首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
B Asbóth  L Polgár 《Biochemistry》1983,22(1):117-122
X-ray diffraction studies suggested that the tetrahedral intermediate formed during the catalysis by serine and thiol proteinases can be stabilized by hydrogen bonds from the protein to the oxyanion of the intermediate [cf. Kraut, J. (1977) Annu. Rev. Biochem. 46, 331-358; Drenth, J., Kalk, K.H., & Swen, H.M. (1976) Biochemistry 15, 3731-3738]. To obtain evidence in favor or against this hypothesis, we synthesized thiono substrates (the derivatives of N-benzoyl-glycine methyl ester and N-acetylphenylalanine ethyl ester) containing a sulfur in place of the carbonyl oxygen atom of the scissile ester bond. We anticipated that this relatively subtle structural change specifically directed to the oxyanion binding site should produce serious catalytic consequences owing to the different properties of oxygen and sulfur if transition-state stabilization in the oxyanion hole is indeed important. In fact, while in alkaline hydrolysis the chemical reactivities of oxygen esters and corresponding thiono esters proved to be similar, neither chymotrypsin nor subtilisin hydrolyzed the thiono esters at a measurable rate. This result substantiates the crucial role of the oxyanion binding site in serine proteinase catalysis. On the basis of the similar values of the binding constants found for oxygen esters and their thiono counterparts, it can be concluded that the substitution of sulfur for oxygen significantly influences transition state stabilization but not substrate binding. The thiol proteinases papain and chymopapain react with the oxygen and thiono esters of N-benzoylglycine at similar rates. Apparently, in these reactions the above stabilizing mechanism is absent or not important, which is a major mechanistic difference between the catalyses by serine and thiol proteinases.  相似文献   

2.
Fasciola parasites (liver flukes) express numerous cathepsin L proteases that are believed to be involved in important functions related to host invasion and parasite survival. These proteases are evolutionarily divided into clades that are proposed to reflect their substrate specificity, most noticeably through the S(2) subsite. Single amino acid substitutions to residues lining this site, including amino acid residue 69 (aa69; mature cathepsin L5 numbering) can have profound influences on subsite architecture and influence enzyme specificity. Variations at aa69 among known Fasciola cathepsin L proteases include leucine, tyrosine, tryptophan, phenylalanine and glycine. Other amino acids (cysteine, serine) might have been expected at this site due to codon usage as cathepsin L isoenzymes evolved, but C69 and S69 have not been observed. The introduction of L69C and L69S substitutions into FhCatL5 resulted in low overall activity indicating their expression provides no functional advantage, thus explaining the absence of such variants in Fasciola. An FhCatL5 L69F variant showed an increase in the ability to cleave substrates with P(2) proline, indicating F69 variants expressed by the fluke would likely have this ability. An FhCatL2 Y69L variant showed a decreased acceptance of P(2) proline, further highlighting the importance of Y69 for FhCatL2 P(2) proline acceptance. Finally, the P(1)-P(4) specificity of Fasciola cathepsin L5 was determined and, unexpectedly, aspartic acid was shown to be well accepted at P(2,) which is unique amongst Fasciola cathepsins examined to date.  相似文献   

3.
The S2 subsite of mammalian cysteine proteinases of the papain family is essential for specificity. Among natural amino acids, all these enzymes prefer bulky hydrophobic residues such as phenylalanine at P2. This holds true for their trypanosomal counterparts: cruzain from Trypanosoma cruzi and congopain from T. congolense. A detailed analysis of the S2 specificity of parasitic proteases was performed to gain information that might be of interest for the design of more selective pseudopeptidyl inhibitors. Nonproteogenic phenylalanyl analogs (Xaa) have been introduced into position P2 of fluorogenic substrates dansyl-Xaa-Arg-Ala-Pro-Trp, and their kinetic constants (Km, kcat/Km) have been determined with congopain and cruzain, and related host cathepsins B and L. Trypanosomal cysteine proteases are poorly stereoselective towards D/L-Phe, the inversion of chirality modifying the efficiency of the reaction but not the Km. Congopain binds cyclohexylalanine better than aromatic Phe derivatives. Another characteristic feature of congopain compared to cruzain and cathepsins B and L was that it could accomodate a phenylglycyl residue (kcat/Km = 1300 mM-1.s-1), while lengthening of the side chain by a methylene group only slightly impaired the specificity constant towards trypanosomal cysteine proteases. Mono- and di-halogenation or nitration of Phe did not affect Km for cathepsin L-like enzymes, but the presence of constrained Phe derivatives prevented a correct fitting into the S2 subsite. A model of congopain has been built to study the fit of Phe analogs within the S2 pocket. Phe analogs adopted a positioning within the S2 pocket similar to that of the Tyr of the cruzain/Z-Tyr-Ala-fluoromethylketone complex. However, cyclohexylalanine has an energetically favorable chair-like conformation and can penetrate deeper into the subsite. Fitting of modeled Phe analogs were in good agreement with kinetic parameters. Furthermore, a linear relationship could be established with logP, supporting the suggestion that fitting into the S2 pocket of trypanosomal cysteine proteases depends on the hydrophobicity of Phe analogs.  相似文献   

4.
The protease domain of tissue plasminogen activator (tPA), a key fibrinolytic enzyme, was expressed in Escherichia coli with a yield of 1 mg per liter of media. The recombinant protein was titrated with the Erythrina caraffa trypsin inhibitor (ETI) and characterized in its interaction with plasminogen and the natural inhibitor plasminogen activator inhibitor-1 (PAI-1). Analysis of the catalytic properties of tPA using a library of chromogenic substrates carrying substitutions at P1, P2, and P3 reveals a strong preference for Arg over Lys at P1, unmatched by other serine proteases like thrombin or trypsin. In contrast to these proteases and plasmin, tPA shows little or no preference for Pro over Gly at P2. A specific inhibition of tPA by Cu2+ was discovered. The divalent cation presumably binds to H188 near D189 in the primary specificity pocket and inhibits substrate binding in a competitive manner with a Kd = 19 microM. In an attempt to engineer Na+ binding and enhanced catalytic activity in tPA, P225 was replaced with Tyr, the residue present in Na+-dependent allosteric serine proteases. The P225Y mutation did not result in cation binding, but caused a significant loss of specificity (up to 100-fold) toward chromogenic substrates and plasminogen and considerably reduced the inhibition by PAI-1 and ETI. Interestingly, the P225Y substitution enhanced the ability of Cu2+ to inhibit the enzyme. Elimination of the C136-C201 disulfide bond, that is absent in all Na+-dependent allosteric serine proteases, significantly enhanced the yield (5 mg per liter of media) of expression in E. coli, but caused no changes in the properties of the enzyme whether residue 225 was Pro or Tyr. These findings point out an unanticipated crucial role for residue 225 in controlling the catalytic activity of tPA, and suggest that engineering of a Na+-dependent allosteric enhancement of catalytic activity in this enzyme, must involve substantial changes in the region homologous to the Na+ binding site of allosteric serine proteases.  相似文献   

5.
The upstream coagulation enzymes are homologous trypsin-like serine proteases that typically function in enzyme-cofactor complexes, exemplified by coagulation factor VIIa (VIIa), which is allosterically activated upon binding to its cell surface receptor tissue factor (TF). TF cooperates with VIIa to create a bimolecular recognition surface that serves as an exosite for factor X binding. This study analyzes to what extent scissile bond docking to the catalytic cleft contributes to macromolecular substrate affinity. Mutation of the P1 Arg residue in factor X to Gln prevented activation by the TF.VIIa complex but did not reduce macromolecular substrate affinity for TF.VIIa. Similarly, mutations of the S and S' subsites in the catalytic cleft of the enzyme VIIa failed to reduce affinity for factor X, although the affinity for small chromogenic substrates and the efficiency of factor X scissile bond cleavage were reduced. Thus, docking of the activation peptide bond to the catalytic cleft of this enzyme-cofactor complex does not significantly contribute to affinity for macromolecular substrate. Rather, it appears that the creation of an extended macromolecular substrate recognition surface involving enzyme and cofactor is utilized to generate substrate specificity between the highly homologous, regulatory proteases of the coagulation cascade.  相似文献   

6.
Cysteine proteases are relevant to several aspects of the parasite life cycle and the parasite-host relationship. Moreover, they appear as promising targets for antiparasite chemotherapy. Here, a quantitative investigation on the catalytic properties of cruzain, the papain-like cysteine protease from epimastigotes of Trypanosoma cruzi, is reported. The results indicate that kinetics for the cruzain catalyzed hydrolysis of N-alpha-benzyloxycarbonyl-l-arginyl-l-alanine-(7-amino-4-methylcoumarin), N-alpha-benzyloxycarbonyl-l-phenylalanyl-l-alanine-(7-amino-4-methylcoumarin), and N-alpha-benzyloxycarbonyl-l-tyrosyl-l-alanine-(7-amino-4-methylcoumarin) can be consistently fitted to the minimum three-step mechanism of cysteine proteases involving the acyl.enzyme intermediate E.P; the deacylation step is rate-limiting in enzyme catalysis. Remarkably, these substrates show identical catalytic parameters. This reflects the ability of the cruzain Glu205 residue, located at the bottom of the S(2) subsite, to neutralize the substrate/inhibitor polar P(2) residues (e.g., Arg or Tyr) and to be solvent-exposed when substrate/inhibitor nonpolar P(2) residues (e.g., Phe) fit the S(2) subsite. More complex catalytic mechanisms are also discussed. Binding free-energy calculation provides a quantitative framework for the interpretation of these results; in particular, direct evidence for the compensatory effect between Coulomb interaction(s) and solvation effect(s) is reported. These results appear of general significance for a deeper understanding of (macro)molecular recognition and for the rational design of novel inhibitors of parasitic cysteine proteases.  相似文献   

7.
Intramolecularly quenched fluorogenic peptide substrates with the general sequence: DABCYL-Lys-Phe-Gly-Gly-Xxx-Ala-EDANS have been utilized to explore the effect of the hydrophobicity of amino acid side chains in the P2' position on the steady-state kinetic constants for papain catalyzed hydrolysis. The results demonstrate that subsite interactions between the enzyme and the peptide substrate modulate the enzyme specificity by slowing the release of the C-terminal product. This series of substrates can be used to characterize substrate specificity studies of other cysteine proteinases.  相似文献   

8.
To study the possible stabilization of the oxyanion of the tetrahedral intermediate formed in the course of the catalyses by cysteine proteinases, papain, chymopapain, papaya peptidase A, and ficin, we synthesized N-(benzyloxycarbonyl)phenylalanylthioglycine O-ethyl ester and compared its hydrolysis with that of the corresponding oxygen ester, a highly specific substrate of the above enzymes. It was found that the substitution of sulfur for the carbonyl oxygen hardly affected the second-order rate constant of acylation and diminished catalytic activity by about 1 order of magnitude in deacylation. These results contrast with those obtained with serine proteinases [Asbóth, B., & Polgár, L. (1983) Biochemistry 22, 117-122], where the hydrolysis of thiono esters could not be detected. From the results the following conclusions can be drawn. Stabilization of the tetrahedral intermediate at an oxyanion binding site is not essential with cysteine proteinases. Therefore, and because of the lack of general base catalysis, cysteine proteinases have a less constrained transition-state structure than serine proteinases.  相似文献   

9.
Enzyme-substrate contacts in the hydrolysis of ester substrates by the cysteine protease papain were investigated by systematically altering backbone hydrogen-bonding and side-chain hydrophobic contacts in the substrate and determining each substrate's kinetic constants. The observed specificity energies [defined as delta delta G obs = -RT ln [(kcat/KM)first/(kcat/KM)second)]] of the substrate backbone hydrogen bonds were -2.7 kcal/mol for the P2 NH and -2.6 kcal/mol for the P1 NH when compared against substrates containing esters at those sites. The observed binding energies were -4.0 kcal/mol for the P2 Phe side chain, -1.0 kcal/mol for the P1' C=O, and -2.3 kcal/mol for the P2' NH. The latter three values probably all significantly underestimate the incremental binding energies. The P2 NH, P2 Phe side-chain, and P1 NH contacts display a strong interdependence, or cooperativity, of interaction energies that is characteristic of enzyme-substrate interactions. This interdependence arises largely from the entropic cost of forming the enzyme-substrate transition state. As favorable contacts are added successively to a substrate, the entropic penalty associated with each decreases and the free energy expressed approaches the incremental interaction energy. This is the first report of a graded cooperative effect. Elucidation of favorable enzyme-substrate contacts remote from the catalytic site will assist in the design of highly specific cysteine protease inhibitors.  相似文献   

10.
Multiple proteases of the same family are quite often present in the same species in biological systems. These multiple proteases, despite having high homology in their primary and tertiary structures, show deviations in properties such as stability, activity, and specificity. It is of interest, therefore, to compare the structures of these multiple proteases in a single species to identify the structural changes, if any, that may be responsible for such deviations. Ervatamin-A, ervatamin-B and ervatamin-C are three such papain-like cysteine proteases found in the latex of the tropical plant Ervatamia coronaria, and are known not only for their high stability over a wide range of temperature and pH, but also for variations in activity and specificity among themselves and among other members of the family. Here we report the crystal structures of ervatamin-A and ervatamin-C, complexed with an irreversible inhibitor 1-[l-N-(trans-epoxysuccinyl)leucyl]amino-4-guanidinobutane (E-64), together with enzyme kinetics and molecular dynamic simulation studies. A comparison of these results with the earlier structures helps in a correlation of the structural features with the corresponding functional properties. The specificity constants (k(cat)/K(m)) for the ervatamins indicate that all of these enzymes have specificity for a branched hydrophobic residue at the P2 position of the peptide substrates, with different degrees of efficiency. A single amino acid change, as compared to ervatamin-C, in the S2 pocket of ervatamin-A (Ala67-->Tyr) results in a 57-fold increase in its k(cat)/K(m) value for a substrate having a Val at the P2 position. Our studies indicate a higher enzymatic activity of ervatamin-A, which has been subsequently explained at the molecular level from the three-dimensional structure of the enzyme and in the context of its helix polarizibility and active site plasticity.  相似文献   

11.
A C Storer  P R Carey 《Biochemistry》1985,24(24):6808-6818
The kinetic constants for the papain-catalyzed hydrolysis of the methyl thiono esters of N-benzoylglycine and N-(beta-phenylpropionyl)glycine are compared with those for the corresponding methyl ester substrates. The k2/Ks values for the thiono esters are 2-3 times higher than those for the esters, and both show bell-shaped pH dependencies with similar pKa's (approximately 4 and 9). The k3 values for the thiono esters are 30-60 times less than those for the esters and do not exhibit a pH dependency. Solvent deuterium isotope effects on k2/Ks and k3 were measured for the ester and thiono ester substrates of both glycine derivatives. Each thiono ester substrate showed an isotope effect similar to that for the corresponding ester substrate. Moreover, use of the proton inventory technique indicated that, as for esters, one proton is transferred in the transition state for deacylation during reactions involving thiono esters and the degree of heavy atom reorganization in the transition state is very similar in both cases. The k3 values for the hydrolysis of a series of para-substituted N-benzoylglycine esters were found to correlate with the k3 values for the corresponding para-substituted thiono esters [Carey, P. R., Lee, H., Ozaki, Y., & Storer, A. C. (1984) J. Am. Chem. Soc. 106, 8258-8262], showing that the rate-determining step for the deacylation of both thiolacyl and dithioacyl enzymes probably involves the disruption of a contact between the substrate's glycinic nitrogen atom and the sulfur of cysteine-25. It is concluded that the hydrolysis of esters and thiono esters proceeds by essentially the same reaction pathway. Due to an oxygen-sulfur exchange process the product released in the case of the N-(beta-phenylpropionyl)glycine thiono ester substrate is the dioxygen acid; however, for the N-benzoylglycine thiono ester substrate, the thiol acid is the initial product. This thiol acid then acts as a substrate for papain and reacylates the enzyme to eventually give the dioxygen acid product. It is shown that thiol acids are excellent substrates for papain.  相似文献   

12.
Caspase-3 is a prototypic executioner caspase that plays a central role in apoptosis. Aza-peptide epoxides are a novel class of irreversible inhibitors that are highly specific for clan CD cysteine proteases. The five crystal structures of caspase-3-aza-peptide epoxide inhibitor complexes reported here reveal the structural basis for the mechanism of inhibition and the specificities at the S1' and the S4 subsites. Unlike the clan CA cysteine proteases, the catalytic histidine in caspase-3 plays a critical role during protonation and subsequent ring opening of the epoxide moiety and facilitates the nucleophilic attack by the active site cysteine. The nucleophilic attack takes place on the C3 carbon atom of the epoxide and results in an irreversible alkylation of the active site cysteine residue. A favorable network of hydrogen bonds involving the oxyanion hole, catalytic histidine, and the atoms in the prime site of the inhibitor enhance the binding affinity and specificity of the aza-peptide epoxide inhibitors toward caspase-3. The studies also reveal that subtle movements of the N-terminal loop of the beta-subunit occur when the P4 Asp is replaced by a P4 Ile, whereas the N-terminal loop and the safety catch Asp179 are completely disordered when the P4 Asp is replaced by P4 Cbz group.  相似文献   

13.
Fluorescent peptidyl thioneamides are synthesized for the first time. The carbonyl oxygen of the scissile amide bond of the substrates was replaced by a sulfur atom. The proteolytic activities of trypsin and papain were measured against 5-(benzyloxycarbonyllysylthioamido)-isophthalic acid dimethyl ester (Z-Lys-psi[CS]-AIE) and 5-(benzyloxycarbonylphenylalanylarginylthioamido)-isophthalic++ + acid dimethyl ester (Z-Phe-Arg-psi[CS]-AIE) and were compared to the corresponding oxyamides. Kinetic constants were measured. With thioneamide substrates, no tryptic hydrolysis was observed. Papain, on the other hand, hydrolyzed both oxy and thioneamides. The Km values of the thioneamides were shown to be slightly lower for papain than for the oxyamides, but the efficiency of the overall catalytic activity was off set by the lower turnover number for the thio derivatives. With the present synthetic substrate technology, selective detection of cysteine proteases in the presence of serine proteases is difficult. The thioneamides reported here were hydrolyzed by papain alone in the presence of trypsin.  相似文献   

14.
The helminth parasite Fasciola hepatica secretes cysteine proteases to facilitate tissue invasion, migration, and development within the mammalian host. The major proteases cathepsin L1 (FheCL1) and cathepsin L2 (FheCL2) were recombinantly produced and biochemically characterized. By using site-directed mutagenesis, we show that residues at position 67 and 205, which lie within the S2 pocket of the active site, are critical in determining the substrate and inhibitor specificity. FheCL1 exhibits a broader specificity and a higher substrate turnover rate compared with FheCL2. However, FheCL2 can efficiently cleave substrates with a Pro in the P2 position and degrade collagen within the triple helices at physiological pH, an activity that among cysteine proteases has only been reported for human cathepsin K. The 1.4-A three-dimensional structure of the FheCL1 was determined by x-ray crystallography, and the three-dimensional structure of FheCL2 was constructed via homology-based modeling. Analysis and comparison of these structures and our biochemical data with those of human cathepsins L and K provided an interpretation of the substrate-recognition mechanisms of these major parasite proteases. Furthermore, our studies suggest that a configuration involving residue 67 and the "gatekeeper" residues 157 and 158 situated at the entrance of the active site pocket create a topology that endows FheCL2 with its unusual collagenolytic activity. The emergence of a specialized collagenolytic function in Fasciola likely contributes to the success of this tissue-invasive parasite.  相似文献   

15.
Nägler DK  Tam W  Storer AC  Krupa JC  Mort JS  Ménard R 《Biochemistry》1999,38(15):4868-4874
The specificity of cysteine proteases is characterized by the nature of the amino acid sequence recognized by the enzymes (sequence specificity) as well as by the position of the scissile peptide bond (positional specificity, i.e., endopeptidase, aminopeptidase, or carboxypeptidase). In this paper, the interdependency of sequence and positional specificities for selected members of this class of enzymes has been investigated using fluorogenic substrates where both the position of the cleavable peptide bond and the nature of the sequence of residues in P2-P1 are varied. The results show that cathepsins K and L and papain, typically considered to act strictly as endopeptidases, can also display dipeptidyl carboxypeptidase activity against the substrate Abz-FRF(4NO2)A and dipeptidyl aminopeptidase activity against FR-MCA. In some cases the activity is even equal to or greater than that observed with cathepsin B and DPP-I (dipeptidyl peptidase I), which have been characterized previously as exopeptidases. In contrast, the exopeptidase activities of cathepsins K and L and papain are extremely low when the P2-P1 residues are A-A, indicating that, as observed for the normal endopeptidase activity, the exopeptidase activities rely heavily on interactions in subsite S2 (and possibly S1). However, cathepsin B and DPP-I are able to hydrolyze substrates through the exopeptidase route even in absence of preferred interactions in subsites S2 and S1. This is attributed to the presence in cathepsin B and DPP-I of specific structural elements which serve as an anchor for the C- or N-terminus of a substrate, thereby allowing favorable enzyme-substrate interaction independently of the P2-P1 sequence. As a consequence, the nature of the residue at position P2 of a substrate, which is usually the main factor determining the specificity for cysteine proteases of the papain family, does not have the same contribution for the exopeptidase activities of cathepsin B and DPP-I.  相似文献   

16.
Dibenzothiophene (DBT), a model of organic sulfur compound in petroleum, is microbially desulfurized to 2-hydroxybiphenyl (2-HBP), and the gene operon dszABC was required for DBT desulfurization. The final step in the microbial DBT desulfurization is the conversion of 2'-hydroxybiphenyl-2-sulfinate (HBPSi) to 2-HBP catalyzed by DszB. In this study, DszB of a DBT-desulfurizing bacterium Rhodococcus erythropolis KA2-5-1 was overproduced in Escherichia coli by coexpression with chaperonin genes, groEL/groES, at 25 degrees C. The recombinant DszB was purified to homogeneity and characterized. The optimal temperature and pH for DszB activity were 35 degrees C and about 7.5, respectively. The K(m) and k(cat) values for HBPSi were 8.2 microM and 0.123.s(-1), respectively. DszB has only one cysteine residue, and the mutant enzyme completely lost the activity when the cysteine residue was changed to a serine residue. This result together with experiments using inhibitors showed that the cysteine residue contributes to the enzyme activity. DszB was also inhibited by a reaction product, 2-HBP (K(i)=0.25 mM), and its derivatives, but not by the other reaction product, sulfite. The enzyme showed a narrow substrate specificity: only 2-phenylbenzene sulfinate except HBPSi served as a substrate among the aromatic and aliphatic sulfinates or sulfonates tested. DszB was thought to be a novel enzyme (HBPSi desulfinase) in that it could specifically cleave the carbon-sulfur bond of HBPSi to give 2-HBP and sulfite ion without the aid of any other proteinic components and coenzymes.  相似文献   

17.
Esters of tetrapeptides of the general formula ethoxycarbonyl-prolyl-alanyl-X-Y where either X or Y was an alanine residue were synthesised and their cleavage by elastase studied. It was found that variation of the alcohol moiety between methyl, cyclohexyl and nitrophenyl residues had no effect on the catalytic rate constant for cleavage of ethoxycarbonyl-prolyl-dialanyl-alanine esters demonstrating that acylation is much faster than deacylation for this system and also that non-productive binding is not kinetically significant. The effect of changing the amino acid residue in position X was small compared with that of change in position Y. The presence of valine and serine residues in position Y produced the highest specificity constant but the highest catalytic rate constant was found for a leucine residue in this position. The results are discussed in terms of the binding of the substrate to the enzyme.  相似文献   

18.
The streptococcal pyrogenic exotoxin B (SpeB) is an important factor in mediating Streptococcus pyogenes infections. SpeB is the zymogen of the streptococcal cysteine protease (SCP), of which relatively little is known regarding substrate specificity. To investigate this aspect of SCP function, a series of internally quenched fluorescent substrates was designed based on the cleavage sites identified in the autocatalytic processing of SpeB to mature SCP. The best substrates for SCP contain three amino acids in the nonprimed position (i.e. AIK in P(3)-P(2)-P(1)). Varying the length of the substrate on the primed side of the scissile bond has a relatively lower effect on activity. The highest activity (k(cat)/K(M) = 2.8 +/- 0.6 (10(5) x m(-1)s(-1)) is observed for the pentamer 3-aminobenzoic acid-AIKAG-3-nitrotyrosine, which spans subsites S(3) to S(2)' on the enzyme. High pressure liquid chromatography and mass spectrometry analyses show that the substrates are cleaved at the site predicted from the autoprocessing experiments. These results show that SCP can display an important level of endopeptidase activity. Substitutions at position P(2) of the substrate clearly indicate that the S(2) subsite of SCP can readily accommodate substrates containing a hydrophobic residue at that position and that some topological preference exists for that subsite. Substitutions in positions P(3), P(1), and P(1)' had little or no effect on SCP activity. The substrate specificity outlined in this work further supports the similarity between SCP and the cysteine proteases of the papain family. From the data regarding the identified or proposed natural substrates for SCP, it appears that this substrate specificity profile may also apply to the processing of mammalian and streptococcal protein targets by SCP.  相似文献   

19.
In this report we propose a new approach to classification of serine proteases of the chymotrypsin family. Comparative structure–function analysis has revealed two main groups of proteases: a group of trypsin-like enzymes and graspases (granule-associated proteases). The most important structural peculiarity of graspases is the absence of conservative active site disulfide bond Cys191–Cys220. The residue at position 226 in the S1-subsite of graspases is responsible for substrate specificity, whereas the residue crucial for specificity in classical serine proteases is located at position 189. We distinguish three types of graspases on the base of their substrate specificity: 1) chymozymes prefer uncharged substrates and contain an uncharged residue at position 226; 2) duozymes possess dual trypsin-like and chymotrypsin-like specificity and contain Asp or Glu at 226; 3) aspartases hydrolyze Asp-containing substrates and contain Arg residue at 226. The correctness of the proposed classification was confirmed by phylogenic analysis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号