首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
GTP-binding activity to Dictyostelium discoideum membranes was investigated using various guanine nucleotides. Rank order of binding activities was: GTP gamma S greater than GTP greater than 8-N3-GTP; the binding of GTP gamma S and GTP, but not of 8-N3-GTP, was stimulated by receptor agonists. [3H]GTP binding to D. discoideum membranes has been described previously by a single binding type (Kd = 2.6 microM, Bmax = 85 nM). More detailed studies with [35S]GTP gamma S showed heterogeneous binding composed of two forms of binding sites with respectively high (Kd = 0.2 microM) and low (Kd = 6.3 microM) affinity. cAMP derivatives enhanced GTP gamma S binding by increasing the affinity and the number of the high-affinity sites, while the low-affinity sites were not affected by cAMP. The specificity of cAMP derivatives for stimulation of GTP gamma S binding showed a close correlation with the specificity for binding to the cell surface cAMP receptor. Pretreatment of D. discoideum cells with pertussis toxin did not affect basal GTP and GTP gamma S binding, but eliminated the cAMP stimulation of GTP and GTP gamma S binding. These results indicate that D. discoideum cells have a pertussis toxin-sensitive GTP-binding protein that interacts with the surface cAMP receptor, suggesting the functional interaction of surface receptor with a G-protein in D. discoideum.  相似文献   

2.
A cAMP-adenosine binding protein partially purified from exponentially growing Dictyostelium discoideum cells carries S-adenosyl-L-homocysteine (SAH) hydrolase activity. This protein is present throughout the developmental cycle and has many properties in common with a cAMP binding activity previously reported from this laboratory (Gunzburg and Véron, 1981). Direct binding measurements with radioactive ligands indicate a dissociation constant of 0.2 microM for adenosine and 9 nM for cAMP, a value in good agreement with measurements of the rate constants for cAMP binding (k+1 = 2.4 X 10(4) M-1 sec-1) and dissociation (k-1 = 1.1 X 10(-4) sec-1). The binding of cAMP is completely abolished in the presence of 1 microM adenosine; a maximum 60 per cent inhibition of adenosine binding can be achieved with cAMP concentrations as high as 0.1 microM, suggesting that at least some of the cAMP and adenosine binding sites are not identical. The protein has a sedimentation coefficient of 9.2S and a native molecular weight of 190,000, as judged by gel filtration. Labeling with the photoaffinity ligand 8-azido-[3H]-cAMP followed by SDS polyacrylamide gel electrophoresis results in a single band of 47,000 MW, suggesting that the protein may be a tetramer. The physiological importance of the protein and its association with SAH hydrolase activity is discussed in relation to a possible role in the regulation of protein and phospholipid methylation that occurs during chemotaxis.  相似文献   

3.
We have purified and characterized the adenosine A2-like binding site from human placental membranes. 5'-N-Ethylcarboxamido[2,8-3H]adenosine ([3H]NECA) binds to this site, with a Kd of 240 nM and a Bmax of 13.0 pmol/mg in human placental membranes. The adenosine A2-like binding site was purified after extraction from placental membranes with 0.1% 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonic acid. The purification included ammonium sulfate precipitation and concanavalin A, DEAE-Sephadex, and Sepharose 6B gel filtration chromatographies. The protein was purified 127-fold to homogeneity, with a final specific activity of 1.5-1.9 nmol/mg of protein and a 5.5-8.1% yield of binding activity from the membranes. The purified protein had similar binding properties and an identical potency order for displacement of [3H] NECA by adenosine analogs as the initial membranes. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of purified protein revealed a single band at 98 kDa which coeluted with [3H]NECA binding activity during Sepharose 6B gel filtration chromatography. In 0.1% Triton X-100, the binding complex has a Stokes radius of 70 A, a sedimentation coefficient of 6.9 S, and a partial specific volume of 0.698 ml/g. The detergent-protein complex has a calculated molecular mass of 230 kDa. The estimated frictional ratio is 1.5. The native binding complex appears to consist of a dimer of identical subunits. The function of this ubiquitous protein remains unclear.  相似文献   

4.
Two high-affinity cAMP-binding proteins (I and II) have been purified to homogeneity from baker's yeast by a procedure avoiding proteolytic damage. These proteins have been identified as multiple forms of glyceraldehyde-3-phosphate dehydrogenase. The two cAMP-binding proteins are similar in affinities for cAMP, have identical elution volumes on gel filtration, and contain one type of subunit (Mr 37 500). The form II of glyceraldehyde-3-phosphate dehydrogenase is free of NAD+ and has a Kd of 1.3 X 10(-6) M with respect to cAMP. A marked concentration-dependent self-association of the subunits of the form-II protein was revealed by Yphantis sedimentation equilibrium studies. Significant monomer concentrations are present at total concentrations less than 0.02 mg/ml. Conventional sedimentation equilibrium analyses indicated a tetramer Mr of 170 000. The high-affinity binding of cAMP to glyceraldehyde-3-phosphate dehydrogenase may significantly reduce intracellular cAMP levels and is also discussed in relation to the nature of eukaryote cAMP-binding proteins with similar native or subunit Mr values which are at present functionally undefined.  相似文献   

5.
The new techniques of culture of bone marrow have shown that androgens and 5 beta steroids exert a direct effect on erythroid precursor cells from human or animal bone marrow. By contrast, the mechanisms of the intracellular actions of those compounds are poorly understood. Tritiated methyltrienolone (R 1881), a synthetic androgen that highly binds to androgen receptor, has been used for the study of a binding activity in nuclear extracts of cultured erythroblasts from human bone marrow. The nuclear extracts contain binding sites saturable at low concentrations of 3H-R 1881 (20-30 nM). Scatchard analysis revealed that the R 1881-nuclear complex has a dissociation constant (Kd) of 25-50 nM, and the number of binding sites was 235-370 fmoles/mg protein. The complex sedimented on 5-20% sucrose gradient in the 3.9 S region and 5 beta dihydrotestosterone compete strongly with R 1881 for binding sites. This binding component has characteristics of high affinity, low-capacity, sedimentation behaviour, and specificity commonly attributed to "androgen receptors".  相似文献   

6.
In Xenopus laevis mitochondria up to 14 different polypeptides with affinity for the DNA, have been identified by the protein blotting technique. Under stringent binding conditions only one polypeptide displayed specific affinity for a restriction fragment containing the H strand origin of replication of the Xenopus laevis mt chromosome. The proteins were fractionated by double stranded DNA cellulose chromatography. Under conditions which favor high affinity interactions between proteins and DNA, a protein of the 2M NaCl step shows specific binding to the DNA fragments containing the D-loop region. Some physical properties of the protein have been studied. It has a MW of 21.5 Kd and a globular shape as can be inferred from the relationship between MW and sedimentation coefficient (2.7 S). It binds non cooperatively to DNA and forms relatively stable complexes as demonstrated by DNA competition experiments.  相似文献   

7.
The binding of [3H]cAMP to Dictyostelium discoideum cells was analyzed on a seconds time scale under both equilibrium and nonequilibrium conditions. The binding of [3H]cAMP increases rapidly to a maximum obtained at about 6 s, which is followed by a decrease to an equilibrium value reached at about 45 s. This decrease of [3H]cAMP binding is not the result of ligand degradation or isotope dilution by cAMP secretion but is due to a transition of high-affinity binding to low-affinity binding. Analysis of the dissociation rate of [3H]cAMP from the binding sites indicates that these high- and low-affinity binding sites are both fast dissociating with a half-life of about 1 s. In addition, these dissociation experiments reveal a third binding type which is slowly dissociating with a half-life of about 15 s. The number and affinity of these slowly dissociating sites does not change during the incubation with [3H]cAMP. The drugs caffeine and chlorpromazine do not change the total number of binding sites, but they change the ratio of the three binding types. In the presence of 10 mM caffeine almost all binding sites are in the low affinity conformation, while in the presence of 0.1 mM chlorpromazine the ratio is shifted to both the high-affinity type and slowly dissociating type. The results indicate that the cAMP-binding activity of D. discoideum cells is heterogeneous. In the absence of cAMP about 4% of the sites are slowly dissociating with Kd = 12.5 nM, about 40% are fast dissociating with high affinity (Kd = 60 nM), and about 60% are fast dissociating with low affinity (Kd = 450 nM). During the binding reaction the number of slowly dissociating sites does not change. The number of high-affinity sites decreases to a minimum of about 10% with a concomitant increase of low-affinity sites to about 90%. This transition of binding types shows first-order kinetics with a half-life of about 9 s. A half-maximal transition is induced by 12.5 nM cAMP.  相似文献   

8.
We have used a polyclonal affinity-purified antibody made against chicken brain fodrin (both 240 and 235 Kd subunits) as a probe to determine if a fodrinlike protein exists in amoebae of Dictyostelium discoideum. In Western blots of whole cells and the isolated cell cortex, polypeptides measuring 220 and 70 Kd are recognized by the fodrin antibodies. In situ localization by indirect immunofluorescence with antifodrin indicates that the immunoreactive polypeptides are cortical. The immunoreactive analogues copatch and cocap with concanavalin A. At the level of resolution of the electron microscope, immunocytochemistry with antifodrin and colloidal gold confirms that the immunoreactive analogues are cortical proteins associated with microfilaments on the cytoplasmic side of the plasma membrane. We have isolated and characterized the 220 Kd protein to determine if it is similar to fodrin and to investigate its relationship to the 70 Kd polypeptide. The 220 Kd protein can be extracted from the cortex in the absence of detergent and isolated by gel filtration and sucrose density gradient sedimentation. The 220 Kd is a rod-shaped protein 118 +/- 17.8 nm (N = 37) in length. It has a sedimentation coefficient of 9.3 S and Stokes' radius of 13 nm and exists as a dimer of approximately 500,000 daltons (Mr). Isolated 220 Kd binds to actin filaments in vitro when assayed by rotary shadowing. Morphological criteria distinguish 220 Kd from Dictyostelium myosin II heavy chain (215 Kd) and the filaminlike protein at 240 Kd. The 70 Kd polypeptide appears to be a cleavage fragment of the 220 Kd, since it is found after prolonged storage when formerly only the 220 Kd was present. Furthermore, the 220 and 70 Kd polypeptides exhibit similar one-dimensional peptide maps when treated with TPCK trypsin. On the basis of its physical and immunoreactive characteristics, and location in the cell, the 220 Kd may be a fodrinlike protein.  相似文献   

9.
Some physico-chemical properties of glutamate-binding proteins solubilized from rat cerebral cortex synaptic membranes and purified by affinity chromatography were studied. Purified proteins were shown to be homogenous during SDS polyacrylamide gel electrophoresis (Mr 14000). The Scatchard plots for L-[3H]glutamate binding to the purified membrane proteins revealed the presence of one type of binding sites with Kd 800-1000 nM and Bmax 180-200 pmol/mg of protein. Ultracentrifugation of the glutamate-binding membrane protein in sucrose linear gradient demonstrated that the position of the protein peak depends on protein concentration, i.e. after dilution of the sample the protein peak is shifted from 28 000-30 000 to 12 000-15 000. The values of sedimentation coefficients decrease correspondingly to 2.1S. Presumably, these processes are due to dissociation of receptor macromolecules. The glutamate receptor is a glycoprotein-lipid complex made up of several low molecular weight subunits.  相似文献   

10.
A specific 1,25-dihydroxycholecalciferol-binding protein has been detected in high-salt cytosols prepared from human medullary thyroid carcinomas. The binding protein had the same equilibrium dissociation constant (Kd = 0.17 +/- 0.05 nM; n = 4) and sedimentation coefficient on sucrose gradients (3.7S) as than seen in established vitamin D target tissues. This protein was not detected in normal thyroid cytosols, which may reflect the low proportion of C-cells within the gland.  相似文献   

11.
We have purified and characterized an oligopeptide binding protein released from the periplasm of Escherichia coli W by mild osmotic shock. The purified protein was greater than 97% homogeneous as determined by either sodium dodecyl sulfate-polyacrylamide gel electrophoresis (Mr = 60,000) or isoelectric focusing (pI = 5.95). The binding protein has a Stokes radius of 30 A and a sedimentation coefficient (s(0)20,w) of 4.6 S. Based on these hydrodynamic studies, the native protein has a molecular weight of 56,000. The tripeptide, Ala-Phe-[3H]Gly, which is transported via the shock-sensitive sensitive oligopeptide permease, binds to the purified protein in dilute solution with a Kd of 0.1 microM and a stoichiometry of approximately 1 to 1. Results from this study support the hypothesis that this periplasmic oligopeptide binding protein functions in the initial recognition of peptide substrates for the oligopeptide permease system.  相似文献   

12.
E M Reimann 《Biochemistry》1986,25(1):119-125
The type II adenosine cyclic 3',5'-phosphate (cAMP) dependent protein kinase from bovine heart, consisting of a dimeric regulatory subunit and two catalytic subunits, was converted to a heterodimer by limited tryptic digestion. Loss of the tetrameric structure was accompanied by proteolysis of the regulatory subunit to a form with an apparent molecular weight of 45 000 vs. 52 000 for the native subunit. The proteolyzed subunit behaved as a monomer, in contrast to the dimeric native subunit. Amino acid sequence analysis established that proteolysis removed 45 residues at the N-terminus, indicating that these 45 residues constitute the dimerizing domain of this protein. The kinetic properties of this heterodimer were indistinguishable from those of the native tetramer: half-maximal kinase activation occurred at 48 nM cAMP with a Hill coefficient of 1.45, the regulatory subunit bound 1.5 equiv of cAMP with half-maximal binding occurring at 33 nM, and kinetics for dissociation of bound cAMP were biphasic, indicating the presence of two different binding sites. These observations suggest that residues 1-45 function only in the formation of dimers and that dimerization has little influence on other functional properties of the regulatory subunit. More extensive proteolysis cleaved the monomeric fragment at Lys-311. The fragments resulting from this second cleavage did not dissociate, and the complex inhibited the catalytic subunit in a cAMP-dependent manner.  相似文献   

13.
An established cell line (TM-4) derived from murine Sertoli cells, the major supportive cell type of the testes, secretes a protein that binds retinol when grown in serum-free chemically defined medium. The protein that binds retinol is trypsin-sensitive and has an apparent Kd for retinol of 54 nM. Cholesterol, retinyl acetate, or UV-irradiated retinol at levels 100-fold in excess of retinol are poor competitors of [3H]retinol binding. Retinoic acid at a 100-fold molar excess inhibited [3H]retinol binding by 71%. In contrast, excess unlabeled retinol completely inhibits [3H]retinol binding. More than 80% of the total retinol-binding activity in confluent cultures is found in the culture medium. Prior to incubation with retinol, the protein that binds retinol has an apparent Mr of less than 150,000 by column chromatography; however, after incubation with retinol the protein that binds retinol exhibits an apparent Mr of 2 X 10(6) or greater and a sedimentation coefficient greater than 4 S. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis reveals that the major iodinatable component of the aggregated protein that binds retinol has an apparent Mr of 70,000. The secreted protein that binds retinol is not immunologically cross-reactive with either serum or cellular retinol-binding protein or transferrin. These findings suggest that Sertoli cells may secrete a protein that binds retinol. Such a protein could be involved in the transport of retinol either to the lumen of the seminiferous tubules or to the developing germ cells themselves.  相似文献   

14.
The binding characteristics of reduced hepatic membrane proteins for acetylated low-density lipoprotein (acetyl-LDL) and maleylated bovine serum albumin (Mal-BSA) have been examined. Two receptor activities were extracted from hepatic membranes in the presence of octyl beta-D-glucoside and beta-mercaptoethanol, and were separated by chromatography on Mal-BSA-Sepharose 4B. The receptors were revealed by ligand blotting. The active binding proteins had apparent molecular masses of 35 and 15 kDa in SDS/polyacrylamide gels. Equilibrium studies with protein-phosphatidylcholine complexes indicated that the reduced 35 kDa protein expresses two binding sites for Mal-BSA and one for acetyl-LDL, whereas the 15 kDa protein-phosphatidylcholine complex binds 131I-Mal-BSA and 131I-acetyl-LDL with a 4:1 stoichiometry. 131I-Mal-BSA binding was linear with both proteins, with a Kd of 4.8 nM at the 35 kDa protein and a Kd of 5.6 nM at the 15 kDa protein. The 35 kDa protein displayed saturable binding of 131I-acetyl-LDL with a Kd of 5 nM; the 15 kDa binding protein bound 131I-acetyl-LDL with a Kd of 2.3 nM. A 85 kDa protein was obtained by Mal-BSA-Sepharose chromatography when the hepatic membranes had been solubilized with Triton X-100 in presence of GSH/GSSG. This protein displayed saturable 131I-Mal-BSA binding with a Kd of 30 nM and 131I-acetyl-LDL binding with a Kd of 6.5 nM. The 131I-Mal-BSA binding capacity was four times higher than that of 131I-acetyl-LDL. Competition studies with the 35 kDa, 15 kDa and 85 kDa proteins binding Mal-BSA, acetyl-LDL, formylated albumin and polyanionic competitors provide evidence for the existence of more than one class of binding sites at the reduced binding proteins.  相似文献   

15.
cAMP induces a transient increase of cAMP and cGMP levels in Dictyostelium discoideum cells. Fast binding experiments reveal three types of cAMP-binding site (S, H and L), which have different off-rates (t0.5, 0.7-15 s) and different affinities (Kd, 15-450 nM). A time- and cAMP-concentration-dependent transition of H- to L-sites occurs during the binding reaction (Van Haastert, P.J.M. and De Wit, R.J.W. (1984) J. Biol. Chem. 13321-13328). Extracellular Ca2+ had multiple effects on cAMP-binding sites. (i) The number of H + L-sites increased 2.5-fold, while the number of S-sites was not strongly affected. (ii) The Kd of the S-sites was reduced from 16 nM to 5 nM (iii) The conversion of H-sites to L-sites was inhibited up to 80%. The kinetics of the cAMP-induced cAMP accumulation was not strongly altered by Ca2+, but the amount of cAMP produced was inhibited up to 80%. The kinetics of the cAMP-induced cGMP accumulation was strongly altered; maximal levels were obtained sooner, and the Ka was reduced from 15 to 3.5 nM cAMP. Ca2+, Mg2+ and Mn2+ increased the number of binding sites, all with EC50 = 0.5 mM. The S-sites and the cGMP response were modified by equal Ca2+ concentrations and by higher concentrations of Mg2+ and Mn2+ (EC50 are respectively 0.4 mM, 2.5 mM and about 25 mM). The conversion of H- to L-sites and the cAMP response were specifically inhibited by Ca2+ with EC50 = 20 microM. It is concluded that cAMP activates guanylate cyclase through the S-sites; adenylate cyclase is activated by the H + L-sites, in which the appearance of the L-sites during the binding reaction represents the coupling of occupied surface cAMP receptors to adenylate cyclase.  相似文献   

16.
The binding of [3H]kainate to goldfish brain membrane fragments was investigated. Scatchard analysis revealed a single class of binding sites in Tris-HCl buffer with a Kd of 352 nM and a Bmax of 3.1 pmol/mg wet weight. In Ringer's saline, [3H]kainate bound with a Bmax of 1.8 pmol/mg wet weight and a Kd of 214 nM. Binding in Ringer's saline, but not Tris-HCl buffer, displayed positive cooperativity with a Hill coefficient of 1.15. The [3H]kainate binding sites were solubilized in Ringer's saline using the nonionic detergent n-octyl-beta-D-glucopyranoside. Approximately 30-50% of the total number of membrane-bound binding sites were recovered on solubilization. The Kd of [3H]kainate for solubilized binding sites was approximately 200 nM. The rank order of potency for glutamatergic ligands at inhibiting [3H]kainate binding was identical and the competitive ligands had similar Ki values in both membranes and solubilized extracts. In membrane preparations, [3H]kainate displayed a two component off-rate with koff values of 0.97 min-1 and 0.07 min-1; in solubilized extracts, however, only a single off-rate (koff = 0.52 min-1) was observed. The hydrodynamic properties of n-octyl-beta-D-glucopyranoside solubilized [3H]kainate binding sites was investigated by sucrose density centrifugation. A single well defined peak was detected which yielded a sedimentation coefficient of 8.3 S. The results presented in this report suggest that goldfish brain may provide an ideal system in which to study kainate receptor biochemistry.  相似文献   

17.
Seven unique monoclonal antibodies were generated to rat brain acetylcholinesterase. Upon density gradient ultracentrifugation, immunoglobulin complexes with the monomeric enzyme appeared as single peaks of acetylcholinesterase activity with a sedimentation coefficient approximately 3S greater than that of the free enzyme. This behavior is consistent with the assumption of one binding site per enzyme molecule. Apparent dissociation constants of these antibodies for rat brain acetylcholinesterase calculated on the basis of this assumption ranged from about 10 nM to more than 1,000 nM. Some of the antibodies were less able to bind the membrane-associated enzyme that required detergent for solubilization than the naturally soluble acetylcholinesterase of detergent-free brain extracts. Species cross-reactivity was investigated with crude brain extracts from mammals (human, mouse, rabbit, guinea pig, cow, and cat) and from other vertebrates (chicken, frog, and electric eel). Three antibodies bound rat acetylcholinesterase exclusively; one had nearly the same affinity for all mammalian acetylcholinesterases investigated; the remaining three showed irregular binding patterns. None of the antibodies recognized frog and electric eel enzyme. Pooled antibody was found to be suitable for specific immunofluorescence staining of large neurons in the ventral horn of the rat spinal cord and smaller cells in the caudate nucleus. Other potential applications of these antibodies are discussed.  相似文献   

18.
S100 proteins constitute a large subfamily of the EF-hand superfamily of calcium binding proteins. They possess one classical EF-hand Ca2+-binding domain and an atypical EF-hand domain. Most of the S100 proteins form stable symmetric homodimers. An analysis of literature data on S100 proteins showed that their physiological concentrations could be much lower than dissociation constants of their dimeric forms. It means that just monomeric forms of these proteins are important for their functioning. In the present work, thermal denaturation of apo-S100P protein monitored by intrinsic tyrosine fluorescence has been studied at various protein concentrations within the region from 0.04–10 μM. A transition from the dimeric to monomeric form results in a decrease in protein thermal stability shifting the mid-transition temperature from 85 to 75 °C. Monomeric S100P immobilized on the surface of a sensor chip of a surface plasmon resonance instrument forms calcium dependent 1 to 1 complexes with human interleukin-11 (equilibrium dissociation constant 1.2 nM). In contrast, immobilized interleukin-11 binds two molecules of dimeric S100P with dissociation constants of 32 nM and 288 nM. Since effective dissociation constant of dimeric S100P protein is very low (0.5 μM as evaluated from our data) the sensitivity of the existing physical methods does not allow carrying out a detailed study of S100P monomer properties. For this reason, we have used molecular dynamics methods to evaluate structural changes in S100P upon its transition from the dimeric to monomeric state. 80-ns molecular dynamics simulations of kinetics of formation of S100P, S100B and S100A11 monomers from the corresponding dimers have been carried out. It was found that during the transition from the homo-dimer to monomer form, the three S100 monomer structures undergo the following changes: (1) the helices in the four-helix bundles within each monomer rotate in order to shield the exposed non-polar residues; (2) almost all lost contacts at the dimer interface are substituted with equivalent and newly formed interactions inside each monomer, and new stabilizing interactions are formed; and (3) all monomers recreate functional hydrophobic cores. The results of the present study show that both dimeric and monomeric forms of S100 proteins can be functional.  相似文献   

19.
The modulation of adenosine receptor with K+(ATP) channel blocker, glibenclamide, was investigated using the radiolabeled A2A-receptor selective agonist [3H]CGS 21680. Radioligand binding studies in bovine brain striatal membranes (BBM) indicated that unlabeled CGS 21680 displaced the bound [3H]CGS 21680 in a concentration-dependent manner with a maximum displacement being approximately 65% at 10(-4) M. In the presence of 10(-5) M glibenclamide, unlabeled CGS 21680 increased the displacement of bound [3H]CGS 21860 by approximately 28% at 10(-4) M. [3H]CGS 21680 bound to BBM in a saturable manner to a single binding site (Kd = 10.6+/-1.71 nM; Bmax = 221.4+/-6.43 fmol/mg of protein). In contrast, [3H]CGS 21680 showed saturable binding to two sites in the presence of 10(-5) M glibenclamide; (Kd = 1.3+/-0.22 nM; Bmax = 74.3+/-2.14 fmol/mg protein; and Kd = 8.9+/-0.64 nM; Bmax = 243.2+/-5.71 fmol/mg protein), indicating modulation of adenosine A2A receptors by glibenclamide. These studies suggest that the K+(ATP) channel blocker, glibenclamide, modulated the adenosine A2A receptor in such a manner that [3H]CGS 21680 alone recognizes a single affinity adenosine receptor, but that the interactions between K+(ATP) channels and adenosine receptors.  相似文献   

20.
Primary cultures of pubertal and prepubertal rabbit articular cartilage cells were performed. Total homogenates or cell extracts were used to determine the specific binding of 17 beta-estradiol. A comparative study was undertaken with tissue minces homogenized without enzymatic treatment. Scatchard analysis of cell or tissue extracts revealed the presence of a high-affinity receptor with Kd values of 0.55 +/- 0.16 nM and 0.12 +/- 0.03 nM in prepubertal and pubertal rabbit chondrocytes respectively. A significant difference in the affinity of estrogen receptor for its ligand as a function of age was observed. In contrast there was no significant difference in the number of binding sites expressed as fmol per mg DNA between the two age groups. The ligand binding specificity was as expected for an estrogen receptor and the sedimentation coefficient was 3.2 S when analyzed by ultracentrifugation on sucrose density gradient in presence of 0.4 M KCl and 8.1 S in low salt conditions. The binding sites, labeled with [125I]estradiol, were specifically immunoprecipitated by a monoclonal antibody to the estrogen receptor (JS34/32).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号