首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chao YP  Fu H  Lo TE  Chen PT  Wang JJ 《Biotechnology progress》1999,15(6):1039-1045
The gene encoding D-hydantoinase from Agrobacterium radiobacter NRRL B11291 was successfully cloned by use of polymerase chain reaction. A positive clone was scored, and its nucleotide sequence was further analyzed. The analysis by deleting various lengths of nucleotides from the amino terminus of the open reading frame revealed the putative regions for promoter and RBS site. By highly expressing both D-hydantoinase and carbamoylase, recombinant Escherichia coli strains were able to convert DL-hydroxyphenyl hydantoin (DL-HPH) to D-p-hydroxyphenylglycine (D-HPG) with a conversion yield of 97%, accounting for productivity 5 times higher than that obtained by A. radiobacter NRRL B11291. Immobilizing the recombinant cells with kappa-carrageenan could also achieve a conversion of 93%, while A. radiobacter NRRL B11291 attained 20% within the same period of reaction time. These results illustrate the feasibility in employing recombinant E. coli to accomplish one-step conversion of DL-HPH to D-HPG. In the process of improving D-HPG production, D-hydantoinase activity was increased 2.57-fold but carbamoylase activity remained constant, which resulted in only a 30% increase in the reaction rate. It suggests that carbamoylase is the step setting the pace of the reaction. Since the reaction substrate is highly insoluble, achieving sufficient agitation appears to be an important issue in this heterogeneous system. This view is further supported by the study on repeated use of cells, which shows that to reach a conversion of more than 90% free cells can be recycled six times, whereas immobilized cells can be used only twice. In conclusion, the poor reusability of immobilized cells is due to the fouling on the gel surface.  相似文献   

2.
Malonyl-CoA is an intermediary compound that is produced during fatty acid metabolism. Our study aimed to produce the commercially important platform chemical 3-hydroxypropionic acid (3-HP) from its immediate precursor malonyl-CoA by recombinant Escherichia coli strains heterologously expressing the mcr gene of Chloroflexus aurantiacus DSM 635, encoding an NADPH-dependent malonyl-CoA reductase (MCR). The recombinant E. coli overexpressing mcr under the T5 promoter showed MCR activity of 0.015 U mg?1 protein in crude cell extract and produced 0.71 mmol/L of 3-HP in 24h in shake flask cultivation under aerobic conditions with glucose as the sole source of carbon. When acetyl-CoA carboxylase and biotinilase, encoded by the genes accADBCb (ACC) of E. coli K-12 were overexpressed along with MCR, the final 3-HP titer improved by 2-fold, which is 1.6 mM. Additional expression of the gene pntAB, encoding nicotinamide nucleotide transhydrogenase that converts NADH to NADPH, increased 3-HP production to 2.14 mM. The strain was further developed by deleting the sucAB gene, encoding α-ketoglutarate dehydrogenase complex in tricarboxylic acid (TCA) cycle, or blocking lactate and acetate production pathways, and evaluated for the production of 3-HP. We report on the feasibility of producing 3-HP from glucose through the malonyl-CoA pathway.  相似文献   

3.
The production of enterotoxins by 237 hemolytic strains of Escherichia coli isolated from pigs was determined with the use of CTE in CHO. Vero and Hela cells and ILT. More frequent (p less than 0.01) production of enterotoxins, determined by ILT, was found for the serotypes being pathogenic for the animals (63.8% of the strains). No correlation between intensity of ILT and particular serotype was observed. Both the serotypes pathogenic for pigs and other serotypes produced LT enterotoxins and ST toxin. The frequency of LT enterotoxin production was statistically insignificant compared to the frequency of ST enterotoxin production by strains with serotypes pathogenic for the pigs. Strains of E. coli producing only enterotoxin ST belonged both to the pathogenic serotypes as well as to other hemolytic serotypes. The cytotoxic activity of supernatants of E. coli strains with different serotypes isolated from pigs in Vero and Hela cells and simultaneous CTE in CHO cells was observed. This suggests the production by the strains of enterotoxin LT and cytotoxin VT. Seven out of the 96 isolates showing CTE in CHO cells gave no reaction in the ILT in pigs. This suggests the production by these isolates of a toxin (toxins) differing from the E. coli enterotoxins.  相似文献   

4.
The production of chemical compounds from renewable resources is an important issue in building a sustainable society. In this study, Escherichia coli was metabolically engineered by introducing T7lac promoter-controlled aroFfbr, pabA, pabB, and pabC genes into the chromosome to overproduce para-aminobenzoic acid (PABA) from glucose. Elevating the copy number of chromosomal PT7lac-pabA-pabB distinctly increased the PABA titer, indicating that elevation of 4-amino-4-deoxychorismic acid synthesis is a significant factor in PABA production. The introduction of a counterpart derived from Corynebacterium efficiens, pabAB (ce), encoding a fused PabA and PabB protein, resulted in a considerable increase in the PABA titer. The introduction of more than two copies of PT7lac-pabAB (ce-mod), a codon-optimized pabAB (ce), into the chromosome of a strain that simultaneously overexpressed aroFfbr and pabC resulted in 5.1?mM PABA from 55.6?mM glucose (yield 9.2%). The generated strain produced 35?mM (4.8?g?L?1) PABA from 167?mM glucose (yield 21.0%) in fed-batch culture.  相似文献   

5.
A recombinant strain of Escherichia coli was used to produce poly(4-hydroxybutyric acid), P(4HB), homopolyester by fed-batch culture in M9 mineral salts medium containing glucose and 4-hydroxybutyric acid as carbon sources. The final cell dry weight, P(4HB) concentration and P(4HB) content were 12.6 g/l, 4.4 g/l, and 36% of cell dry weight, respectively, in a 27-l stirred and aerated fermenter after 60 h of fed-batch fermentation at constant pH.  相似文献   

6.
The biological production of 3-hydroxypropionic acid (3-HP) has attracted significant attention because of its industrial importance. The low titer, yield and productivity, all of which are related directly or indirectly to the toxicity of 3-HP, have limited the commercial production of 3-HP. The aim of this study was to identify and select a 3-HP tolerant Escherichia coli strain among nine strains reported to produce various organic acids efficiently at high titer. When transformed with heterologous glycerol dehydratase, reactivase and aldehyde dehydrogenase, all nine E. coli strains produced 3-HP from glycerol but the level of 3-HP production, protein expression and activities of the important enzymes differed significantly according to the strain. Two E. coli strains, W3110 and W, showed higher levels of growth than the others in the presence of 25 g/L 3-HP. In the glycerol fed-batch bioreactor experiments, the recombinant E. coli W produced a high level of 3-HP at 460 ± 10 mM (41.5 ± 1.1 g/L) in 48 h with a yield of 31 % and a productivity of 0.86 ± 0.05 g/L h. In contrast, the recombinant E. coli W3110 produced only 180 ± 8.5 mM 3-HP (15.3 ± 0.8 g/L) in 48 h with a yield and productivity of 26 % and 0.36 ± 0.02 g/L h, respectively. This shows that the tolerance to and the production of 3-HP differ significantly among the well-known, similar strains of E. coli. The titer and productivity obtained with E. coli W were the highest reported thus far for the biological production of 3-HP from glycerol by E. coli.  相似文献   

7.
The major neutral iron-transporting compound produced by Escherichia coli 0111/K58/H2 has been isolated from iron-deficient cultures of the organism and compared with the corresponding compound, enterochelin, produced by E. coli K12. The product contained serine and 2,3-dihydroxybenzoic acid and formed a complex with Fe3+. Since the PMR spectra of the products from the two strains were identical, it was concluded that E. coli 0111 also secreted enterochelin under iron-deficient conditions. Although it was not possible to establish the optical configuration of the serine residues in the molecule, the CD spectra of the metal free and Fe3+, complexes were found to be of the same sign and magnitude. The spectra show that metal binding results in considerable conformational changes in the enterochelin molecule. The biological properties of the two compounds appear to be identical as judged by their ability to abolish the bacteriostatic effect of serum on E. coli 0111.  相似文献   

8.
One of the greatest bottlenecks in producing recombinant proteins in Escherichia coli is that over-expressed target proteins are mostly present in an insoluble form without any biological activity. DCase (N-carbamoyl-D-amino acid amidohydrolase) is an important enzyme involved in semi-synthesis of beta-lactam antibiotics in industry. In the present study, in order to determine the amino acid sites responsible for solubility of DCase, error-prone PCR and DNA shuffling techniques were applied to randomly mutate its coding sequence, followed by an efficient screening based on structural complementation. Several mutants of DCase with reduced aggregation were isolated. Solubility tests of these and several other mutants generated by site-directed mutagenesis indicated that three amino acid residues of DCase (Ala18, Tyr30 and Lys34) are involved in its protein solubility. In silico structural modelling analyses suggest further that hydrophilicity and/or negative charge at these three residues may be responsible for the increased solubility of DCase proteins in E. coli. Based on this information, multiple engineering designated mutants were constructed by site-directed mutagenesis, among them a triple mutant A18T/Y30N/K34E (named DCase-M3) could be overexpressed in E. coli and up to 80% of it was soluble. DCase-M3 was purified to homogeneity and a comparative analysis with wild-type DCase demonstrated that DCase-M3 enzyme was similar to the native DCase in terms of its kinetic and thermodynamic properties. The present study provides new insights into recombinant protein solubility in E. coli.  相似文献   

9.
10.
11.
12.
13.
14.
During rapid growth, the excretion of pyrimidines, predominantly uracil, is a common phenomenon in procaryotes and eucaryotes. In Escherichia coli, some K-12 strains excrete orotic acid and not uracil. This is caused by a mutation in the pyrF gene.  相似文献   

15.
利用五碳糖产高纯度L-乳酸的大肠杆菌基因工程菌的构建   总被引:1,自引:0,他引:1  
[目的]本研究以已敲除多个产杂酸酶基因的大肠杆菌(Escherichia coli)乙醇工程菌SZ470(△frdBC △ldhA △ackA △focA-pflB △pdhR::pflBp6-pflBrbs-aceEF-lpd)为起始菌株,进一步敲除其乙醇脱氢酶(alcohol dehydrogenase,ADH)基因,同时插入带有自身启动子的乳酸片球菌(Pediococcus acidilactici)的L-乳酸脱氢酶(L-lactate dehydrogenase,LLDH)基因,构建可利用五碳糖同型发酵L-乳酸重组大肠杆菌.[方法]利用λ噬菌体Red重组系统构建乙醇脱氢酶基因(adhE)缺失菌株Escherichia coli JH01,并克隆P.acidilactici的ldhL基因,利用染色体插入技术将其整合到JH01基因组,构建产L-乳酸大肠杆菌基因工程菌Escherichia coli JH12,利用无氧发酵15 L发酵罐测定重组菌株L-乳酸产量.[结果]工程菌JH12在15 L发酵罐中以6%的葡萄糖为碳源进行发酵,发酵到36 h的过程中葡萄糖的消耗速率为1.46 g/(L·h),乳酸生产强度为1.14 g/(L·h),乳酸的产量达到41.13 g/L.发酵产物中未检测到琥珀酸、甲酸的生成,仅有少量乙酸生成,L-乳酸纯度达95.69%(L-乳酸在总发酵产物的比率).工程菌JH12以6%的木糖为碳源进行发酵,发酵到36 h的过程中葡萄糖的消耗速率为0.88 g/(L·h),乳酸生产强度为0.60 g/(L·h),乳酸的产量达到34.73 g/L.发酵产物中杂酸少,乳酸的纯度高达98%.[结论]本研究通过基因敲除、染色体插入及无氧进化筛选获得一株产L-乳酸的大肠杆菌工程菌JH12,该菌株不需利用外源质粒,稳定性好,可利用五碳糖进行发酵,发酵产物中杂酸少,L-乳酸的纯度高.本研究为L-乳酸大肠杆菌工程菌的构建提供一定的技术支持,同时也为大肠杆菌L-乳酸的工业化生产提供了参考依据.  相似文献   

16.
17.
Whole cells of Escherichia coli B 10 having high tryptophan synthetase activity were used directly as an enzyme source to produce L-tryptophan from indole and L- or D,L-serine. This strain is tryptophan auxotrophic, which is tryptophanase negative and, in addition, L- and D-serine deaminase negative under production conditions. To avoid inhibition of tryptophan synthetase by a high concentration of indole, nonaqueous organic solvents, Amberlite XAD-2 adsorbent, and nonionic detergents were used as reservoirs of indole in the reaction mixture for the production of L-tryptophan. As a result, different effects were observed on the production of L-tryptophan. Particularly, among the nonionic detergents, Triton X-100 was very efficient. Using Triton X-100 for production of L-tryptophan from indole and L- or D,L-serine by whole cells of Escherichia coli B 10, 14.14 g/100 mL and 14.2 g/100 mL of L-tryptophan were produced at 37 degrees C for 60 h.  相似文献   

18.
19.
High cell density cultivation of recombinant Escherichia coli strains harboring the nodBC genes (encoding chitooligosaccharide synthase and chitooligosaccharide N-deacetylase, respectively) from Azorhizobium caulinodans has been previously described as a practical method for the preparation of gram-scale quantities of penta-N-acetyl-chitopentaose and tetra-N-acetylchitopentaose (Samain, E., Drouillard, S., Heyraud, A., Driguez, H., Geremia, R.A., 1997. Carbohydr. Res. 30, 235-242). We have now extended this method to the production of sulfated and O-acetylated derivatives of these two compounds by coexpressing nodC or nodBC with nodH and/or nodL that encode chitooligosaccharide sulfotransferase and chitooligosaccharide O-acetyltransferase, respectively. In addition, these substituted chitooligosaccharides were also obtained as tetramers by using nodC from Rhizobium meliloti instead of nodC from A. caulinodans. These compounds should be useful precursors for the preparation of Nod factor analogues by chemical modification.  相似文献   

20.
Cell elongation in strains of Escherichia coli.   总被引:1,自引:2,他引:1  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号