首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
'End plate spike' (EPS) is a spontaneous action potential of a normal striated muscle. EPSs are found in local 'active spots' of the muscle. The prevailing hypothesis about the origin of EPSs states that when a needle electrode affects a motor nerve branch near the neuromuscular junction at the end plate zone, an increased leakage of acetylcholine to the synaptic cleft ensues. This elicits postsynaptic action potentials of the muscle fibre which can be recorded as EPSs with the same needle electrode. Thus EPSs are thought to be caused by needle injury or irritation of the motor axon. We suggest that EPSs are action potentials of intrafusal muscle fibres and that 'active spots' are in fact muscle spindles. Waveform analysis reveals three types of EPSs: small EPSs, not propagated outside the active spot either: i) with negative onset; or ii) with short positive initial deflection; and iii) large EPSs resembling propagated motor unit potentials (MUPs) but with a typical EPS firing pattern, distinctly different from that of the MUPs. Study of EPS activation in different manoeuvres associates small EPSs with intrafusal gamma motor units and large MUP-like EPSs with beta motor units.  相似文献   

2.
赵国民  朱培闳 《生理学报》1988,40(4):315-325
用河豚毒素(TTX)慢性阻断大鼠坐骨神经的冲动传导,使后肢不活动,经过不同时间(最长7d)后离体观察了快肌伸趾长肌(EDL)和慢肌比目鱼肌(SOL)肌纤维终板区的诱发动作电位。我们发现在不活动期间动作电位超射和上升速率逐步下降,并从第4天起部分肌纤维能在含有1×10~(-7)g/ml TTX的溶液中被诱发产生动作电位(称抗TTX动作电位),待至第7天时全部SOL肌纤维和90%的EDL肌纤维都能被诱发出抗TTX动作电位。与去神经肌纤维相比,不仅抗TTX动作电位出现较晚,并且其超射和上升速率较低。在去掉TTX阻断使肌肉恢复活动后,动作电位超射和上升速率渐趋恢复,抗TTX动作电位逐渐消失。无论是动作电位的恢复还是抗TTX动作电位的消失,EDL肌纤维均快于SOL肌纤维。本文还讨论了不活动化使肌纤维动作电位变化以及快、慢肌差别的可能原因。  相似文献   

3.
Morphine reduces the output of transmitter from the myenteric plexus-longitudinal muscle preparation of the guinea-pig ileum and from the mouse vas deferens. Intracellular recordings were made from ganglion cells of the myenteric plexus and smooth muscle cells of the vas deferens. Synaptic transmission within the myenteric plexus was blocked by hexamethonium. Morphine did not change the properties of the ganglion cells, nor did it affect synaptic potentials. 5-Hydroxytryptamine inhibited acetylcholine release at intraganglionic synapses by an action which was unaffected by morphine. In the vas deferens, excitatory junction potentials were elicited by stimulation of postganglionic adrenergic nerve fibres. The junction potentials were depressed by morphine and levorphanol but not by dextrorphan. This depression was reversed by naloxone. The results indicate that morphine acts directly to reduce transmitter release at the neuro-effector junctions in the myenteric plexus-longitudinal muscle preparation and in the vas deferens in these species.  相似文献   

4.
Pyriformis muscles of Rana temporaria were completely or partially denervated by cutting the sciatic nerve or some of the small nerve branches entering the muscle. One stimulating and one to three recording microelectrodes were inserted along the fibres in order to compare the electrical activity at these points. In an early period following denervation action potentials of variable size and shape could be observed; these action potentials were often composed of two, sometimes of three or four, components. The size of individual components depended on the position of the recording microelectrode. Individual components could occasionally be triggered separately by adjusting the strength of the stimulating current pulse; propagation of these "all or none" responses was absent. In other fibres one component of the action potential could trigger another one several millimetres apart, thus indicating propagation. Conduction velocities were approximately 0.4 m/s. In partially denervated slow fibres, endplate potentials were confined to one lateral segment of the fibres, while the action potential occupied the denervated part of the membrane. The amplitudes of endplate and action potentials varied inversely with distance. Rough estimates of the length constant of the slow fibre membrane were calculated from the spatial decay of action potentials, endplate potentials and hyperpolarizing electrotonic potentials; mean values obtained were 2.5, 4.8 and 7.7 mm respectively. The results suggest that following denervation Na channels are built into discrete areas of the slow fibre membrane and that this process depends on the amount of denervation in individual fibres.  相似文献   

5.
A sublethal dose of a post-synaptic blocking fraction of Naja siamensis venom was injected into the soleus muscle of the mouse inhibiting neuromuscular transmission for 2-3 days. The paralysed soleus muscle behaved as if denervated, developing extra-junctional sensitivity to acetylcholine and accepting innervation by an implanted foreign nerve. Since the only known action of the post-synaptic blocking fraction of this venom is due to its affinity to acetylcholine receptors, the results suggest that the spread in the sensitivity of muscle fibres to acetylcholine and their ability to accept a foreign nerve is a consequence of neuromuscular blockade.  相似文献   

6.
Strips of denervated adult mouse diaphragm muscle maintained in organ culture were reinnervated by nerve processes growing out from explants of embryonic mouse spinal cord. In vivo, following denervation, the action potential loses its sensitivity to tetrodotoxin; this sensitivity is regained upon reinnervation. Similarly, action potentials in cultured muscle fibres were insensitive to tetrodotoxin, and sensitivity was restored in muscle fibres that became reinnervated in vitro. Tetrodotoxin sensitivity was also restored in cultured muscle fibres reinnervated in the continuous presence of d-tubocurarine, but it was not induced by 4 days of direct electrical stimulation of noninnervated muscles. We conclude that developing nerve terminals can exert a trophic action on adult muscle fibres that is independent of electrical activity in the muscle.  相似文献   

7.
The origin of the membrane changes induced in skeletal muscle by denervation has been investigated by examining partially denervated rat hindlimb muscles rendered inactive for 2-3 days by a chronic conduction block in the sciatic nerve. Extra-junctional sensitivity to acetylcholine and spike resistance to tetrodotoxin developed to the same extent in the denervated and the adjacent innervated but inactive fibres. On the other hand, impulse-blocked fibres of control muscles not containing denervated fibres showed, at this early time, little membrane changes. These results are interpreted as indicating that the response of muscle to denervation is due to the combined action of inactivity and products of nerve degeneration.  相似文献   

8.
Bioelectrical potentials were studied from longitudinal muscle fibres of the cockroach proctodeum. The muscle bundle receives a polyaxonal innervation from both anterior and posterior branches of the anterior proctodeal nerve. Evoked post-synaptic potentials consisted of two independent, but similar components generated through the two branches. An action potential in the muscle fibre could be generated with single branch stimulation, and more readily by co-operation of excitation in the two nerve branches.Any part of the muscle was capable of acting as a pacemaker for myogenic rhythmic action potential, and the pacemaker region fluctuated with time. Excitation of the muscle could spread in two ways, directly myogenic and indirectly through nerve tracts. Myogenic conduction (2 cm/sec) was observed to be slower than neural conduction (35–38 cm/sec) in the muscle bundle.  相似文献   

9.
Acetylcholine receptors in the muscle cell membrane accumulate at the nerve contact area in Xenopus cell cultures. The correlation between spontaneous synaptic potential properties and extent of acetylcholine receptor accumulation was studied. Small and infrequent miniature endplate potentials were measured before acetylcholine receptor accumulation which was observed with fluorescence microscopy using tetramethylrhodamine-conjugated α-bungarotoxin. As acetylcholine receptors accumulate at the nerve contact area, these synaptic potentials become larger and their frequency increases dramatically. In nerve-contacted muscle cells where spontaneous synaptic activity could not be detected, extensive acetylcholine receptor accumulation was not found at sites of nerve contact. Furthermore, muscle cells which exhibited extensive acetylcholine receptor accumulation along the nerve always produced miniature endplate potentials. Thus acetylcholine receptor accumulation and the presence of miniature endplate potentials were strongly correlated. Noncholinergic neurons from dorsal root ganglia did not form functional synaptic contacts with muscle cells nor acetylcholine receptor accumulation along the path of contact. Furthermore, explants from tadpole spinal cord formed functional synaptic contacts with muscle cells but rarely caused AChR localization. These data are discussed in terms of developmental processes during neuromuscular junction formation.  相似文献   

10.
The mode of action of acetylcholine (ACh) and succinylcholine (SCh) on the isolated frog's muscle spindle has been studied. Receptor afferent nervous supply was maintained; the appropriate spinal roots were dissected for stimulating motor axons and recording from sensory fibres. Excitatory effects on the afferent activity, when the receptor was held still and during stretching, were found with ACh or SCh concentrations of 10(-8) to 10(-3); 10(-6) g/ml being usually effective. These effects are similar to those obtained by stimulating fusimotor nerve fibres. The contractile activity of intrafusal muscle fibres which occurred during these effects was observed. Seldom, and only for high concentrations of ACh and SCh, a decrease in afferent activity following the excitatory effects was found. Tubocurarine chloride (10(-5)-10(04) g/ml) in the bath prevented both motor fibres and drugs effects. Sometimes slight transient excitation occurred at very high concentrations of the two tested substances; however, this effect was prevented by stronger curarization. The observed blocking effects were always reversed by removing tubocurarine from the bath. No more excitatory effects by motor fibres stimulation and by ACh and SCh action could be found after destruction of intrafusal muscle fibres, by pinching them as close as possible to the ends of the spindle. It is suggested that ACh and SCh act indirectly by causing mechanical changes in intrafusal muscle fibres, and that a direct action on sensory nerve endings, if any, cannot, by itself, increase the afferent activity of the receptor.  相似文献   

11.
Microelectrode experiments on the rat diaphragm showed that application of colchicine, which disturbs axonal transport, to the motor nerve leads after 5 days to a decrease in resting potential and an increase in input resistance of the electrogenic membrane, disappearance of differences of input resistance between the postsynaptic and extrasynaptic membranes, the appearance of extrasynaptic sensitivity to acetylcholine, and the appearance of anode-break action potentials resistant to tetrodotoxin. Similar changes develop in the muscle membrane after division of the motor nerve. Application of colchicine to the nerve, unlike its division, does not cause cessation of contractile activity of the muscle or disturbance of quantal and reduction of nonquantal acetylcholine secretion in motor nerve endings, as reflected in the degree of hyperpolarization of the postsynaptic membrane (H effect) in response to the action of D-tubocurarine chloride on the muscle after inhibition of acetylcholinesterase. The results confirmed the view that neurotrophic control of the mammalian muscle fiber membrane is effected mainly by means of substances carried to the muscle by axonal transport. Synaptic acetylcholine, secreted from nerve endings in nonquantal form, does not play a leading role in neurotrophic control of the muscle membrane.S. V. Kurashov Medical Institute, Ministry of Health of the RSFSR, Kazan'. Translated from Neirofiziologiya, Vol. 16, No. 2, pp. 231–238, March–April, 1984.  相似文献   

12.
Two buccal mass retractor muscles of Philine are innervatedby at least 4 excitatory motoneurons, whose cell bodies liein the buccal and the cerebral ganglia. The muscle fibres respondto action potentials generated in the motoneurons or their axonswith excitatory junction potentials (ejps), each of which isfollowed by a small twitch-like contraction. Both the electricaland mechanical responses facilitate and summate with repetitivestimulation. A large ventrally located cerebral neuron (VGC) inhibits tensiondevelopment in the muscle by reducing the amplitude of the excitatoryjunction potentials from and identified buccal motoneuron. Acetylcholinereversibly depolarises and causes tonic contraction of the muscles.This action is partially antagonised by hexamethonium, whichalso blocks the ejps from two axons in the buccal and one inthe pedal nerve 9. 5-Hydroxytryptamine potentiates the ejp fromthe identified buccal motoneuron and enhances the rate of relaxation.Histamine reduces the amplitude of the presumed cholinergicbuccal nerve ejps, but does not affect the hexamethonium sensitiveejp in the pedal nerve 9. In this respect its action resemblesthat of the ventral giant cell.  相似文献   

13.
It was shown that external magnetic field indirectly affects the blood flow due to the increments of local currents in the surroundings of action potentials that propagate along nerve fibres innervating the smooth muscle cells of the vessel wall. This reduces their tension due to nonconcurrent propagation of excitation in space and to changes in the frequency of action potentials. The dependence of this effect on the electrophysiological parameters is estimated.  相似文献   

14.
Somatosensory evoked potentials (SEPs) and compound nerve action potentials (cNAPs) have been recorded in 15 subjects during electrical and magnetic nerve stimulation. Peripheral records were gathered at Erb's point and on nerve trunks at the elbow during median and ulnar nerve stimulation at the wrist. Erb responses to electrical stimulation were larger in amplitude and shorter in duration than the magnetic ones when ‘electrical’ and ‘magnetic’ compound muscle action potentials (cMAPs) of comparable amplitudes were elicited. SEPs were recorded respectively at Cv7 and on the somatosensory scalp areas contra- and ipsilateral to the stimulated side. SEPs showed a statistically significant difference in amplitude only for the brachial plexus response and for the ‘cortical’ N20-P25 complex; differences were not found between the magnetic and electrical central conduction times (CCTs) or for the peripheral nerve response latencies. Magnetic stimulation preferentially excited the motor and proprioceptive fibres when the nerve trunks were stimulated at motor threshold intensities.  相似文献   

15.
IT is generally accepted that botulinum toxin entirely blocks transmitter release from motor nerve terminals without affecting nerve conduction or the sensitivity of the muscle membrane to acetylcholine. In particular, it has been reported that with both acute and chronic intoxication with type A botulinum, miniature end-plate potentials (m.e.p.p.s.) disappear completely from a muscle at about the time that transmission is blocked1,2. The action of botulinum toxin has been reinvestigated following acute application of toxin to the rat diaphragm in vitro and chronic paralysis of rat soleus muscle following a single intramuscular injection of toxin; miniature potentials have been observed to persist following blockade of neuromuscular transmission.  相似文献   

16.
In isolated canine ileal longitudinal muscle preparations, cholecystokinin-octapeptide (CCK-8) produced a concentration-dependent contraction, which was suppressed by peptide YY (PYY) and was abolished by tetrodotoxin and atropine. PYY was approximately 2200-times as potent as CR1505, a CCK-receptor antagonist. PYY opposed the action of CCK-8 to a greater extent than that of nicotine and transmural electrical stimulation. Acetylcholine-induced contractions were not influenced by PYY. It seems likely that the CCK-8-induced ileal muscle contraction is associated with an activation of CCK receptors in cholinergic nerves, which generates nerve action potentials and releases acetylcholine, whereas CCK-8 acts on CCK receptors in gallbladder smooth muscle, producing contractions. It may be concluded that PYY inhibits the action of CCK-8 on ileal muscle strips, by inhibiting the release of acetylcholine from cholinergic nerve terminals. On the other hand, in the gallbladder, PYY does not appear to block cholinergic nerve function.  相似文献   

17.
The effects of nicardipine, a dihydropyridine Ca2(+)-channel antagonist, on neuromuscular transmission and impulse-evoked release of acetylcholine were compared with those of nifedipine. In the isolated mouse phrenic nerve diaphragm, nicardipine (50 microM), but not nifedipine (100 microM), induced neuromuscular block, fade of tetanic contraction, and dropout or all-or-none block of end-plate potentials. Nicardipine had no significant effect on the resting membrane potential and the amplitude of miniature end-plate potentials but increased the frequency and caused the appearance of large size miniature potentials. The quantal contents of evoked end-plate potentials were increased. In the presence of tubocurarine, however, nicardipine depressed the amplitude of end-plate potentials. The compound nerve action potential was also decreased. It is concluded that nicardipine blocks neuromuscular transmission by acting on Na+ channels and inhibits axonal conduction. Nicardipine appeared to affect the evoked release of acetylcholine by dual mechanisms, i.e., an enhancement presumably by an agonist action on Ca2+ channels, like Bay K 8644 and nifedipine, and inhibition by an effect on Na+ channels, like verapamil and diltiazem. In contrast with its inactivity on the amplitude of miniature end-plate potentials, depolarization of the end plate in response to succinylcholine was greatly depressed. The contractile response of baby chick biventer cervicis muscle to exogenous acetylcholine was noncompetitively antagonized by nicardipine (10 microM), but was unaffected by nifedipine (30 microM). These results may implicate that nicardipine blocks the postsynaptic acetylcholine receptor channel by enhancing receptor desensitization or by a use-dependent effect.  相似文献   

18.
The electrical properties of the ventral longitudinal muscle fibres in the flour moth larva Ephestia kuehniella were investigated at rest and during electrical activity. The membrane resting potential was only partially dependent on the K-concentration gradient across the muscle membrane. The electrical constants λ, τ, Rm, Ri, and Cm were determined according to the equations for ‘short cables’ (Table 1). Current-voltage relationships of the muscle membrane were measured: they revealed anomalous as well as delayed rectification of the membrane. Stimulation of the muscle fibres with intracellular current pulses elicited graded action potentials in most fibres; in some fibres ‘all-or-none’ action potentials were generated. In contrast to graded action potentials these ‘all-or-none’ action potentials were propagated without decrement along the muscle fibre. Indirect stimulation of the muscle fibres resulted in large excitatory junction potentials which generally gave rise to action potentials.  相似文献   

19.
The origin of the muscle fasciculation caused by funnel-web spider venom   总被引:1,自引:0,他引:1  
The origin of the fasciculation of skeletal muscle produced by funnel-web spider venom (FSV) has been examined in mouse phrenic nerve hemi-diaphragm preparations, FSV from male spiders at concentrations greater than 10(-6) g/ ml invariably produced muscle fasciculation which could be prevented by d-tubocurarine (14micron), tetrodotoxin (0.3 micron) or by increasing the external magnesium concentration or calcium concentration. Diphenyl hydantoin (3-6 X 10(-5) M) was able to reduce these fasciculations in some experiments. In curarized preparations, multiple end plate potentials (EPPs) in response to single stimuli and bursts of spontaneous EPPs were seen in the presence of FSV (10(-5) g/ml). Extracellular recordings from phrenic nerves in the presence of FSV (10(-5) g/ml) revealed additional components in compound action potentials elicited by single stimuli, and "spontaneous" electrical activity was observed in unstimulated nerves. This spontaneous activity was abolished by raising the divalent cation concentration in the bathing solution. These results suggest that a primary site of action of FSV is the surface membrane of nerve fibres and that muscle fasciculation arises as a consequence of spontaneous action potentials produced by the venom in motor nerves.  相似文献   

20.
A single sucrose gap techniques has been used to study action potentials and phase plane trajectories of them in atrial trabeculae of the rabbit. Using polynomial representations of current-voltage relationships a model of membrane action potential of atrial myocardial fibres is described and allows an interpretation of recording data from the phase plane trajectories. Our findings show: 1. Increasing extracellular calcium concentration increases a potassium conductivity of the atrial membrane. 2. An anomalous rectification concerning repolarizing currents in atrial fibres decreases with increasing extracellular calcium. 3. Acetylcholine (3.10(-4) g.cm-3) abolishes the anomalous rectification. These results are discussed in relation to previous electrophysiological studies of negative electrotropic effects of acetylcholine in cardiac muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号