首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Canaline and gabaculine, inhibitors of γ-aminotransferases and thus of ornithine aminotransferase (E.C. 2.6.1.13), decreased the flow through ornithine carbamoyl transferase (E.C. 2.1.3.3) in isolated rat hepatocytes incubated with 10 mM NH4Cl and ornithine. The levels of acetylglutamate, an essential activator of carbamoyl phosphate synthetase (ammonia) (E.C. 6.3.4.16), were also decreased, suggesting that the inhibitors had also caused a decrease in the rate of carbamoyl phosphate synthesis. Under these conditions, ornithine appears to be a precursor of acetylglutamate, via ornithine aminotransferase, possibly as a consequence of glutamate synthesis. The influence of aminooxyacetate, an aminotransferase inhibitor, has also been examined.  相似文献   

2.
1. The activities of enzymes of the urea cycle [carbamoyl phosphate synthetase, ornithine transcarbamoylase, argininosuccinate synthetase, argininosuccinase (these last two comprising the arginine-synthetase system) and arginase] have been measured in control, alloxan-diabetic and glucagon-treated rats. In addition, measurements were made on alloxan-diabetic rats treated with protamine–zinc–insulin. 2. Treatment of rats with glucagon for 3 days results in a marked increase in the activities of three enzymes of the urea cycle (carbamoyl phosphate synthetase, argininosuccinate synthetase and argininosuccinase). The pattern of change in the alloxan-diabetic group is very similar to that of the glucagon-treated group, although the magnitude of the change was much greater. 3. Comparison was made of the actual and potential rate of urea synthesis in normal and diabetic rats. In both groups the potential rate of urea production, as measured by the activity of the rate-limiting enzyme, argininosuccinate synthetase, slightly exceeds the actual rate of synthesis by liver slices in the presence of substrates. The relative activities of the actual and potential rates were similar in the two groups of animals, this ratio being 1:0·70. 4. In the alloxan-diabetic rats treated with protamine–zinc–insulin for 2·5 or 4 days there was a marked increase in liver weight. This was associated with a rise in the total hepatic activity of the urea-cycle enzymes located in the soluble fraction of the cell (the arginine-synthetase system and arginase) after 2·5 days of treatment. After 4 days of treatment the concentration of these enzymes/g. of liver decreased, and the total hepatic content then reverted to the untreated alloxan-diabetic value. 5. No effects of glucagon or of insulin in vitro could be found on the rate of urea production by liver slices. 6. The present results are discussed in relation to how far this pattern of change is typical of conditions resulting in a high urea output, and comparison has been made with other values in the literature.  相似文献   

3.
Control of ureogenesis   总被引:3,自引:0,他引:3  
Control of urea synthesis was studied in rat hepatocytes incubated with physiological mixtures of amino acids in which arginine was replaced by equimolar amounts of ornithine. The following observations were made. Intramitochondrial carbamoyl phosphate was always below 0.1 mM. Only when ornithine was absent and when, in addition, the concentration of amino acids was higher than four times their plasma concentration, intramitochondrial carbamoyl phosphate rose up to about 3 mM; under these conditions ammonia accumulated in the medium. The relationship between ornithine-cycle flux and the concentration of the cycle intermediates at varying amino acid concentration indicated that under near-physiological conditions the ornithine-cycle enzymes are far from being saturated with their subsidiaries. Moderate concentrations of norvaline had no effect on the rate of urea synthesis unless the cells were severely depleted of ornithine. Activation of carbamoyl-phosphate synthetase (ammonia) by addition of N-carbamoylglutamate only slightly stimulated urea production at all amino acid concentrations. However, in the presence of the activator the curve relating ornithine-cycle flux to the steady-state ammonia concentration was shifted to lower concentrations of ammonia. The intramitochondrial concentration of carbamoyl phosphate in rat liver in vivo was below 0.1 mM. This value is far below the concentration required for substantial inhibition of carbamoyl-phosphate synthetase. It is concluded that in vivo the function of activity changes in carbamoyl-phosphate synthetase, via the well-documented alterations in the intramitochondrial concentration of N-acetylglutamate, is to buffer the intrahepatic ammonia concentration rather than to affect urea production per se. At constant concentration of ammonia the rate of urea production is entirely controlled by the activity of carbamoyl-phosphate synthetase.  相似文献   

4.
In the present study, the possible role of ureogenesis to avoid the accumulation of toxic ammonia to a lethal level under hyper-ammonia stress was tested in the air-breathing walking catfishClarias batrachus by exposing the fish at 25 mM NH4Cl for 7 days. Excretion of ammonia by the NH4Cl-exposed fish was totally suppressed, which was accompanied by significant accumulation of ammonia in different body tissues. The walking catfish, which is otherwise predominantly ammoniotelic, turned totally towards ureotelism from ammoniotelism with a 5-to 6-fold increase of urea-N excretion during exposure to higher ambient ammonia. Stimulation of ureogenesis was accompanied with significant increase of some of the key urea cycle enzymes such as carbamyl phosphate synthetase (urea cycle-related), argininosuccinate synthetase and argininosuccinate lyase both in hepatic and non-hepatic tissues. Due to this unique physiological strategy of turning towards ureotelism from ammoniotelism via the induced urea cycle, this air-breathing catfish is able to survive in very high ambient ammonia, which they face in certain seasons of the year in the natural habitat.  相似文献   

5.
The induction pattern of urea cycle enzymes and the rate of urea-N excretion were studied with relation to ammonia load in the perfused liver of a freshwater ammoniotelic teleost, Heteropneustes fossilis, when infused with different concentrations of ammonium chloride for 60 min. Both urea-N excretion and uptake of ammonia by the perfused liver were found to be a saturable process. The Vmax of urea-N excretion (0.45 μmol/g liver/min) was obtained at ammonium chloride addition of 1.18 μmol/g liver/min. The maximum induction of carbamyl phosphate synthetase (ammonia dependent), 200%, and of ornithine transcarbamylase, 120%, was seen by the addition of 0.58 μmol/g liver/min, and for argininosuccinate synthetase and argininosuccinate lyase of 150% and 115%, respectively, by the addition of 2.8 μmol/g liver/min of ammonium chloride. However, arginase activity did not alter in any of the concentrations of ammonium chloride added. An increase of ammonia load of 3–5 μmol/g wet wt from the physiological level in the perfused liver was sufficient to initiate and to cause maximum induction of most of the urea cycle enzymes activitty. These results further confirm the capacity of transition from ammoniotelism to ureotelism in this unique freshwater air-breathing teleost to tolerate a very high ambient ammonia.  相似文献   

6.
The fully grown but nonmetamorphosed (juvenile) axolotl Ambystoma mexicanum was ureogenic and primarily ureotelic in water. A complete ornithine-urea cycle (OUC) was present in the liver. Aerial exposure impeded urea (but not ammonia) excretion, leading to a decrease in the percentage of nitrogen excreted as urea in the first 24 h. However, urea and not ammonia accumulated in the muscle, liver, and plasma during aerial exposure. By 48 h, the rate of urea excretion recovered fully, probably due to the greater urea concentration gradient in the kidney. It is generally accepted that an increase in carbamoyl phosphate synthetase activity is especially critical in the developmental transition from ammonotelism to ureotelism in the amphibian. Results from this study indicate that such a transition in A. mexicanum would have occurred before migration to land. Aerial exposure for 72 h exhibited no significant effect on carbamoyl phosphate synthetase-I activity or that of other OUC enzymes (with the exception of ornithine transcarbamoylase) from the liver of the juvenile A. mexicanum. This supports our hypothesis that the capacities of OUC enzymes present in the liver of the aquatic juvenile axolotl were adequate to prepare it for its invasion of the terrestrial environment. The high OUC capacity was further supported by the capability of the juvenile A. mexicanum to survive in 10 mM NH(4)Cl without accumulating amino acids in its body. The majority of the accumulating endogenous and exogenous ammonia was detoxified to urea, which led to a greater than twofold increase in urea levels in the muscle, liver, and plasma and a significant increase in urea excretion by hour 96. Hence, it can be concluded that the juvenile axolotl acquired ureotelism while submerged in water, and its hepatic capacity of urea synthesis was more than adequate to handle the toxicity of endogenous ammonia during migration to land.  相似文献   

7.
The objective of this study was to elucidate how the African lungfish, Protopterus annectens, ameliorated ammonia toxicity during 12 or 46 days of aestivation in air or in mud. Twelve days of aestivation in air led to significant increases in contents of urea, but not ammonia, in tissues of P. annectens. The estimated rate of urea synthesis increased 2.7-fold despite the lack of changes in the activities of hepatic ornithine–urea cycle enzymes, but there was only a minor change in the estimated rate of ammonia production. After 46 days of aestivation in air, the ammonia content in the liver decreased significantly and contents of urea in all tissues studied increased significantly, indicating that the fish shifted to a combination of increased urea synthesis (1.4-fold of the day 0 value) and decreased ammonia production (56% of the day 0 value) to defend against ammonia toxicity. By contrast, 12 days of aestivation in mud produced only minor increases in tissue urea contents, with ammonia contents remained unchanged. This was apparently achieved through decreases in urea synthesis and ammonia production (40 and 15%, respectively, of the corresponding day 0 value). Surprisingly, 46 days of aestivation in mud resulted in no changes in tissue urea contents, indicating that profound suppressions of urea synthesis and ammonia production (2.6 and 1.2%, respectively, of the corresponding day 0 value) had occurred. This is the first report on such a phenomenon, and the reduction in ammonia production was so profound that it could be the greatest reduction known among animals. Since fish aestivated in mud had relatively low blood pO2 and muscle ATP content, they could have been exposed to hypoxia, which induced reductions in metabolic rate and ammonia production. Consequently, fish aestivating in mud had a lower dependency on increased urea synthesis to detoxify ammonia, which is energy intensive, than fish aestivating in air.  相似文献   

8.
In studying the pyrimidine synthesising pathway in Deinococcus radiophilus two instances of anomalous behaviour were observed. One was the strikingly different results obtained for two types of assay for carbamoyl phosphate synthetase. Both depend on the fixation of 14C from the substrate bicarbonate to give radioactive products. In the coupled assay the carbamoyl phosphate product of the enzyme is converted to carbamoyl aspartate in the presence of aspartate and aspartate transcarbamoylase. In the direct assay aspartate is omitted from the reaction mixture and the carbamoyl phosphate is converted to urea. It was found that the radioactive counts in the direct assay were about 5% of those measured in the coupled assay. The second anomaly was that omission of glutamine from both assay mixtures had no significant effect on the fixation of radioactive carbon. These results suggested that aspartate amino-N could be the source of nitrogen for glutamine synthesis by a substrate-channelled pathway which delivered glutamine to carbamoyl phosphate synthetase, and that externally added glutamine could not access its binding site on the enzyme.  相似文献   

9.
During periods of nitrogen exportation from the cell, mitochondrial carbamoyl phosphate is synthesized, thus initiating the urea cycle. During times of nitrogen conservation by the liver cell, carbamoyl phosphate is synthesized in the cytosol of the cell, whereupon the de novo pyrimidine synthesis pathway is initiated. The de novo pathway provides pyrimidines for increased ribonucleic acid synthesis. Formerly, it was believed that these two pathways functioned irrespective of one another. However, recent experimental evidence indicates that, when excess ammonia is present, mitochondrial carbamoyl phosphate passes from the mitochondria into the cell cytosol, where it is metabolized by the de novo pyrimidine synthesis pathway. When ornithine and excess ammonia are both present, mitochondrial carbamoyl phosphate no longer passes from the mitochondria into the cytosol to be metabolized by the de nova pathway. Thus the metabolic fate of mitochondrial carbamoyl phosphate, and that of excess nitrogen, is determined by the presence or absence of ornithine. In turn, this key molecule is the substrate for the cytoplasmic enzyme ornithine decarboxylase. When ornithine decarboxylase is stimulated by insulin, ornithine is metabolized to putrescine. The activated ornithine decarboxylase combines with ribonucleic acid polymerase, activating the later enzyme. When ornithine is acted upon by ornithine decarboxylase, it is no longer available for the perpetuation of the urea cycle and mitochondrial carbamoyl phosphate levels rise until the carbamoyl phosphate passes into the cytosol to be metabolized by the de novo pathway. Increased amounts of pyrimidines are available for the activated ribonucleic acid polymerase. Therefore insulin, through its stimulation of ornithine decarboxylase, achieves cellular nitrogen retention by regulating nitrogen incorporation into newly synthesized ribonucleic acid.  相似文献   

10.
The purpose of this study was to determine if carbamoyl phosphate synthetase III (CPSase III) and related urea cycle enzyme activities in skeletal muscle tissue of juvenile rainbow trout (Oncorhynchus mykiss) increase during short- or long-term exercise, in parallel with changes in whole-body urea excretion rates. Urea excretion was elevated by 65% in fish that swam at high-speed (50 cm/s) vs. low-speed (20 cm/s) over a 2-h period, with no significant changes in CPSase III, ornithine transcarbamoylase or glutamine synthetase activities in muscle tissue. Fish that swam for 4 days at high-speed had higher rates of ammonia excretion and GSase activity in muscle and liver tissue relative to low-speed swimmers. Calculations showed that 47-53% of excreted urea, theoretically could be accounted for by total muscle CPSase III activity in juvenile and adult trout. The data indicate that increases in the rate of urea excretion during short-term high intensity exercise are not linked to higher activities of urea cycle enzymes in muscle tissue, but this does not rule out the possibility of increased flux through muscle CPSase III and related enzymes. Furthermore, these results indicate that urea cycle enzyme activities in skeletal muscle tissue can account for a significant portion of total urea excretion in juvenile and adult trout.  相似文献   

11.
Urea synthesis via the hepatic ornithine urea cycle (OUC) has been well described in elasmobranchs, but it is unknown whether OUC enzymes are also present in extrahepatic tissues. Muscle and liver urea, trimethylamine oxide (TMAO), and other organic osmolytes, as well as selected OUC enzymes (carbamoyl phosphate synthetase III, ornithine transcarbamoylase, arginase, and the accessory enzyme glutamine synthetase), were measured in adult little skates (Raja erinacea) exposed to 100% or 75% seawater for 5 d. Activities of all four OUC enzymes were detected in the muscle. There were no changes in muscle OUC activities in skates exposed to 75% seawater; however, arginase activity was significantly lower in the liver, compared to controls. Urea, TMAO, and several other osmolytes were significantly lower in the muscle of little skates exposed to 75% seawater, whereas only glycerophosphorylcholine was significantly lower in the liver. Urea excretion rates were twofold higher in skates exposed to 75% seawater. Taken together, these data suggest that a functional OUC may be present in the skeletal muscle tissues of R. erinacea. As well, enhanced urea excretion rates and the downregulation of the anchor OUC enzyme, arginase, in the liver may be critical in regulating tissue urea content under dilute-seawater stress.  相似文献   

12.
1. Carbamoyl phosphate synthetase, ornithine transcarbamoylase, the arginine-synthetase system and arginase were measured in the livers of ammoniotelic, ureotelic and uricotelic animals. The chelonian reptiles, whose nitrogen excretory patterns vary according to the habitat, and the Mexican axolotl, a neotenic species, were also studied. 2. The levels of the activities of the first three enzymes mentioned correlate with the amount of nitrogen excreted as urea. 3. The terrestrial turtle, which excretes mainly uric acid, maintains a high arginase activity but has very low levels of the activities of the other three enzymes. 4. The first three enzymes of the urea cycle vary in the phylogenic scale in a co-ordinated manner, which suggests that they are under the same regulatory mechanism. 5. Urea formation from endogenous arginine in vitro has a low efficiency in the Mexican axolotl. 6. The induction of metamorphosis in the Mexican axolotl by the administration of l-tri-iodothyronine, which causes a shift from ammonio-ureotelism to complete ureotelism, is accompanied by an increase mainly in carbamoyl phosphate synthetase and also by an improvement in the efficiency of hydrolysis of endogenous arginine in vitro to give urea. 7. The results obtained by differential centrifugation of the urea-cycle enzymes in rat and Mexican-axolotl livers are presented. The location requirements for the integration of a metabolic cycle are discussed.  相似文献   

13.
Sporosarcina ureae BS 860, a motile, sporeforming coccus, possesses the enzymes required for a functioning urea (ornithine) cycle. This is only the second known example of urea cycle activity in a prokaryote. Specific activities are reported for ornithine carbamoyltransferase, argininosuccinase, arginase, and urease. Although argininosuccinate synthetase activity could not be detected directly in crude cell extracts, indirect evidence from radiocarbon tracing data for arginine synthesis from the substrate, l-[1-14C]-ornithine, strongly suggest the presence of this or other similar enzyme activity. Furthermore, good growth in defined media containing either 1.0% glutamine, ornithine, or citrulline as sole carbon sources suggests argininosuccinate synthetase activity is necessary for arginine synthesis. The effect of varying pH on arginase and urease activities indicate that these two enzymes may function within the context of the urea cycle to generate ammonia for amino acid synthesis, as well as for raising the pH of the growth micro-environment.  相似文献   

14.
Increased blood ammonia was induced in fasting mice by ip administration of 200 mg/kg Na-valproate followed 1 h later by 13 and 4 mmol/kg alanine and ornithine, respectively. When valproate was not used blood or liver ammonia was not increased, but increases were observed in liver glutamate (5-fold), glutamine (2-fold), aspartate (5-fold), acetylglutamate (15-fold), citrulline (35-fold), argininosuccinate (11-fold), arginine (11-fold), and urea (3-fold). The level of carbamoyl phosphate (less than 2 nmol/g) was, by far, the lowest of all urea cycle intermediates. The large increase in citrulline indicates that argininosuccinate synthesis was limiting, and that the increase in acetylglutamate induced a considerable activation of carbamoyl phosphate synthetase, which agrees with theoretical expectations, irrespective of the actual KD value for acetylglutamate. Pretreatment with valproate resulted in lower hepatic levels of glutamate, glutamine, aspartate, acetyl-CoA, and acetylglutamate. At the level found of acetylglutamate the activation of carbamoyl phosphate synthetase would be expected to be similar to that without valproate. Indeed, the levels of citrulline were similar with or without valproate. Argininosuccinate, arginine, and urea levels exhibited little if any change. Although the model used may not replicate exactly the situation in patients, from our results it appears that changes in citrullinogenesis or in other steps of the urea cycle do not account for the increase in blood ammonia induced by valproate, and it is proposed that valproate may alter glutamine metabolism.  相似文献   

15.
Citrulline synthesis from ammonia by hepatic mitochondria in elasmobranchs involves intermediate formation of glutamine as the result of the presence of high levels of glutamine synthetase and a unique glutamine- and N-acetyl-glutamate-dependent carbamoyl phosphate synthetase, both of which have properties unique to the function of glutamine-dependent synthesis of urea, which is retained in the tissues of elasmobranchs at high concentrations for the purpose of osmoregulation [P.M. Anderson and C.A. Casey (1984) J. Biol. Chem. 259, 456-462; R.A. Shankar and P.M. Anderson (1985) Arch. Biochem. Biophys. 239, 248-259]. The objective of this study was to determine if ornithine carbamoyl transferase, which catalyzes the last step of mitochondrial citrulline synthesis and which has not been previously isolated from any species of fish, also has properties uniquely related to this function. Ornithine carbamoyl transferase was highly purified from isolated liver mitochondria of Squalus acanthias, a representative elasmobranch. The purified enzyme is a trimer with a subunit molecular weight of 38,000 and a native molecular weight of about 114,000. The effect of pH is significantly influenced by ornithine concentration; optimal activity is at pH 7.8 when ornithine is saturating. The apparent Km values for ornithine and carbamoyl phosphate at pH 7.8 are 0.71 and 0.05 mM, respectively. Ornithine displays considerable substrate inhibition above pH 7.8. The activity is not significantly affected by physiological concentrations of the osmolyte urea or trimethylamine-N-oxide or by a number of other metabolites. The results of kinetic studies are consistent with a steady-state ordered addition of substrates (carbamoyl phosphate binding first) and rapid equilibrium random release of products. Except for an unusually low specific activity, the properties of the purified elasmobranch enzyme are similar to the properties of ornithine carbamoyl transferase from mammalian ureotelic and other species and do not appear to be unique to its role in glutamine-dependent synthesis of urea for the purpose of osmoregulation.  相似文献   

16.
Summary All the five enzymes of urea synthesis and the formation of urea in vitro can already be demonstrated in human liver as early as the 9th week of fetal development. At this stage the activity of carbamoyl phosphate synthetase is the highest, whereas that of ornithine carbamoyltransferase is the lowest as compared to those in the adult. The kinetic parameters of the urea cycle enzymes are the same in fetal liver as in adult liver, except that the Km values of ornithine carbamoyltransferase for L-ornithine are 3.5 mM and 0.42 mM in the fetus and in adult liver, respectively.Urea formation in vivo seems to begin in the second half of fetal life, and a gradual increase can be detected in the activity of the enzymes of urea synthesis. The activity of ortnithine decarboxylase, the glutamine-dependent carbamoyl phosphate synthetase and aspartate carbamoyltransferase, however, changes in the opposite direction.The concentration of carbamoyl phosphate and aspartate remains constant, but that of ornithine gradually decreases during ontogenesis. The ornithine, carbamoyl phosphate and aspartate pools are probably utilized in the polyamine, pyrimidine and urea syntheses at varying rates.  相似文献   

17.
1. The activities of enzymes of the urea cycle, carbamoyl phosphate synthetase, ornithine transcarbamoylase, argininosuccinate synthetase, argininosuccinase (the last two comprising the arginine synthetase system) and arginase, were measured in the liver during development of the rat. All five enzymes exhibited relatively low activities in foetal liver and a rapid postnatal increase was found. The rate-limiting enzyme of urea synthesis in the rat, the condensing enzyme of the arginine synthetase system, showed the lowest activity at birth and the most rapid postnatal increase, a fivefold increase within 24hr. after birth. A second increase of activity was noted after the tenth day. These results suggest that the postnatal increase of arginine synthetase activity initiates the ability for urea synthesis in the rat. 2. Some factors influencing the development of the rate-limiting arginine synthetase system were studied in more detail. (a) Intraperitoneal administration of puromycin inhibited the postnatal increaseof the enzyme activity. (b) Starvation of newborn animals for 24hr. after birth had no effect on the postnatal development of the enzyme. (c) Bilateral adrenalectomy at birth caused a marked diminution in the postnatal increase of the enzyme activity and injections of triamcinolone were effective in preventing the effect of adrenalectomy. (d) Administration of triamcinolone alone had a marked stimulatory effect on the postnatal development of this enzyme. (e) Premature and postmature birth had virtually no effect on the developmental pattern of the arginine synthetase activity, suggesting that the increase of this enzyme activity after birth is not initiated by the birth process.  相似文献   

18.
The objective of this study was to determine the effects of feeding on the excretory nitrogen (N) metabolism of the aquatic Chinese soft-shelled turtle, Pelodiscus sinensis, with a special emphasis on the role of urea synthesis in ammonia detoxification. P. sinensis is ureogenic and possesses a full complement of ornithine-urea cycle enzymes in its liver. It is primarily ureotelic in water, and the estimated rate of urea synthesis in unfed animals was equivalent to only 1.5% of the maximal capacity of carbamoyl phosphate synthetase I (CPS I) in its liver. Approximately 72 h was required for P. sinensis to completely digest a meal of prawn meat. During this period, there were significant increases in ammonia contents in the stomach at hour 24 and in the intestine between hours 12 and 36, which could be a result of bacterial activities in the intestinal tract. However, ammonia contents in the liver, muscle, brain and plasma remained unchanged throughout the 72-h post-feeding. In contrast, at hour 24, urea contents in the stomach, intestine, liver, muscle, brain and plasma increased significantly by 2.9−, 3.5−, 2.6−, 2.9−, 3.4 and 3.0-fold, respectively. In addition, there was a 3.3- to 8.0−fold increase in the urea excretion rate between hours 0 and 36 post-feeding, which preceded the increase in ammonia excretion between hours 12 and 48. By hour 48, 68% of the assimilated N from the feed was excreted, 54% of which was excreted as urea-N. The rate of urea synthesis apparently increased sevenfold during the initial 24 h after feeding, which demanded only 10% of the maximal CPS I capacity in P. sinensis. The postprandial detoxification of ammonia to urea in P. sinensis effectively prevented postprandial surges in ammonia contents in the plasma and other tissues, as observed in other animals, during the 72-h period post-feeding. In addition, postprandial ammonia toxicity was ameliorated by increased transamination and synthesis of certain amino acids in the liver and muscle of P. sinensis. After feeding, a slight but significant increase in the glutamine content occurred in the brain at hour 24, indicating that the brain might experience a transient increase in ammonia and ammonia was detoxified to glutamine.  相似文献   

19.
Urea-hydrolysis-dependent citrulline synthesis by Ureaplasma urealyticum   总被引:1,自引:0,他引:1  
Some of the ammonia produced by hydrolysis of urea by Ureaplasma urealyticum is channelled into an anabolic pathway with resultant 'de novo' synthesis of citrulline. The organism appears to possess ornithine carbamoyltransferase and carbamoyl phosphate synthetase or some modified form of these enzymes.  相似文献   

20.
Summary Mutants resistant to 5-fluorouracil, 5-fluorouridine and 5-fluorodeoxyuridine have been selected in Aspergillus nidulans. Growth tests combined with genetic analysis showed that mutations conferring resistance to fluoropyrimidines could occur in at least seven genes. Three of these, fulE, fulF and furA were concerned with either the uptake of pyrimidines or their conversion to uridine monophosphate. The other four genes did not affect these functions. Mutations in fulA probably confer resistance by lowering ornithine transcarbamoylase, thereby making the normally arginine-specific carbamoyl phosphate pool available for increased uracil synthesis. Mutations in fulD may make the arginine-specific carbamoyl phosphate synthetase insensitive to inhibition or repression by arginine, and so lead to increased carbamoyl phosphate pool sizes, and increased uracil synthesis. Both fulA and fulD mutants suppress pyrA mutants which lack the uracil-specific carbamoyl phosphate synthetase. Mutations in fulB and fulC do not suppress pyrA, and so may act more directly to increase uracil synthesis. The synthesis of aspartate carbamoyl transferase in fulB7 strains is not repressed by uracil. fulC mutants are closely linked to the pyrA, B, C, N region which codes for the first two enzymes of pyrimidine biosynthesis, and may result in these enzymes being less sensitive to inhibition by uracil.Abbreviations used 5FU 5-fluorouracil - 5FUR 5-fluorouridine - 5FdUR 5-fluorodeoxyuridine  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号