首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To assess common variants of the LPL gene that could influence susceptibility to myocardial infarction (MI), we assessed three functional single-nucleotide polymorphisms (SNPs), D9N, N291S, and S447X, in 1,321 survivors of a first acute MI and 1,321 population-based controls, matched for age, gender, and area of residence, all living in the Central Valley of Costa Rica. Conditional logistic regression was used to estimate odds ratio (OR) and 95% confidence interval (CI). The frequency of the X447 mutant allele was significantly lower in cases than in controls (6.2% vs. 7.6%; P < 0.01), whereas no association with MI was found for D9N or N291S. The OR (95% CI) for carriers vs. noncarriers of the X447 allele was 0.80 (0.63-1.01); when considering the haplotype that contained X447 and normal alleles of D9N and N291S, the OR (95% CI) was 0.66 (0.48-0.91). Twelve other SNPs were assessed in a subgroup of the population, of which the four functional SNPs were found to be monomorphic, and no correlation with MI was observed for the other eight neutral SNPs. The X447 mutant allele of the LPL gene may protect from MI risk, although this effect is small.  相似文献   

2.
In Eastern Québec, two major lipoprotein lipase (LPL) gene mutations, P207L and G188E, lead to complete LPL deficiency in homozygote subjects and contribute to elevated predisposition to hypertriglyceridemia in heterozygotes. First, we determined the allele frequencies of LPL (D9N, G188E, P207L, D250N, N291S, and S447X), APOE (C112R and C158R), PPARalpha (L162V), and PPARgamma2 (P12A) single nucleotide polymorphisms (SNPs) in a random-based cohort of the metropolitan Québec city area. Second, we compared the LPL X447 allele frequencies observed in the random cohort and in a cohort of LPL P207L deficient patients. In the random cohort, the LPL N9 rare allele exhibited a higher prevalence than previously expected (p=0.0001). The LPL X447 allele frequency was lower in the patient cohort (Freq: 4.4%) than in the random cohort (Freq: 11.2%) (p=0.0001). These results reveal the importance of genetic screening for LPL gene mutations D9N and S447X in a population at risk to develop hypertriglyceridemia.  相似文献   

3.
Pregnancy is associated with increases in plasma total cholesterol (TC) and triglycerides (TG). Individuals with decreased LPL activity have a mild form of hypertriglyceridemia. Variations in the apolipoprotein E (apoE) gene have been associated with increases in plasma TG in addition to differences in plasma TC, LDL cholesterol (LDL-C), and HDL cholesterol (HDL-C). Because of the overproduction of TG-rich VLDL, normal pregnancy challenges the lipolytic capacity of LPL and the clearance of remnants particles. During pregnancy, LPL and apoE polymorphisms may contribute to hypertriglyceridemia. This study investigated the impact of three LPL polymorphisms and the apoE genotypes on lipid levels during pregnancy. Fasting plasma lipids were measured and analyses of the LPL and apoE polymorphisms were performed in 250 women in the third trimester of pregnancy. S447X carriers had lower TG (P = 0.003), and N291S carriers had lower HDL-C (P < 0.02) and higher fractional esterification rate of HDL (FER(HDL)) (P = 0.007), a measure of HDL particle size, than the noncarriers. The E2 allele was associated with lower TC, LDL-C, and FER(HDL) (P < 0.05) compared to the E3/E3 genotype. These findings support that LPL and apoE polymorphisms play an important role in lipid metabolism in pregnancy. The relationship of these polymorphisms to risk of coronary heart disease in women requires further study.  相似文献   

4.
We conducted a cross-sectional study in a Spanish population (n = 1,029) to investigate associations between the LPL and APOC3 gene loci (LPL-HindIII, LPL-S447X, and APOC3-SstI) and plasma lipid levels and their interaction with APOE polymorphisms and smoking. Carriers of the H(-) or the X447 allele had higher levels of HDL cholesterol (HDL-C), and lower levels of TG, after adjustment for age, body mass index, alcohol, smoking, exercise, and education (P < 0.01). The APOC3 polymorphism presented additive effects to the LPL variants on TG and HDL-C levels in men, and on TG in women. The most and the least favorable haplotype combinations were H(-)/X447/S1 and H(+)/S447/S2, respectively. These combinations accounted for 7% and 5% of the variation in HDL-C and TG in men, and 3% and 4% in women. There was a significant interaction between APOE and LPL variants and HDL-C levels in both genders (P < 0.05). The increases in HDL-C observed for the rare alleles were higher in epsilon4 than in epsilon3 subjects, and absent in epsilon2 individuals. This effect was modulated by smoking (interaction HindIII-APOE-smoking, P = 0.019), indicating that smoking abolished the increase in HDL-C levels observed in epsilon4/H(-) subjects.Understanding this gene-gene-environmental interaction may facilitate preventive interventions to reduce coronary artery disease risk.  相似文献   

5.
Evidence of a gene-exercise interaction for traits related to body composition is limited. Here, the association between the lipoprotein lipase (LPL) S447X polymorphism and changes in body mass index, fat mass, percent body fat, abdominal visceral fat measured by computed tomography, and post-heparin plasma LPL activity in response to 20 wk of endurance training was investigated in 741 adult white and black subjects. Changes were compared between carriers and noncarriers of the X447 allele after adjustment for the effects of age and pretraining values. No evidence of association was observed in men. However, white women carrying the X447 allele exhibited greater reductions of body mass index (P = 0.01), fat mass (P = 0.01), and percent body fat (P = 0.03); in black women, the carriers exhibited a greater reduction of abdominal visceral fat (P = 0.05) and a greater increase in post-heparin LPL activity (P = 0.02). These results suggest that the LPL S447X polymorphism influences the training-induced changes in body fat and post-heparin LPL activity in women but not in men.  相似文献   

6.
Lipoprotein lipase (LPL) is crucial in the hydrolysis of triglycerides (TG) in TG-rich lipoproteins in the formation of HDL particles. As both these lipoproteins play an important role in the pathogenesis of atherosclerotic vascular disease, we sought to assess the relationship between post-heparin LPL (PH-LPL) activity and lipids and lipoproteins in a large, well-defined cohort of Dutch males with coronary artery disease (CAD). These subjects were drawn from the REGRESS study, totaled 730 in number and were evaluated against 75 healthy, normolipidemic male controls. Fasting mean PH-LPL activity in the CAD subjects was 108 46 mU/ml, compared to 138 44 mU/ml in controls (P < 0.0001). When these patients were divided into activity quartiles, those in the lowest versus the highest quartile had higher levels of TG (P < 0.001), VLDLc and VLDL-TG (P = 0.001). Conversely, levels of TC, LDL, and HDLc were lower in these patients (P = 0.001, P = 0.02, and P = 0.001, respectively). Also, in this cohort PH-LPL relationships with lipids and lipoproteins were not altered by apoE genotypes. The frequency of common mutations in the LPL gene associated with partial LPL deficiency (N291S and D9N carriers) in the lowest quartile for LPL activity was more than double the frequency in the highest quartile (12.0% vs. 5.0%; P = 0.006). By contrast, the frequency of the S447X LPL variant rose from 11.5% in the lowest to 18.3% (P = 0.006) in the highest quartile. This study, in a large cohort of CAD patients, has shown that PH-LPL activity is decreased (22%; P = 0.001) when compared to controls; that the D9N and N291S, and S447X LPL variants are genetic determinants, respectively, in CAD patients of low and high LPL PH-LPL activities; and that PH-LPL activity is strongly associated with changes in lipids and lipoproteins.  相似文献   

7.
This systematic review attempted to summarize the associations between the Asn291Ser variant in the lipoprotein lipase (LPL) gene and dyslipidemia, the risk of type 2 diabetes mellitus (T2DM), and coronary heart disease (CHD). In addition, the relationships between the Asn291Ser variant and other metabolic diseases such as obesity and high blood pressure were also investigated in this systematic review. We systematically reviewed the literature by means of a meta-analysis. Twenty-one articles, including 19,246 white subjects, were selected for this meta-analysis. The summary standardized mean difference (SMD) of plasma triglyceride (TG) for carriers compared with noncarriers of the Asn291Ser variant was 3.23 (P < 0.00001). The summary SMD of plasma HDL-cholsterol (HDL-C) for carriers compared with noncarriers of the Asn291Ser variant was -3.42 (P < 0.0001). The summary SMD of the association of the Asn291Ser variant with plasma TG increased with increasing age and weight gain. Significant interactions between the LPL Asn291Ser variant and fasting glucose, T2DM, and CHD were seen (P = 0.02, 0.04, and 0.01, respectively). No significant interactions were seen between the LPL Asn291Ser variant and body mass index, waist-hip ratio, and blood pressure (P > 0.05). This meta-analysis indicates that the Asn291Ser variant in the LPL gene is a risk factor for dyslipidemia, characterized by hypertriglyceridemia and low HDL-C levels. And the Asn291Ser variant in the LPL gene predisposes to more severe dyslipidemia with increasing age and weight gain. Also, this meta-analysis shows that the LPL Asn291Ser variant is associated with CHD and T2DM.  相似文献   

8.
We studied 4,058 subjects from a representative sample of the Singapore population 1) to determine the association between the S447X polymorphism at the LPL locus and serum lipid concentration in Chinese, Malays, and Asian Indians living in Singapore and 2) to explore any interactions with apolipoprotein E (APOE) genotype, exercise, obesity, cigarette smoking, and alcohol intake. Information on obesity, lifestyle factors (including smoking, alcohol consumption, and exercise frequency), glucose tolerance, and fasting lipids was obtained. Male and female carriers of the X447 allele had lower serum triglyceride concentrations and higher HDL cholesterol (HDL-C) concentrations. The association between the X447 allele and serum HDL-C concentration was modulated by APOE genotype in males and cigarette smoking and alcohol intake in females. The effect of the X447 allele was greatest in men who carried the E4 allele and women who smoked or consumed alcohol. The X447 allele at the LPL locus is common and associated with a less atherogenic lipid profile in Asian populations. Interactions with APOE genotype, cigarette smoking, and alcohol intake reinforce the importance of examining genetic associations, such as this one, in the context of the population of interest.  相似文献   

9.
Single nucleotide polymorphisms (SNPs) are hypothesized to explain the genetic predisposition to ischemic heart disease (IHD) in the general population. Lack of evidence for a role of such variation is fostering pessimism about the utility of genetic information in the practice of medicine. In this study we determined the utility of exonic and 5' SNPs in apolipoprotein E (APOE) and lipoprotein lipase (LPL) when considered singly and in combination for predicting incidence of IHD in 8,456 individuals from the general population during 24 years of follow-up. In men, LPL D9N improved prediction of IHD (P = 0.03) beyond smoking, diabetes and hypertension. The group of men heterozygous and homozygous for the rare D9N variant had a hazard ratio (HR) of 1.69 (95% confidence interval = 1.10-2.58) relative to the most common genotype. Pairwise combinations of D9N with -219G > T in APOE and N291S and S447X in LPL significantly improved the prediction of IHD (P = 0.05 in women, P = 0.04 in men, P = 0.03 in men, respectively) beyond smoking, diabetes and hypertension, and identified subgroups of individuals (n = 6-94) with highly significant HRs of 1.92-4.35. These results were validated in a case-control study (n = 8,806). In conclusion, we present evidence that combinations of SNPs in APOE and LPL identify subgroups of individuals at substantially increased risk of IHD beyond that associated with smoking, diabetes and hypertension.  相似文献   

10.
A low level of HDL-C is the most common plasma lipid abnormality observed in men with established coronary heart disease (CHD). To identify allelic variants associated with susceptibility to low HDL-C and CHD, we examined 60 candidate genes with key roles in HDL metabolism, insulin resistance, and inflammation using samples from the Veterans Affairs HDL Intervention Trial (VA-HIT; cases, n = 699) and the Framingham Offspring Study (FOS; controls, n = 705). VA-HIT was designed to examine the benefits of HDL-raising with gemfibrozil in men with low HDL-C (≤40 mg/dl) and established CHD. After adjustment for multiple testing within each gene, single-nucleotide polymorphisms (SNP) significantly associated with case status were identified in the genes encoding LIPC (rs4775065, P < 0.0001); CETP (rs5882, P = 0.0002); RXRA (rs11185660, P = 0.0021); ABCA1 (rs2249891, P = 0.0126); ABCC6 (rs150468, P = 0.0206; rs212077, P = 0.0443); CUBN (rs7893395, P = 0.0246); APOA2 (rs3813627, P = 0.0324); SELP (rs732314, P = 0.0376); and APOC4 (rs10413089, P = 0.0425). Included among the novel findings of this study are the identification of susceptibility alleles for low HDL-C/CHD risk in the genes encoding CUBN and RXRA, and the observation that genetic variation in SELP may influence CHD risk through its effects on HDL.  相似文献   

11.
Lipoprotein lipase (LPL) and Apolipoprotein C-III (APOC-III) play an important role in lipid metabolism. The aim of this study was to explore the possible associations of the gene polymorphisms (LPL HindIII, LPL Ser(447)-Ter and APOC3 SstI), diabetes mellitus, and plasma lipids with myocardial infarction. The polymorphisms were assessed by restriction assay in 200 Egyptian MI patients (100 diabetic and 100 non-diabetic) and 100 healthy controls. This study demonstrated that individuals with the H2H2 genotype or S2 allele have more than three times higher relative risk of suffering from MI than those carrying the H1H1 or S1S1. Type 2 DM mainly lowers HDL-C levels in MI patients who carry H2H2 or S2S2 genotype and increases TC, TG, and LDL levels in MI patients carrying H2H2 or S2S2 genotype compared with non-diabetic MI patients carrying the same genotypes. In S447X polymorphism, it was observed that DM led to loss of the protective lipid profile in MI patients carrying 447XX genotype. These findings suggest that H2H2 or S2S2 genotypes are associated with dyslipidemia and increased risk of myocardial infarction. The S447X polymorphism is associated with a favorable lipid profile. However, the association of diabetes mellitus with these polymorphisms leads to unfavorable lipid profile.  相似文献   

12.
To explore whether the placenta contributes to the lipoprotein metabolism of pregnant women, we took advantage of the fact that placental proteins are encoded from the fetal genome and examined the associations between lipids of 525 pregnant women and the presence, in their newborns, of genetic polymorphisms of LPL and apolipoprotein E (APOE), two genes expressed in placenta. After adjustment for maternal polymorphisms, newborn LPL*S447X was associated with lower triglycerides (-21 +/- 9 mg/dl), lower LDL-cholesterol (LDL-C; -12 +/- 5 mg/dl), lower apoB (-14 +/- 4 mg/dl), higher HDL-C (5 +/- 2 mg/dl), and higher apoA-I (9 +/- 4 mg/dl) in their mothers; newborn LPL*N291S was associated with higher maternal triglycerides (114 +/- 31 mg/dl); and newborn APOE*E2 (compared to E3E3) was associated with higher maternal LDL-C (14 +/- 6 mg/dl) and higher maternal apoB (14 +/- 5 mg/dl). These associations (all P < 0.05) were independent of polymorphisms carried by the mothers and of lipid concentrations in newborns and were similar in amplitude to the associations between maternal polymorphisms and maternal lipids. Such findings support the active role of placental LPL and APOE in the metabolism of maternal lipoproteins and suggest that fetal genes may modulate the risk for problems related to maternal dyslipidemia (preeclampsia, pancreatitis, and future cardiovascular disease).  相似文献   

13.
为进行脂蛋白脂肪酶基因突变与中国人群高脂血症的相关性研究,采用单链构象多态性分析结合DNA序列测定的方法,对386例(其中108例高脂血症患者,278例正常对照)中国人群进行突变筛查。结果发现1个新的沉默突变L103L,1个错义突变P207L,3个剪接突变Int3/3′-ass/C(-6)→T和普遍存在的S447X多态性,其中发生在高脂血症组的P207L杂合子为亚洲首报,并对先证者的家系进行了研究,认为P207L是家族性高脂血症的病因之一,而在正常对照组中也有发现的Int3/3′-ass/C(-6)→T,对以往研究认为其是高脂血症易患因素的观点提出了相反的报告,对于普遍认为有益的多态性位点S447X,进一步研究认为其对于正常人群,特别是健康男性的保护作用更强。结论:脂蛋白脂肪酶基因变异与高脂血症的相关性十分复杂多样,大规模的人群筛查具有重要意义。  相似文献   

14.
Our objective was to test the hypothesis that a common polymorphism in the hepatic lipase (HL) gene (LIPC -514C>T, rs1800588) influences aerobic exercise training-induced changes in TG, very-low-density lipoprotein (VLDL), and high-density lipoprotein (HDL) through genotype-specific increases in lipoprotein lipase (LPL) activity and that sex may affect these responses. Seventy-six sedentary overweight to obese men and women aged 50-75 yr at risk for coronary heart disease (CHD) underwent a 24-wk prospective study of the LIPC -514 genotype-specific effects of exercise training on lipoproteins measured enzymatically and by nuclear magnetic resonance, postheparin LPL and HL activities, body composition by dual energy x-ray absorptiometry and computer tomography scan, and aerobic capacity. CT genotype subjects had higher baseline total cholesterol, HDL-C, HDL(2)-C, large HDL, HDL particle size, and large LDL than CC homozygotes. Exercise training elicited genotype-specific decreases in VLDL-TG (-22 vs. +7%; P < 0.05; CC vs. CT, respectively), total VLDL and medium VLDL, and increases in HDL-C (7 vs. 4%; P < 0.03) and HDL(3)-C with significant genotype×sex interactions for the changes in HDL-C and HDL(3)-C (P values = 0.01-0.02). There were also genotype-specific changes in LPL (+23 vs. -6%; P < 0.05) and HL (+7 vs. -24%; P < 0.01) activities, with LPL increasing only in CC subjects (P < 0.006) and HL decreasing only in CT subjects (P < 0.007). Reductions in TG, VLDL-TG, large VLDL, and medium VLDL and increases in HDL(3)-C and small HDL particles correlated significantly with changes in LPL, but not HL, activity only in CC subjects. This suggests that the LIPC -514C>T variant significantly affects training-induced anti-atherogenic changes in VLDL-TG, VLDL particles, and HDL through an association with increased LPL activity in CC subjects, which could guide therapeutic strategies to reduce CHD risk.  相似文献   

15.
The lipoprotein lipase (LPL) enzyme plays a major role in lipid metabolism, primarily by regulating the catabolism of triglyceride (TG)-rich lipoprotein particles. The gene for LPL is an important candidate for affecting the risk of atherlosclerosis in the general population. Previously, we have shown that the HindIII polymorphism in intron 8 of the LPL gene is associated with plasma TG and HDL-cholesterol variation in Hispanics and non-Hispanic whites (NHWs). However, this polymorphism is located in an intron and hence may be in linkage disequilibrium with a functional mutation in the coding region or intron-exon junctions of the LPL gene. The aim of this study was to initially screen the LPL coding region and the intron-exon junctions by single-strand conformation polymorphism (SSCP) analysis for mutation detection in a group of 86 individuals expressing the phenotype of high TG/low HDL, followed by association studies in a population-based sample of 1,014 Hispanics and NHWs. Four sequence variations were identified by SSCP and DNA sequencing in the coding region of the gene, including two missense mutations (D9N in exon 2 and N291S in exon 6), one samesense mutation (V108V in exon 3), and one nonsense mutation (S447X in exon 9). Multiple regression analyses, including these four mutations and the HindIII polymorphic site, indicate that the association of the HindIII site with plasma TG (P=0.001 in NHWs and P=0.002 in Hispanics) and HDL-cholesterol (P=0.007 in NHWs and P=0.127 in Hispanics) is independent of all other LPL variable sites examined. These observations reinforce the concept that the intronic 8 HindIII site is functional by itself and provide a strong rationale for future comprehensive functional studies to delineate its biological significance.  相似文献   

16.
The S447X polymorphism in lipoprotein lipase (LPL), which shortens LPL by two amino acids, is associated with low plasma triglyceride levels and reduced risk for coronary heart disease. S447X carriers have higher LPL levels in the pre- and post-heparin plasma, raising the possibility that the S447X polymorphism leads to higher LPL levels within capillaries. One potential explanation for increased amounts of LPL in capillaries would be more avid binding of S447X-LPL to GPIHBP1 (the protein that binds LPL dimers and shuttles them to the capillary lumen). This explanation seems plausible because sequences within the carboxyl terminus of LPL are known to mediate LPL binding to GPIHBP1. To assess the impact of the S447X polymorphism on LPL binding to GPIHBP1, we compared the ability of internally tagged versions of wild-type LPL (WT-LPL) and S447X-LPL to bind to GPIHBP1 in both cell-based and cell-free binding assays. In the cell-based assay, we compared the binding of WT-LPL and S447X-LPL to GPIHBP1 on the surface of cultured cells. This assay revealed no differences in the binding of WT-LPL and S447X-LPL to GPIHBP1. In the cell-free assay, we compared the binding of internally tagged WT-LPL and S447X-LPL to soluble GPIHBP1 immobilized on agarose beads. Again, no differences in the binding of WT-LPL and S447X-LPL to GPIHBP1 were observed. We conclude that increased binding of S447X-LPL to GPIHBP1 is unlikely to be the explanation for more efficient lipolysis and lower plasma triglyceride levels in S447X carriers.  相似文献   

17.
18.
The current report is a quantitative review of the relationship between lipoprotein lipase gene variants and cardiovascular disease based on published population-based studies. Sixteen studies, representing 17,630 individuals, report allelic distribution for lipoprotein lipase gene variants among patients and control individuals. Patient outcomes included clinical cardiovascular disease events, documented coronary disease based on angiography, or intimal media thickening by B-mode ultrasonography. Mantel-Haenszel stratified analysis was used to compute a summary odds ratio and 95% confidence intervals for the association between rare allele in the lipoprotein lipase gene and disease status. Because of potential differing effects associated with different lipoprotein lipase variants, each lipoprotein lipase mutant allele was considered separately. The lipoprotein lipase D9N/-93G to T allele has a summary odds ratio of 2.03 (95% confidence interval 1.30-3.18), indicating a twofold increase in risk of coronary disease for carriers with this allelic variant. The summary odds ratio for the relationship of the rare lipoprotein lipase G188E variant with cardiovascular disease is 5.25 (95% confidence interval 1.54-24.29). The lipoprotein lipase N291S allele is associated with a marginal increase in cardiovascular disease (summary odds ratio 1.25, 95% confidence interval 0.99-1.60, P = 0.07). However, there is stronger evidence for a positive association in certain populations. The summary odds ratio for lipoprotein lipase S447X allele is 0.81 (95% confidence interval 0.65-1.0), which indicates a cardioprotective effect of this lipoprotein lipase gene variant. Thus, lipoprotein lipase gene variants are associated with differential susceptibility to cardiovascular disease.  相似文献   

19.
Atherosclerosis is the major cause of coronary artery disease (CAD), and oxidized LDL (oxLDL) is believed to play a key role in the initiation of the atherosclerotic process. Recent studies show that inflammation and autoimmune reactions are also relevant in atherosclerosis. In this study, we examined the association of antibodies against oxLDL (anti-oxLDL) with the severity of CAD in 558 Women's Ischemia Syndrome Evaluation (WISE) study samples (465 whites; 93 blacks) determined by coronary stenosis (< 20%, 20%-49%, > 50% stenosis). We also examined the relationship of anti-oxLDL with serum lipid levels and nine candidate genes including APOE, APOH, APOA5, LPL, LRP1, HL, CETP, PON1, and OLR1. IgM anti-oxLDL levels were significantly higher in the >20% stenosis group than in the ≥ 20% stenosis group in whites (0.69 ± 0.02 vs. 0.64 ± 0.01, respectively; P = 0.02). IgM anti-oxLDL levels correlated significantly with total cholesterol (r2 = 0.01; P = 0.03) and LDL cholesterol (r2 = 0.017; P = 0.004) in whites. Multiple regression analysis revealed a suggestive association of LPL/S447X single-nucleotide polymorphism (SNP) with both IgG anti-oxLDL (P = 0.02) and IgM anti-oxLDL (P = 0.07), as well as between IgM anti-oxLDL and the OLR1/3'UTR SNP (P = 0.020). Our data suggest that higher IgM anti-oxLDL levels may provide protection against coronary stenosis and that genetic variation in some candidate genes are determinants of anti-oxLDL levels.  相似文献   

20.
Lipoprotein lipase (LPL) is the rate-limiting enzyme in the hydrolysis of triglyceride-rich lipoprotein particles (Chylomicrons and very-low-density lipoprotein). LPL polymorphisms' effects on lipids and coronary artery disease are controversial among studies and populations. Our aim was to study the association between six polymorphisms, haplotypes and significant coronary stenosis (SCS), disease severity and lipid parameters in Tunisian patients. LPL PvuII, 93 T/G, 188 G/E, HindIII, N291S and D9N polymorphisms were analyzed in 316 patients who underwent coronary angiography. Assessment of coronary angiograms identified SCS as the presence of stenosis >50?% in at least one major coronary artery. The stenosis severity was determined by using Gensini score and vessels number. A significant association of SCS with TT of the HindIII polymorphism was showed (odds ratio (OR): 2.84, 95?% CI, 1.19-7.40, p?=?0.017) and TG (OR: 1.77, 95?% CI, 1.99-2.82, p?=?0.033). The mutated HindIII genotype was significantly associated with increased TG and ApoB/ApoA-I ratio and with decreased HDL-C. Haplotype analysis showed that OR of SCS associated with the CTGTAG haplotype was 2.12 (95?% CI 1.05-4.25, p?=?0.032) and with CGGGAA was 0.71 (95?% CI 0.26-1.95, p?=?0.022) compared to the CTGTAA. Significant difference in Gensini score was observed among HindIII genotype and haplotypes. A significant association between the mutated genotype of HindIII polymorphism and decreased HDL-C level and increased ApoB/ApoA-I ratio and TG level was showed. Our results suggest that HindIII and D9N polymorphisms and CTGTAG haplotype seem to be considered as marker of predisposition to coronary stenosis. In another hand, HindIII and haplotypes were related to stenosis severity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号