored by incubation of these microsomes with egg yolk phospholipids. The extent of decrease in this phosphohydrolase activity in the detergent-exposed microsomes (with rupture of translocase activity) also varied depending on the detergent used (Triton X-114 or taurocholate). When 66% of the phosphatidylinositol on the membrane was hydrolyzed by phosphatidylinositol-specific phospholipase C of B. thuringiensis, the inhibition of glucose-6-P phosphohydrolase activity without detergent was very small. Although the inhibition of enzyme activity with detergent was apparently greater than that without detergent, the enzyme activity was stimulated by the breakdown of phosphatidylinositol when the enzyme activity was measured at lower concentration (0.5 mM) of substrate, glucose-6-P. The latency of mannose-6-P phosphohydrolase, a plausible index of microsomal integrity, remained above 70% after the hydrolysis of phosphatidylcholine, phosphatidylethanolamine, or phosphatidylinositol. The results show that the glucose-6-phosphatase system requires microsomal phospholipids for its integrity, suggesting that there exists a close relation between phosphatidylinositol and glucose-6-P translocase.  相似文献   

10.
The kinetics of rat liver glucose-6-phosphatase (D-glucose-6-phosphate phosphohydrolase, EC 3.1.3.9) were studied with intact and detergent-disrupted microsomes from normal and diabetic rats. Glucose-6-P concentrations employed (12 microM to 1.0 mM) spanned the physiologic range. With the enzyme of intact microsomes from both groups, plots of v versus [glucose-6-P] were sigmoid. Hanes plots (i.e. [glucose-6-P]/v versus [glucose-6-P]) were biphasic (concave upwards). A Hill coefficient of 1.45 was determined with substrate concentrations between 12 and 133 microM. Disruption of microsomal integrity abolished these departures from classic kinetic behavior, indicating that sigmoidicity may result from cooperative interaction of glucose-6-P with the glucose-6-phosphatase system at the substrate translocase specific for glucose-6-P. With the enzyme from normal rats the [glucose-6-P] at which the enzyme was maximally sensitive to variations in [glucose-6-P] (which we term "Smax"), determined from plots of dv/d [glucose-6-P] versus [glucose-6-P], was in the physiologic range. The Smax of 0.13 mM corresponded well with the normal steady-state hepatic [glucose-6-P] of 0.16 mM, consistent with glucose-6-phosphatase's function as a regulatory enzyme. With the diabetic enzyme, in contrast, values were 0.30 and 0.07 mM for the Smax and steady-state level, respectively. We suggest that the decreasing sensitivity of glucose-6-phosphatase activity to progressively diminishing glucose-6-P concentration, inherent in its sigmoid kinetics, constitutes a mechanism for the preservation of a residual pool of glucose-6-P for other hepatic metabolic functions in the presence of elevated concentrations of glucose-6-phosphatase such as in diabetes.  相似文献   

11.
The presence of carbamyl-phosphate:glucose phosphotransferase in liver nuclei of five species of mammals and birds is demonstrated. The activity is confined to nuclear membranes and is due exclusively to multifunctional glucose-6-phosphatase-phosphotransferase (D-glucose-6-phosphate phosphohydrolase; EC 3.1.3.9). The nuclear enzyme constitutes approximately 16 to 19 percent of total hepatic glucose-6-phosphatase-phosphotransferase. Carbamyl-phosphate:glucose phosphotransferase and glucose-6-P phosphohydrolase activities of membrane of chicken liver nuclei are shown to be catalytically identical with the maximally activated microsomal enzyme. A correspondence is seen in two-substrate kinetic double reciprocal plots, K-m or apparent K-m values for the various substrates, K-i values for the competitive inhibitors P-i and ATP, and pH-activity profiles. Comparative studies were carried out with various intact, disrupted, and detergent-dispersed membranous preparations by a combination of enzyme kinetic and electron microscopic techniques. It is concluded that (a) intimate interrelationships exists between catalytic behavior of this enzyme and morphological integrity of membranes of which the enzyme is a part; (b) activities of the enzyme of nuclear membrane appear quite available for physiological phosphorylative functions; and (c) interrelationships between membrane morphology and catalytic behavior of this membrane-bound enzyme may well be involved in the bioregulation of this complex, multifunctional enzyme system.  相似文献   

12.
Glucose is absolutely essential for the survival and function of the brain. In our current understanding, there is no endogenous glucose production in the brain, and it is totally dependent upon blood glucose. This glucose is generated between meals by the hydrolysis of glucose-6-phosphate (Glc-6-P) in the liver and the kidney. Recently, we reported a ubiquitously expressed Glc-6-P hydrolase, glucose-6-phosphatase-beta (Glc-6-Pase-beta), that can couple with the Glc-6-P transporter to hydrolyze Glc-6-P to glucose in the terminal stages of glycogenolysis and gluconeogenesis. Here we show that astrocytes, the main reservoir of brain glycogen, express both the Glc-6-Pase-beta and Glc-6-P transporter activities and that these activities can couple to form an active Glc-6-Pase complex, suggesting that astrocytes may provide an endogenous source of brain glucose.  相似文献   

13.
The kinetics of rat liver glucose-6-phosphatase (EC 3.1.3.9) were studied in intact and detergent-disrupted microsomes from normal and diabetic rats at pH 7.0 using two buffer systems (50 mM Tris-cacodylate and 50 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) and glucose-6-P varied from 20 microM to 10 mM. Identical data were obtained when the phosphohydrolase activity was quantified by a colorimetric determination of Pi or by measuring 32Pi formed during incubations with [32P]glucose-6-P. In every instance the initial rate data displayed excellent concordance with that expected for a reaction obeying Michaelis-Menten kinetics. The present findings agree with recently reported results of Traxinger and Nordlie (Traxinger, R. R., and Nordlie, R. C. 1987) J. Biol. Chem. 262, 10015-10019) that glucose-6-phosphatase activity in intact microsomes exhibits hyperbolic kinetics at concentrations of glucose-6-P above 133 microM, but fail to confirm their finding of sigmoid kinetics at substrate concentrations below 133 microM. We conclude that glucose-6-P hydrolysis conforms to a hyperbolic function at concentrations of glucose-6-P existing in livers of normal and diabetic rats in vivo.  相似文献   

14.
The effect of varying concentrations of free Ca2+ on the formation of Pi from mannose-6-P or of Pi and [U-14C]glucose from [U-14C]glucose-6-P was investigated in isolated fasted rat hepatocytes made permeable by freezing and in liver microsomes. Free Ca2+ concentration was adjusted by the use of Ca-EGTA buffers. In permeabilized cells, glucose-6-phosphatase (EC 3.1.3.9) activity was inhibited up to 50% and in intact microsomes up to 70% by increasing free Ca2+ concentrations from 0.01 to 10 microM. The inhibition was reversible and competitive with respect to glucose-6-P. Treatment of microsomes with 0.4% deoxycholate exposed 90% of latent mannose-6-phosphatase activity which was insensitive to Ca2+. The results indicate that Ca2+ affects the glucose-6-P translocase rather than the phosphohydrolase component. It is concluded that the glucose-6-phosphatase system is modulated by changes in Ca2+ concentrations in the range of those occurring in the liver cell upon hormonal stimulation.  相似文献   

15.
The ability of glucose 6-phosphate and carbamyl phosphate to serve as substrates for glucose-6-phosphatase (D-glucose-6-phosphate phosphohydrolase; EC 3.1.3.9) of intact and disrupted microsomes from rat liver was compared at pH 7.0. Results support carbamyl phosphate and glucose 6-phosphate as effective substrates with both. Km values for carbamyl phosphate and glucose 6-phosphate were greater with intact than with disrupted microsomes, but Vmax values were higher with the latter. The substrate translocase-catalytic unit concept of glucose-6-phosphatase function is thus confirmed. The Km values for 3-O-methyl-D-glucose and D-glucose were larger when determined with intact than with disrupted microsomes. This observation is consistent with the involvement of a translocase specific for hexose substrate as a rate-influencing determinant in phosphotransferase activity of glucose-6-phosphatase.  相似文献   

16.
Vanadate: a potent inhibitor of multifunctional glucose-6-phosphatase   总被引:3,自引:0,他引:3  
Vanadate has been found to be a potent inhibitor of both the hydrolytic and synthetic activities of the multifunctional enzyme glucose-6-phosphatase (D-glucose-6-phosphate phosphohydrolase, EC 3.1.3.9). The enzyme, when studied in both microsomal preparations and in situ using permeable isolated hepatocytes, is inhibited by micromolar concentrations of vanadate. The inhibition by vanadate is greater in detergent-treated than in untreated microsomes. In both the microsomal preparations and permeable hepatocytes, the inhibition by vanadate is competitive with the phosphate substrate and is greater for the phosphotransferase than the hydrolase activity of the enzyme. The Ki values of vanadate for carbamyl-phosphate : glucose phosphotransferase and glucose-6-phosphate phosphohydrolase determined with permeable hepatocytes are in good agreement with the values determined with detergent-dispersed microsomes. The previously described inhibition of glucose-6-phosphate phosphohydrolase by ATP (Nordlie, R.C., Hanson, T.L., Johns, P.T. and Lygre, D.G. (1968) Proc. Natl. Acad. Sci. USA 60, 590-597) can now be explained by the vanadium contamination of the commercially available ATP samples used. In contrast with glucose-6-phosphatase, hepatic glucokinase and hexokinase were not inhibited by vanadate. Physiological implications and utilitarian experimental applicability of vanadate as a selective metabolic probe, based on these observations, are suggested.  相似文献   

17.
We have proposed that glucose-6-phosphatase (EC 3.1.3.9) is a two-component system consisting of (a) a glucose-6-P-specific transporter which mediates the movement of the hexose phosphate from the cytosol to the lumen of the endoplasmic reticulum (or cisternae of the isolated microsomal vesicle), and (b) a nonspecific phosphohydrolase-phosphotransferase localized on the luminal surface of the membrane (Arion, W.J., Wallin, B.K., Lange, A.J., and Ballas, L.M. (1975) Mol. Cell. Biochem. 6, 75-83). Additional support for this model has been obtained by studying the interactions of D-mannose-6-P and D-mannose with the enzyme of untreated (i.e. intact) and taurocholate-disrupted microsomes. An exact correspondence was shown between the mannose-6-P phosphohydrolase activity at low substrate concentrations and the permeability of the microsomal membrane to EDTA. The state of intactness of the membrane influenced the kinetics of mannose inhibition of glucose-6-P hydrolysis; uncompetitive and noncompetitive inhibitions were observed for intact and disrupted microsomes, respectively. The apparent Km for glucose-6-P was smaller with intact preparations at mannose concentrations above 0.3 M. Mannose significantly inhibited total glucose-6-P utilization by intact microsomes, whereas D-glucose had a stimulatory effect. Both hexoses markedly enhanced the rate of glucose-6-P utilization by disrupted microsomes. The actions of mannose on the glucose-6-phosphatase of intact microsomes fully support the postulated transport model. They are predictable consequences of the synthesis and accumulation of mannose-6-P in the cisternae of microsomal vesicles which possess a nonspecific, multifunctional enzyme on the inner surface and a limiting membrane permeable to D-glucose, D-mannose, glucose-6-P, but impermeable to mannose-6-P. The latency of the mannose-6-P phosphohydrolase activity is proposed as a reliable, quantitative index of microsomal membrane integrity. The inherent limitations of the use of EDTA permeability for this purpose are discussed.  相似文献   

18.
Evidence is provided for a close link between glutamate (Glu) synthesis and the production of reducing power by the oxidative pentose phosphate pathway (OPPP) in barley ( Hordeum vulgare L. var. Alfeo) root plastids. A rapid procedure for isolating organelles gave yields of plastids of over 30%, 60% of which were intact. The formation of Glu by intact plastids fed with glutamine and 2-oxoglutarate, both substrates of glutamate synthase (GOGAT), depends on glucose-6-phosphate (Glc-6-P) supply. The whole process exhibited an apparent K(m Glc-6-P) of 0.45 mM and is abolished by azaserine, a specific inhibitor of GOGAT; ATP caused a decrease in the rate of Glu formation. Glucose and other sugar phosphates were not as effective in supporting Glu synthesis with respect to Glc-6-P; only ribose-5-phosphate, an intermediate of OPPP, supported rates equivalent to Glc-6-P. Glucose-6-phosphate dehydrogenase (Glc6PDH) rapidly purified from root plastids showed an apparent K(m Glc-6-P) of 0.96 mM and an apparent K(m NADP)(+) of 9 micro M. The enzyme demonstrated high tolerance to NADPH, exhibiting a K(i) (NADPH) of 58.6 micro M and selectively reacted with antibodies against potato plastidic, but not chloroplastic, Glc6PDH isoform. The data support the hypothesis that plastidic OPPP is the main site of reducing power supply for GOGAT within the plastids, and suggest that the plastidic OPPP would be able to sustain Glu synthesis under high NADPH:NADP(+) ratios even if the plastidic Glc6PDH may not be functioning at its highest rates.  相似文献   

19.
Vanadate has been found to be a potent inhibitor of both the hydrolytic and synthetic activities of the multi- functional enzyme glucose-6-phosphatase (d-glucose-6-phosphatase phosphohydrolase, EC 3.1.3.9). The enzyme, when studied in both microsomal preparations and in situ using permeable isolated hepatocytes, is inhibited by micromolar concentrations of vanadate. The inhibition by vanadate is greater in detergent-treated than in untreated microsomes. In both the microsomal preparations and permeable hepatocytes, the inhibition by vanadate is competitive with the phosphate substrate and is greater for the phosphotransferase than the hydrolase activity of the enzyme. The KI values of vanadate for carbamyl-phosphate : glucose phosphotransferase and glucose-6-phosphate phosphohydrolase determined with permeable hepatocytes are in good agreement with the values determined with detergent-dispersed microsomes. The previously described inhibition of glucose-6-phosphate phosphohydrolase by ATP (Nordlie, R.C., Hanson, T.L., Johns, P.T. and Lygre, D.G. (1968) Proc. Natl. Acad. Sci. USA 60, 590–597) can now be explained by the vanadium contamination of the commercially available ATP samples used. In contrast with glucose-6-phosphatase, hepatic glucokinase and hexokinase were not inhibited by vanadate. Physiological implications and utilitarian experimental applicability of vanadate as a selective metabolic probe, based on these observations, are suggested.  相似文献   

20.
Effects of acute inhibition of glucose-6-phosphatase activity by the chlorogenic acid derivative S4048 on hepatic carbohydrate fluxes were examined in isolated rat hepatocytes and in vivo in rats. Fluxes were calculated using tracer dilution techniques and mass isotopomer distribution analysis in plasma glucose and urinary paracetamol-glucuronide after infusion of [U-(13)C]glucose, [2-(13)C]glycerol, [1-(2)H]galactose, and paracetamol. In hepatocytes, glucose-6-phosphate (Glc-6-P) content, net glycogen synthesis, and lactate production from glucose and dihydroxyacetone increased strongly in the presence of S4048 (10 microm). In livers of S4048-treated rats (0.5 mg kg(-1)min(-)); 8 h) Glc-6-P content increased strongly (+440%), and massive glycogen accumulation (+1260%) was observed in periportal areas. Total glucose production was diminished by 50%. The gluconeogenic flux to Glc-6-P was unaffected (i.e. 33.3 +/- 2.0 versus 33.2 +/- 2.9 micromol kg(-1)min(-1)in control and S4048-treated rats, respectively). Newly synthesized Glc-6-P was redistributed from glucose production (62 +/- 1 versus 38 +/- 1%; p < 0.001) to glycogen synthesis (35 +/- 5% versus 65 +/- 5%; p < 0.005) by S4048. This was associated with a strong inhibition (-82%) of the flux through glucokinase and an increase (+83%) of the flux through glycogen synthase, while the flux through glycogen phosphorylase remained unaffected. In livers from S4048-treated rats, mRNA levels of genes encoding Glc-6-P hydrolase (approximately 9-fold), Glc-6-P translocase (approximately 4-fold), glycogen synthase (approximately 7-fold) and L-type pyruvate kinase (approximately 4-fold) were increased, whereas glucokinase expression was almost abolished. In accordance with unaltered gluconeogenic flux, expression of the gene encoding phosphoenolpyruvate carboxykinase was unaffected in the S4048-treated rats. Thus, acute inhibition of glucose-6-phosphatase activity by S4048 elicited 1) a repartitioning of newly synthesized Glc-6-P from glucose production into glycogen synthesis without affecting the gluconeogenic flux to Glc-6-P and 2) a cellular response aimed at maintaining cellular Glc-6-P homeostasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号