首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A sensitive and specific method was developed for assay of aspartokinase (EC 2.7.2.4) in crude extracts of Lemna paucicostata. Lysine inhibited approximately 93%, and threonine approximately 6%; together, these amino acids inhibited 99%. Inhibition by lysine was synergistically increased by S-adenosylmethionine, which by itself had no effect on activity. Essentially complete inhibition of threonine-resistant activity was obtained with lysine, and of lysine-resistant activity with threonine. Inhibition by lysine and threonine was additive, with no indication of concerted inhibition. Aspartate concentration had no effect on the relative proportions of lysine- and threonine-sensitive activities. Aspartokinase activity was in large excess of that reported by other workers, the maximum capacity (Vmax) far exceeding the in vivo requirements. Estimations of rates of aspartokinase in vivo suggest that the step catalyzed by this enzyme may not be the overall `rate-limiting' one for entry of 4-carbon units into the aspartate family of amino acids, and that feedback inhibition of this enzyme by lysine and threonine may not be a major factor in regulating flux through this step.  相似文献   

2.
The short-day duckweed Lemna paucicostata 6746 could be inducedto flower in two days at 26C when continuous illumination forentrainment was followed by continuous darkness. This 48-h darkperiod or the minimum darkness requirement for floral inductionwas called the induction period. The length of the inductionperiod (IP) was routinely computed as the number of 24-h cyclesusing the equation of regression of flower number in logarithmon culture time. A light pulse given about 7 h after the startof the induction period increased the apparent IP value fromtwo to three, suggesting that the interrupted first day hadfunctioned as a noninductive day. A pulse given at any otherpart of the induction period did not modify the IP value. Thelight-sensitive part is probably the inducible phase, and thefirst 7-h period of darkness terminated by it seems to be thecritical nyctoperiod. These and relevant facts suggest thatthe light-off oscillator measures the critical night length,7 h. Either red or far-red irradiation at the inducible phase extendedthe IP value by one. No red/far-red photoreversibility was detected.As expected, however, red or far-red irradiation of any otherpart of the critical nyctoperiod could not modify the IP value. (Received February 8, 1985; Accepted May 14, 1985)  相似文献   

3.
Flowering of Lemna paucicostata 6746, a typical short-day plant,was induced by culture for 96 or 120 h in nitrogen-free mediumunder continuous illumination. To examine the effects of lysine,we homogenized entire plants of L. paucicostata 151 in a solutionof lysine and the supernatant obtained after centrifugationof the homogenate was added to the medium to give various concentrationsof lysine in the medium. Flowering of strain 6746 in nitrogen-freeor nitrogen-deficient culture medium was effectively promotedby the addition of a lysine-containing supernatant to the medium.The suppressive effect of elastatinal, a protease inhibitor,on the induction of flowering was almost completely reversedby the simultaneous application of a lysine-containing supernatantto the medium. During nitrogen-free culture, the level of endogenousfree lysine, expressed on the basis of the amount of total freeamino acids, increased. Lysine-containing supernatants alsoinduced flowering of plants in nitrogen-rich medium under continuousillumination. These findings suggest that endogenous lysineis involved in the induction of flowering in L. paucicostata6746 on nitrogen-free or nitrogen-deficient medium, as it isin the induction of flowering in L. paucicostata 151 (Received July 29, 1996; Accepted November 18, 1996)  相似文献   

4.
Threonine synthase (TS) was purified approximately 40-fold from Lemna paucicostata, and some of its properties determined by use of a sensitive and specific assay. During the course of its purification, TS was separated from cystathionine γ-synthase, establishing the separate identity of these enzymes. Compared to cystathionine γ-synthase, TS is relatively insensitive to irreversible inhibition by propargylglycine (both in vitro and in vivo) and to gabaculine, vinylglycine, or cysteine in vitro. TS is highly specific for O-phospho-l-homoserine (OPH) and water (hydroxyl ion). Nucleophilic attack by hydroxyl ion is restricted to carbon-3 of OPH and proceeds sterospecifically to form threonine rather than allo-threonine. The Km for OPH, determined at saturating S-adenosylmethionine (AdoMet), is 2.2 to 6.9 micromolar, two orders of magnitude less than values reported for TS from other plant tissues. AdoMet markedly stimulates the enzyme in a reversible and cooperative manner, consistent with its proposed role in regulation of methionine biosynthesis. Cysteine (1 millimolar) caused a slight (26%) reversible inhibition of the enzyme. Activities of TS isolated from Lemna were inversely related to the methionine nutrition of the plants. Down-regulation of TS by methionine may help to limit the overproduction of threonine that could result from allosteric stimulation of the enzyme by AdoMet.  相似文献   

5.
Lemna paucicostata 6746, a short-day plant, produced flowerbuds even under continuous light when cultured in nitrogen-deficientmodified Hoagland medium with 1% sucrose for 3 days or morefollowed by culture on nitrogen-rich medium (either nitrateor ammonium). Flowering was also induced by culture on mediumcontaining 20–100 µM nitrate as the sole nitrogensource for 10 days or more, but not on medium with a low ammoniumconcentration. However, if plants cultured on medium containing5–20 µM ammonium as the sole nitrogen source for10 days were grown in a nitrogen-rich medium for a further 4days, they produced flower buds. Thus, nitrogen deficiency caninduce day length-independent flowering in Lemna paucicoslata6746, but nitrogen is required for the manifestation of flowering. (Received January 31, 1986; Accepted April 24, 1986)  相似文献   

6.
Lemna paucicostata 6746, a short-day plant, flowers in agedHutner's medium even under continuous light, when the endogenousnitrogen level decreases to below 1.6 µmg fr wt. At thesenitrogen levels, daylength-independent flowering of the plantcan be induced even in fresh Hutner's medium. Thus, old-cultureflowering in Hutner's medium is due to nitrogen deficiency inthe plants. 1Present address: Biological Institute, Faculty of Science,Shizuoka University, Shizuoka 422, Japan. (Received February 12, 1987; Accepted August 28, 1987)  相似文献   

7.
The floral response to various 24-h photoperiodic cycles ofthe short-day plant, Lemna paucicostata 6746 was investigated.No day that had a main photoperiod longer than about 14 h wasable to induce flowers, evidence that the critical day lengthwas ca.14 h. Flowering in the 12-, 9- or 6-h day was inhibitedcompletely by a light pulse inserted daily in the ‘inhibitionzone’ that ranged from about 14 h after the precedingdawn to about 14 h before the next dusk. In the 3- and 1-h days,only the pulse applied 14 h after the dawn completely inhibitedflowering. These results suggest that the daily night interruption prohibitedflowering only when it was linked to either the preceding orthe subsequent main photoperiod to form a skeleton photoperiodwhose length was equal to, or longer than, the critical daylength. Analysis of the floral response to skeleton schedules11:13 and 13:11 on Pittendrigh's model of the photoperiodicclock indicated that light-on circadian oscillation probablyis involved in the day length measurement. 1 Dedicated to the memory of Dr. Joji Ashida. (Received July 13, 1982; Accepted January 17, 1983)  相似文献   

8.
With urea as sole nitrogen source, the addition of 5×10-5 M nickel sulfate to axenic cultures of Lemna paucicostata 6746 approximately doubles the rate of vegetative growth. Under a standard light-dark schedule, Ni2+ changes the daily pattern of respiratory CO2 output on urea from one having a single daily peak to one with two daily peaks which resembles that on ammonium or nitrate as sole nitrogen source. It also increases CO2 output by as much as 3-fold on a fresh-weight basis. These data represent the first confirmation in an intact higher plant of proposals, based on enzymology and tissue culture responses, for a role of Ni2+ in urea metabolism. Further, they indicate the possible existence of two distinct pathways of urea utilization.  相似文献   

9.
In vitro activity of nitrate reductase was studied in Lemnapaucicostata 6746 grown on modified Hoagland medium supplementedwith 1% sucrose, containing various inhibitors. Copper, silver,tungstate or cyanide which induces daylength-independent flowering,inhibited the nitrate reductase activity, but azide which doesnot induce daylength-independent flowering did not. Molybdate-deficientmedium induced flowering, and inhibited nitrate reductase activity.Lowering of nitrate level of the medium also induced daylength-independentflowering. These results suggest that the suppression of nitrate assimilationcauses daylength independent flowering in Lemna paucicostata6746, and that one of the flower-inducing actions of the copper,silver, tungstate, cyanide or the deletion of molybdate is tosuppress the nitrate assimilation. (Received June 26, 1985; Accepted October 30, 1985)  相似文献   

10.
Datko AH  Mudd SH 《Plant physiology》1984,75(2):474-479
The steady state concentrations of S-containing compounds formed in Lemna paucicostata Hegelm. 6746 in response to variations in source and concentrations of sulfur were measured. Neither growth rates nor protein accumulation were markedly affected by the various growth conditions. Ignoring complications due to possible compartmentation, the results are consistent with internal pools of both SO(4) (2-) and cyst(e)ine (or products of their metabolism), but not methionine, being effectors of regulation of high affinity SO(4) (2-) uptake. As SO(4) (2-) in the growth medium was increased to 10 mm, down-regulation of high affinity SO(4) (2-) uptake was more than compensated for by unregulated uptake via the "non-saturating" uptake system. Tissue inorganic SO(4) (2-) accumulated but formation of reduced sulfur remained constant. Some conversion of l-cystine sulfur to SO(4) (2-) occurred. Presence of l-cystine in the medium (a) down-regulated high affinity SO(4) (2-) uptake and (b) decreased the rate of SO(4) (2-) organification. The net results were decreased (7 mum l-cystine) or normal (14 mum l-cystine) total tissue SO(4) (2-) and dose-dependent accumulation of soluble cyst(e)ine and glutathione, but not of soluble methionine. l-Methionine was not metabolized to cyst(e)ine or its products. Presence of l-methionine in the medium led to increased total tissue sulfur, accounted for almost wholly by manyfold increases in soluble methionine, AdoMet, and S-methylmethionine sulfonium. Soluble cyst(e)ine increased slightly.  相似文献   

11.
Datko AH  Mudd SH 《Plant physiology》1986,81(1):285-288
Lemna paucicostata Hegelm. 6746 possesses specific systems for uptake of choline and ethanolamine. Each is distinct from the six other systems for uptake of organic compounds so far identified in this plant. Both systems show biphasic kinetics, so that uptake by them can be described as the composite result of two Michaelis-Menten processes. Inhibitor studies are reported which indicate the very strict structural specificity of each system. The kinetic constants of choline uptake are such that, at an external concentration of 0.65 micromolar, the total requirement of the plant for this compound would be met, 41% via the high affinity system and 59% via the lower. At an external concentration of 2.4 micromolar ethanolamine, an amount of this compound sufficient to form the total choline of the plant would be supplied, 59% via the high affinity system and 41% via the lower. These, and other observations, strongly support the physiological importance of these systems under natural conditions.  相似文献   

12.
H. Löppert 《Planta》1979,144(4):311-315
The cell potential of Lemna paucicostata 6746 was measured between the vacuole and the external solution. The potential in the dark (-202 mV) could be depolarized with 0.1 mM dicyclohexyl carbodiimide (DCCD) or 1 mM arsenate to-81 mV. The hyperpolarization above the latter value is therefore attributed to an ATP-dependent process. The cell potential showed a significant dependence upon the pH of the external solution. The change in the potential induced by a jump in pH between two certain values, was reversible and independent of the mode of performing the pH change (stepwise or at once). The DCCD-or arsenate-depolarized potential did not respond to external pH changes. A 0.1 mM ammonium chloride solution depolarized the cell potential reversibly to-83 mV. This potential-change could be greatly reduced by simultaneous addition of 5 mM Na isobutyrate. The pH sensitivity of the cell potential is ascribed to changes in the rate of proton extrusion upon altering the proton gradient across the plasmalemma. The effects of ammonium and isobutyrate are interpreted as being the consequence of pH shifts at the inner face of the plasmalemma, caused by the permeation of the undissociated form of the weak acid or base. A critical discussion of an alternative interpretation for the ammonium effect is presented.Abbreviation DCCD N,N-dicyclohexyl carbodiimide  相似文献   

13.
Cultures of Lemna paucicostata 6746 were exposed to a single96-hr dark period followed by continuous illumination at 24?1?C.Flowering percentage increased to a maximum 3 days after theend of the dark period and then fell off to 0% on the 5th day.Among 20 amino acids and 2 amides tested, addition of asparagine,aspartate, glutamate, -alanine, glycine and serine clearly increasedthe flowering percentages and retarded the regression of floralbuds by 2–3 days. These substances given after the endof the long dark period were more effective than those givenduring the dark period, suggesting that they favored the flower-producingprocess following the inductive dark process. On the other hand,if the above amino acids or amide were applied under repeatedlight-dark cycles, they shortened the critical dark period by1–2 hr and almost completely nullified the light-breakeffect. They seem to promote the flower-inductive dark process,too. Glutamate, for instance, was effective even at 5 µM, whilethis amino acid is found in the plant body in large quantities.The mechanism of flower promotion by these amino acids and amideremains unknown. (Received June 3, 1976; )  相似文献   

14.
Lemna paucicostata 6746, a short-day plant, produced flowerbuds even under continuous light when cultured for 3 days inferricyanide containing ammonium-free medium followed by cultureon nitrogen-rich medium (either nitrate or ammonium). Dailytreatment with ferricyanide in the absence of ammonium for morethan 8 hours, which completely inhibited nitrate reductase activitywithin 6 hours after the addition to the medium, induced daylength-independentflowering even when the ammonium-rich medium was given duringthe remaining hours. The presence of ammonium for 1 hour atthe middle of the 14-h ferricyanide treatment almost completelysuppressed floral induction. (Received March 6, 1986; Accepted June 3, 1986)  相似文献   

15.
Light-stimulated transmembrane potential changes have been measured continuously after implantation of microelectrodes into subepidermal cells of the short-day plant Lemna paucicostata 6746. Irradiation for 5 min with white or red light caused a transient hyperpolarization. These potential changes could be suppressed with 10-6 M DCMU. Irradiation of DCMU-inhibited plants with far-red light for 5 min hyperpolarized the membrane potential, which thereafter was not changed by further far-red application. Consecutive red light irradiation for 5 min depolarized the membrane potential. The red/far-red reversibility of the potential changes (which could be repeated several times with a single plant) suggests the participation of phytochrome.Abbreviations EDTA ethylenediaminetetraacetate - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethyl urea - Pr, (Pfr) red- (far-red-) absorbing form of phytochrome  相似文献   

16.
Addition of copper or tungstate to or exclusion of molybdenumfrom M-sucrose medium induced long-day flowering in Lemna paucicostata6746 provided the medium contained sufficient nitrate. By contrast,ferricyanide, cyanide or silver induced long day flowering evenin nitrate-deficient, M-sucrose medium. (Received August 26, 1977; )  相似文献   

17.
Flowering of Lemna paucicostata 6746 under short-day conditionsis completely inhibited by daily night interruption given tothe "inhibition zone" that starts at Zeitgeber time (ZT) 14,i.e., 14 h after dawn, and ends 14 h before the next dusk [Oota(1983a) Plant & Cell Physiol. 24: 327]. With a modifiedmin-SD method, most of these night interruptions were foundto signal the false dawn (false ZT 0) after one entraining cycle.Thus, on and after day 2 the interruption was associated withthe next main photoperiod to form a noninductive skeleton photoperiod.However, a light pulse applied at the start of the inhibitionzone, caused no phase shift in the photoperiodic clock, andformed a noninductive skeleton photoperiod in association withthe preceding main photoperiod. The complete floral inhibition due to the night interruptionwas ascribed to the illumination of both the LI-phase (realor false ZT 0) and L2-phase (real or false ZT 14), or the twolight-sensitive fractions of the original or shifted criticalphotoperiod, by the thus formed skeleton photoperiod, just aswas the case for the floral inhibition by complete photoperiodslonger than the critical daylength, 14 h [Oota (1983a), Oota(1983b) Plant & Cell Physiol. 24: 1503]. (Received October 20, 1983; Accepted January 7, 1984)  相似文献   

18.
The sucrose-ammonium inhibition of flowering Lemna paucicostata 6746 in continuous blue light or in short days was partially overcome by epinephrine. This reversal was prevented by propranolol, an antagonist of epinephrine in animals. In ammonium-free medium, propranolol inhibited flowering, and this inhibition was completely overcome by epinephrine. Increased levels of Ca2+, Pi and nitrate partially reversed the inhibition by propranolol. Concentrations of cAMP, adenine, and adenosine that partially overcame the sucrose-ammonium inhibition did not affect flowering in cultures treated with propranolol. The possibility is discussed that the effects on flowering of sucrose-ammonium, propranolol, and epinephrine were due to altered intracellular levels of cAMP or of a cAMP-like compound.  相似文献   

19.
Lemna paucicostata 6746 is a short-day plant and flowers inresponse to a single photoinductive cycle. Flowering in thisduckweed could be promoted, under short days, in the presenceof a cytokinin in the nutrient medium. 6-Benzyladenine (BA)was the most effective for promotion of flowering, followedby zeatin and kinetin. Since EDTA itself is promotive for floweringin this plant, the cytokinin effect is best observed in mediumdevoid of EDTA. Nevertheless, in their combined presence floweringwas more as compared to when either of these was individuallypresent. This additive effect on flowering was especially prominentwhen the plants were kept in near-critical photoperiods. Besidesthe increase in percentage of the flowering fronds, floweringis also sustained a little longer in the cytokinin-treated plants.BA, however, did not alter the critical dark period requirement,either in the presence or absence of EDTA. (Received March 26, 1983; Accepted May 6, 1983)  相似文献   

20.
Datko AH  Mudd SH 《Plant physiology》1985,77(3):770-778
A survey of the capacity of Lemna paucicostata to take up organic compounds such as might be present in the natural environment of this plant has identified eight discrete transport systems. Reciprocal inhibition studies defined the preferred substrates for these systems as follows: (a) neutral l-α-amino acids, (b) basic amino acids, (c) purine bases, (d) choline, (e) ethanolamine, (f) tyramine, (g) urea, and (h) aldohexoses. Each of these systems takes up its preferred substrates at high rates. At low concentrations, each Lemna frond during each minute takes up amounts which would be found in volumes ranging from 0.4 (tyramine) to 3.9 (urea) times its own volume. The two systems for amino acid transport both showed kinetics of the biphasic type, so that uptake by each can be described as the composite result of two Michaelis-Menten processes. The neutral amino acid system neither transports basic amino acids nor is inhibited by these compounds. The basic amino acid system does not transport neutral amino acids but is strongly inhibited by some, but not all, of these compounds. It is argued that the maintenance of these active, specific, and discrete systems in Lemna suggests they play important roles permitting this plant to utilize organic compounds occurring naturally in its environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号