首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Molecular dissection of GT-1 from Arabidopsis.   总被引:4,自引:1,他引:3       下载免费PDF全文
K Hiratsuka  X Wu  H Fukuzawa    N H Chua 《The Plant cell》1994,6(12):1805-1813
We isolated and characterized an Arabidopsis cDNA encoding the DNA binding protein GT-1. This protein factor, which contains 406 amino acids, is highly homologous to the previously described tobacco DNA binding protein GT-1a/B2F but is 26 amino acids longer. Recombinant Arabidopsis GT-1, which was obtained from in vitro translation, bound to probes consisting of four copies of pea small subunit of ribulose bisphosphate carboxylase rbcS-3A box II and required the same GGTTAA core binding site as the binding activity of an Arabidopsis nuclear protein preparation. However, unlike the truncated tobacco GT-1a prepared from Escherichia coli extracts, the full-length Arabidopsis GT-1 bound to pea rbcS-3A box III and Arabidopsis chlorophyll a/b binding protein CAB2 light-responsive elements, both of which contain GATA motifs. Deletion and mutational analyses suggested that the predicted trihelix region of GT-1 is essential for DNA binding. Moreover, GT-1 binds to target DNA as a dimer, and its C-terminal region contains a putative dimerization domain that enhances the binding activity. Transient expression of the GT-1::beta-glucuronidase fusion protein in onion cells revealed the presence of a nuclear localization signal(s) within the first 215 amino acids of GT-1.  相似文献   

4.
We previously demonstrated that a cluster in the available 150 Asn-170Glu region of pea chloroplast fructose-1,6-bisphosphatase (FBPase) could be involved in its interaction with the physiological modulator thioredoxin (Trx). Using as template a cDNA coding for pea chloroplast FBPase, a DNA insert coding for a 19 amino acid fragment ( 149 Pro-167Gly) was amplified by PCR. After insertion in the pGEX-4T vector-1, it was expressed in Escherichia coli as a fusion protein (GST-19) with the vector-coded glutathione transferase (GST). This protein appears in the supernatant of cell lysates, and was purified to homogeneity. After thrombin digestion, the 19 amino acid insert was isolated as a polypeptide which displayed a positive reaction against pea chloroplast FBPase antibodies. GST-19 linked to glutathione-Sepharose beads, but not the GST, strongly interacts with pea Trx f , suggesting that this binding depends on the 19 amino acid insert. ELISA and Western blot experiments also demonstrate the existence of a GST-19-Trx f interaction, as well as a negligible quantity of Trx f bound by the vector-coded GST. Putative competitive inhibition assays of FBPase activity carried out in the presence of increasing concentrations of the 19 amino acid insert do not demonstrate any enzyme inhibition. On the contrary, this protein fragment enhances the enzyme activity proportionally to its concentration in the assay mixture. This indicates that the FBPase-Trx f binding promotes some type of structural modification of the Trx molecule, or of the FBPase-Trx docking site, thus facilitating the reductive modulation of FBPase.  相似文献   

5.
6.
7.
In Saccharomyces cerevisiae, the TPI gene product, triosephosphate isomerase, makes up about 2% of the soluble cellular protein. Using in vitro and in vivo footprinting techniques, we have identified four binding sites for three factors in the 5' noncoding region of TPI: a REB1-binding site located at positions -401 to -392, two GCR1-binding sites located at positions -381 to -366 and -341 to -326, and a RAP1-binding site located at positions -358 to -346. We tested the effects of mutations at each of these binding sites on the expression of a TPI::lacZ gene fusion which carried 853 bp of the TPI 5' noncoding region integrated at the URA3 locus. The REB1-binding site is dispensable when material 5' to it is deleted; however, if the sequence 5' to the REB1-binding site is from the TPI locus, expression is reduced fivefold when the site is mutated. Because REB1 blocks nucleosome formation, the most likely function of its binding site in the TPI controlling region is to prevent the formation of nucleosomes over the TPI upstream activation sequence. Mutations in the RAP1-binding site resulted in a 10-fold reduction in expression of the reporter gene. Mutating either GCR1-binding site alone had a modest effect on expression of the fusion. However, mutating both GCR1-binding sites resulted in a 68-fold reduction in the level of expression of the reporter gene. A LexA-GCR1 fusion protein containing the DNA-binding domain of LexA fused to the amino terminus of GCR1 was able to activate expression of a lex operator::GAL1::lacZ reporter gene 116-fold over background levels. From this experiment, we conclude that GCR1 is able to activate gene expression in the absence of REB1 or RAP1 bound at adjacent binding sites. On the basis of these results, we suggest that GCR1 binding is required for activation of TPI and other GCR1-dependent genes and that the primary role of other factors which bind adjacent to GCR1-binding sites is to facilitate of modulate GCR1 binding in vivo.  相似文献   

8.
In vitro analysis of the pea chloroplast 16S rRNA gene promoter.   总被引:10,自引:0,他引:10       下载免费PDF全文
  相似文献   

9.
We report here the identification of a cis-acting region involved in light regulation of the nuclear gene (GapB) encoding the B subunit of chloroplast glyceraldehyde 3-phosphate dehydrogenase from Arabidopsis thaliana. Our results show that a 664-bp GapB promoter fragment is sufficient to confer light induction and organ-specific expression of the Escherichia coli beta-glucuronidase reporter gene (Gus) in transgenic tobacco (Nicotiana tabacum) plants. Deletion analysis indicates that the -261 to -173 upstream region of the GapB gene is essential for light induction. This region contains four direct repeats with the consensus sequence 5'-ATGAA(A/G)A-3' (Gap boxes). Deletion of all four repeats abolishes light induction completely. In addition, we have linked a 109-bp (-263 to -152) GapB upstream fragment containing the four direct repeats in two orientations to the -92 to +6 upstream sequence of the cauliflower mosaic virus 35S basal promoter. The resulting chimeric promoters are able to confer light induction and to enhance leaf-specific expression of the Gus reporter gene in transgenic tobacco plants. Based on these results we conclude that Gap boxes are essential for light regulation and organ-specific expression of the GapB gene in A. thaliana. Using gel mobility shift assays we have also identified a nuclear factor from tobacco that interacts with GapA and GapB DNA fragments containing these Gap boxes. Competition assays indicate that Gap boxes are the binding sites for this factor. Although this binding activity is present in nuclear extracts from leaves and roots of light-grown or dark-treated tobacco plants, the activity is less abundant in nuclear extracts prepared from leaves of dark-treated plants or from roots of greenhouse-grown plants. In addition, our data show that this binding factor is distinct from the GT-1 factor, which binds to Box II and Box III within the light-responsive element of the RbcS-3A gene of pea.  相似文献   

10.
11.
12.
It has been proposed that a hydrophobic groove surrounded by positively charged amino acids on thioredoxin (Trx) serves as the recognition and docking site for the interaction of Trx with target proteins. This model for Trx-protein interactions fits well with the Trx-mediated fructose-1,6-bisphosphatase (FBPase) activation, where a protruding negatively charged loop of FBPase would bind to this Trx groove, in a process involving both electrostatic and hydrophobic interactions. This model facilitates the prediction of Trx amino acid residues likely to be involved in enzyme binding. Site-directed mutagenesis of some of these amino acids, in conjunction with measurements of the FBPase activation capacity of the wild type and mutated Trxs, was used to check the model and provided evidence that lysine-70 and arginine-74 of pea Trx m play an essential role in FBPase binding. The binding parameters for the interaction between chloroplast FBPase and the wild type pea Trxs f and m, as well as mutated pea Trx m, determined by equilibrium dialysis in accordance with the Koshland-Nemethy-Filmer model of saturation kinetics, provided additional support for the role of these basic Trx residues in the interaction with FBPase. These data, in conjunction with the midpoint redox potential (E(m)) determinations of Trxs, support the hydrophobic groove model for the interaction between chloroplast FBPase and Trx. This model predicts that differences in the FBPase activation capacity of Trxs arise from their different binding abilities.  相似文献   

13.
P J Green  S A Kay    N H Chua 《The EMBO journal》1987,6(9):2543-2549
Pea nuclear extracts were used in gel retardation assays and DNase I footprinting experiments to identify a protein factor that specifically interacts with regulatory DNA sequences upstream of the pea rbcS-3A-gene. This factor, designated GT-1, binds to two short sequences (boxes II and III) in the -150 region that are known to function as light-responsive elements (LREs) in transgenic tobacco. Binding of GT-1 to homologous sequences further upstream (boxes II and III in the -220 region) indicates that these boxes comprise the redundant LRE that functions in vivo when boxes II and III are deleted. In both box II and box II, methylation interference experiments demonstrate that two adjacent G residues are critical for GT-binding. Single Gs present in boxes III and III are also important. Since GT-1 is present in nuclear extracts from leaves of light-grown and dark-adapted pea plants, its regulatory role does not depend on de novo synthesis. Thus if GT-1 binds differentially in vivo it must be postranslationally modified or sterically blocked from binding by another factor in response to light.  相似文献   

14.
Infection of Nicotiana tabacum Samsun NN with tobacco mosaic virus (TMV) results in a hypersensitive plant response and leads to systemic acquired resistance (SAR). The induction of SAR is mediated by the plant hormone salicylic acid (SA) and is accompanied by the induced expression of a number of genes including the pathogenesis-related (PR) gene 1a. Previously, it has been found that TMV infection and SA treatment resulted in a reduction of binding of nuclear protein GT-1 to far-upstream regions (–902 to –656) of the PR-1a gene. To test if GT-1 is a negative regulator of PR-1a gene expression, the effects of mutations in the seven putative GT-1 binding sites in this region were studied in vitro using dimethyl sulfate interference footprinting and band shift assays. This showed that at least one of the seven sites is indeed a GT-1 binding site. However, when tested in transgenic plants, the mutations did not result in constitutive expression of the chimeric PR-1a/GUS transgene, while inducible expression after SA treatment was decreased. The results suggest that binding of GT-1-like proteins to far-upstream PR-1a promoter regions indeed influences gene expression. A possible model for GT-1's mode of action in PR-1a gene expression is discussed.  相似文献   

15.
16.
When we compare the primary structures of the six chloroplast fructose-1,6-bisphosphatases (FBPase) so far sequenced, the existence of a poorly conserved fragment in the region just preceding the redox regulatory cysteines cluster can be observed. This region is a good candidate for binding of FBPase to its physiological modulator thioredoxin (Td), as this association shows clear differences between species. Using a cDNA clone for pea chloroplast FBPase as template, we have amplified by PCR a DNA insert coding for a 19 amino acid fragment (149Pro-167Gly), which was expressed in pGEMEX-1 as a fusion protein. This protein strongly interacts with pea Td m, as shown by ELISA and Superose 12 gel filtration, depending on pH of the medium. Preliminary assays have shown inhibition of FBPase activity in the presence of specific IgG against the 19 amino acid insert. Surprisingly the fusion protein enhances the FBPase activation in competitive inhibition experiments carried out with FBPase and Td. These results show the fundamental role played by this domain in FBPase-Td binding, not only as docking point for Td, but also by inducing some structural modification in the Td molecule. Taking as model the structural data recently published for spinach photosynthetic FBPase [29], this sequence from a tertiary and quaternary structural point of view appears available for rearrangement.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号