首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The genetic analysis of mitosis in Aspergillus nidulans   总被引:3,自引:0,他引:3  
We describe here recent work on the molecular genetics of mitosis in the filamentous fungus Aspergillus nidulans. Aspergillus is one of three simple eukaryotes with powerful genetic systems that have been used to analyze mitosis. The modern molecular biological techniques available with this organism have made it possible to use mutations to identify genes and proteins that play an important role in mitosis. Three Aspergillus genes that affect mitosis are described. One gene, nimA, is specifically expressed late in the cell cycle and codes for a putative protein kinase that induces mitosis, even in cells blocked in S-phase. The second gene, bimG, codes for a putative phosphatase that interacts functionally with the nimA kinase. The third gene, bimE, codes for a protein that suppresses mitosis during interphase, apparently by keeping nimA turned off. None of these genes appear to be similar to any of the genes affecting mitosis that have been characterized in other eukaryotes, but rather appear to be elements of a system that prevents mitosis from occurring during interphase.  相似文献   

3.
We developed a model-system for correcting genetic alterations of an Aspergillus nidulans strain (ribo, paba, bio, w, Acr) by treating protoplasts with total RNA extracted from another A. nidulans strain bearing wild type alleles for the same genetic markers. The results revealed the occurrence of a true genetic transformation. The phenomenon was RNA-dependent since it was abolished by pancreatic ribonuclease treatment. The term retrotransformation is proposed since the RNA messages artificially inserted into the mutant protoplast cells restore the wild type chromosomal information.  相似文献   

4.
UV treated conidia of a strain of Aspergillus nidulans (meth Gl. biAl) depleted of germination inhibitory substances have been examined for inactivation and mutation induction at groups of suppressor gene loci defining three classes of methionine revertants. An exponential decline in the colony forming ability and quadratic increase in mutation frequency (for each class of revertant) as the incident dose increased were observed. The induced mutation frequency for each class and the loss of colony forming ability of the conidia are greater in the absence than in the presence of these self-inhibitors of germination. However, the relative frequencies of the individual classes of revertants did not differ whether the inhibitory substances were present or not. Liquid holding effects leading to increases in survival and mutation have been observed, but the relative frequencies of the individual revertant classes remain unchanged.  相似文献   

5.
6.
Heterozygous diploid conidia of Aspergillus nidulans were treated during germination with ethyl alcohol in concentrations ranging from 0.25% to 20% (v/v). The diploid strain carried three recessive conidial color mutations, in addition to genetic markers on all eight pairs of linkage groups. It was thereby possible to detect events of crossing over, non-disjunction, and mutation. An increase in the dose of ethanol was associated with a decrease in conidial viability and an increase in the relative and absolute frequencies of formation of (a) normal colonies which produced colored sectors and (b) phenotypically abnormal colonies, the majority of which (83.1%) produced normal sectors. At a concentration of 5% (v/v) ethanol, the survivors included 17.59% of the former and 44.7% of the latter colonies. Genetic analysis of the various segregants suggested that the frequencies of both mitotic crossing over and non-disjunction or the misdistribution of chromosomes were increased by ethanol. Among 133 abnormal colonies which segregated normal clones, 79 (59.4%) were associated with one of these genetic events. A total of 297 haploids and 130 diploids arose as normal segregants from the abnormal colonies. There were 31 recognizable events of non-disjunction and 14 crossing over in linkage groups I and II, where these events could be distinguished. These data suggested that the predominant effect of ethanol was a disruption of chromosome distribution. A cytological examination of ethanol-treated, germinating conidia revealed an interference with the mitotic spindle apparatus. The frequency of detectable spindles decreased more than 3-fold after 8 h exposure to 5% (v/v) ethanol. This finding supported the conclusion that ethanol disrupted chromosome distribution, and suggested the mechanism by which it does so. Human clinical data on alcohol consumption were examined in light of these findings.  相似文献   

7.
8.
9.
10.
The cnx- group of mutants of Aspergillus nidulans lacks xanthine dehydrogenase (xanthine: NAD+ oxidoreductase, EC 1.2.1.37) and nitrate reductase (EC 1.6.6.3) activities and are thought to be defective in the synthesis of a molybdenum-containing cofactor, 'cnx', common to xanthine dehydrogenase and nitrate reductase [Pateman, J.A., Rever, B.M., Cove, D.J. and Roberts, D.B. (1964) Nature (Lond.) 201, 58-60]. The cnx cofactor has a role in maintaining the aggregated multimeric structure of nitrate reductase [MacDonald, D.W., Cove, D.J. and Coddington, A. (1974) Mol. Gen. Genet. 128, 187-199]. We report here that, in cnx- mutants grown under conditions inducing xanthine dehydrogenase I, a species cross-reacting with antisera to the native enzyme and of half its molecular weight is present, together with cross-reacting molecules of similar molecular weight to the native enzyme. This suggests that the cnx cofactor has a role in maintaining the aggregated structure of xanthine dehydrogenase I. Both cross-reacting species are capable of passing reducing equivalents from NADH to a tetrazolium salt, showing that the cnx cofactor is not necessary for enzymic activity towards NADH.  相似文献   

11.
S D Harris  P R Kraus 《Genetics》1998,148(3):1055-1067
In Aspergillus nidulans, germinating conidia undergo multiple rounds of nuclear division before the formation of the first septum. Previous characterization of temperature-sensitive sepB and sepJ mutations showed that although they block septation, they also cause moderate defects in chromosomal DNA metabolism. Results presented here demonstrate that a variety of other perturbations of chromosomal DNA metabolism also delay septum formation, suggesting that this is a general cellular response to the presence of sublethal DNA damage. Genetic evidence is provided that suggests that high levels of cyclin-dependent kinase (cdk) activity are required for septation in A. nidulans. Consistent with this notion, the inhibition of septum formation triggered by defects in chromosomal DNA metabolism depends upon Tyr-15 phosphorylation of the mitotic cdk p34nimX. Moreover, this response also requires elements of the DNA damage checkpoint pathway. A model is proposed that suggests that the DNA damage checkpoint response represents one of multiple sensory inputs that modulates p34nimX activity to control the timing of septum formation.  相似文献   

12.
13.
Abstract The induction of the synthesis of extracellular xylanases was investigated in the fungus Aspergillus nidulans using a number of compounds, including xylans of different origin, monosaccharides, xylooligosaccharides and xylose derivatives. Certain xylans (wheat arabinoxylan, oat spelt xylan, birchwood xylan and 4-O-methyl-D-glucurono-D-xylan) were found to be the most powerful inducers. Also, xylooligosaccharides such as xylobiose, xylotriose and xylotetraose served as inducers, their efficiency being directly related to their chain length. Xylose, on the contrary, was not a true inducer. Of the three endo-β-(1,4)-xylanases secreted by A. nidulans , that of 24 kDa was not under carbon catabolite repression, whereas the other two, of 22 and 34 kDa, were under glucose repression mediated by the creA gene product.  相似文献   

14.
Repair of alkylation damage in the fungus Aspergillus nidulans   总被引:1,自引:0,他引:1  
The repair of alkylation damage in Aspergillus nidulans was investigated. We have assayed soluble protein fractions for enzymes known to be involved in the repair of this type of damage in DNA. The presence of a glycosylase activity that can remove 3-methyladenine from DNA was demonstrated, as well as a DNA methyltransferase activity that appears to act against O6-methylguanine. In addition to this approach, a series of mutants were isolated which display increased sensitivity to alkylating agents (sag mutants). 5 such mutants were further characterized, and at least 4 are shown to map to genes which have not previously been characterized. The behaviour of double mutant combinations demonstrates the existence of at least 2 pathways for the repair of alkylation damage. The majority of the sag mutants (sagA1, sagB2, sag4 and sagE5) exhibit an increased sensitivity to a range of alkylating agents, but not to UV light, while sagC3, when irradiated at the germling stage, also shows sensitivity to UV. None of the mutants isolated are defective in either the 3-methyladenine DNA glycosylase activity, or the DNA methyltransferase activity, and the nature of the defects in these strains remains to be determined.  相似文献   

15.
A cyclic nucleotide-binding phosphohydrolase that possesses both a phosphomonoesterase and a phosphodiesterase catalytic function has been partially purified from Aspergillus nidulans. The enzyme hydrolyzes both p-nitrophenylphosphate and bis-(p-nitrophenyl)-phosphate. o'-Nucleoside monophosphates are the best physiological phosphomonesterase substrates but 5'- and 2'-nucleoside monophosphates are also hydrolyzed. The enzyme catalyzes the hydrolysis of adenosine 5'-triphosphate, adenosine 5'-diphosphate, and 2',3'- and 3'5'-cyclic nucleotides, but not of ribonucleic acid, deoxyribonucleic acid, or nicotinamide adenine dinucleotide. The enzyme has acid pH optima and is not activated by divalent cations. Nucleosides and nucleotides inhibit the enzyme. Cyclic nucleotides are competitive inhibitors of the phosphodiesterase-phosphomonoesterase. The enzyme can occur extracellularly. The phosphodiesterase-phosphomonoesterase is present at high levels in nitrogen-starved mycelium, and it is strongly repressed during growth in media containing ammonium or glutamine and weakly repressed during growth in glutamate-containing medium. Experiments with various area mutants show that this regulatory gene is involved in the control of the enzyme. No evidence for regulation of the enzyme by carbon or phosphorus starvation has been found.  相似文献   

16.
The multicellular microbial eukaryote Aspergillus nidulans is an excellent model for the study of a wide array of biological processes. Studies in this system contribute significantly to understanding fundamental biological principles and are relevant for biotechnology and industrial applications, as well as human, animal and plant fungal pathogenesis. A. nidulans is easily manipulated using classical and molecular genetics. Here, we describe the storage and handling of A. nidulans and procedures for genetic crossing, progeny analysis and growth testing. These procedures are used for Mendelian analysis of segregation of alleles to show whether a mutant phenotype segregates as a single gene and independent assortment of genes to determine the linkage relationship between genes. Meiotic crossing is used for construction of multiple mutant strains for genetic analysis. Genetic crossing and analysis of progeny can be undertaken in 2-3 weeks and growth testing takes 2-3 days.  相似文献   

17.
Summary Simultaneous reversion of mutations in two different Aspergillus nidulans loci adA and metG was found to be due monogenic suppressor mutations. Prelimirary evidence for the existance of supersuppressors in A. nidulans is presented.  相似文献   

18.
19.
20.
Summary Aspergillus nidulans uses an acetamidase enzyme to grow on acetamide as a carbon or as a nitrogen source. Acrylamide is a substrate for the enzyme but does not induce its synthesis. Mutants capable of growing on acrylamide as a nitrogen source have been isolated. Two classes of mutant have been found —amdR c mutants on linkage group II andamdT c on linkage group III.amdR c mutants produce high constitutive acetamidase levels. The enzyme is still inducible by amides, but to a lesser extent than wild type, and is still subject to repression by ammonia and by carbon metabolites derived from glucose.amdR c mutants are semi-dominant to the wild type allele in heterozygous, diploids. TheamdT c mutant is not subject to carbon metabolite repression, of the acetamidase. The enzyme is inducible by amides and repressible by ammonia. TheamdT c mutation also results in reduced ability to grow on formamide as a nitrogen source and to lowered levels of a second amidase enzyme.amdT c is semi-dominant in heterozygous diploids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号