首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

We characterized the production of biogenic Mn oxides by four anamorphic ascomycete fungi isolated from streambed pebbles with Mn oxide coatings. Based on the 18S rRNA gene sequences, one strain was related to members of the order Xylariales and the other three were within distinct lineages of the Pleosporales. These strains oxidized Mn(II) to deposit Mn oxides when their growth approached the stationary phase. The fungal Mn oxides showed X-ray diffraction patterns typical of poorly crystalline vernadite (δ -MnO2), and X-ray absorption near-edge structure spectroscopy confirmed that the Mn phases consisted predominantly of Mn(IV). Mn(II) oxidation in the four strains proceeded enzymatically. The Mn(II)-oxidizing proteins were inhibited by azide and o-phenanthroline, and the proteins also oxidized typical laccase substrates including 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), showing the role of laccase or a laccase-like metalloenzyme. The mineralogical traits of the biogenic Mn oxides, and the participation of laccase-like enzymes, are in accordance with our previous results obtained with one Hypocreales ascomycete. In conclusion, phylogenetically diverse ascomycetes may use this common enzymatic system to produce solid Mn phases similar to δ -MnO2.  相似文献   

2.
Mn-rich filamentous particles present in stratified water environments are considered bacteriogenic; however, little is known about their causative agents. This study investigated the production of these particles by an alphaproteobacterium, Bosea sp. strain BIWAKO-01. Particle formation was promoted in static cultures with slightly viscous medium at pH 6.0?6.3 under low-O2 conditions. The Mn(II) oxidation in cultures was slower in higher O2 concentration. These results suggested that pH and O2 concentration are important factors affecting filamentous Mn particle formation in the Mn(II) oxidizer. Lectin staining followed by fluorescence microscopy revealed the presence of specific carbohydrates in the filamentous structures. In addition, transmission electron microscopy, high angle annular dark field scanning transmission electron microscopy, and electron energy loss spectroscopy revealed the structural and spatial associations of Mn with O and C on a nanometer scale in filaments. The results suggested the occurrence of sheet-type Mn oxide likely due to the catalytic activity in exopolymeric substances including acidic polysaccharides.  相似文献   

3.
Marinobacter sp. MnI7-9, a deep-sea manganese [Mn(II)]-oxidizing bacterium isolated from the Indian Ocean, showed a high resistance to Mn(II) and other metals or metalloids and high Mn(II) oxidation/removal abilities. This strain was able to grow well when the Mn(II) concentration reached up to 10 mM, and at that concentration, 76.4% of the added Mn(II) was oxidized and 23.4% of the Mn(II) was adsorbed by the generated biogenic Mn oxides (total 99.9% Mn removal). Scanning electron microscope observation and X-ray diffraction analysis showed that the biogenic Mn oxides were in stick shapes, adhered to the cell surface, and contained two typical crystal structures of γ-MnOOH and δ-MnO2. In addition, the biogenic Mn oxides generated by strain MnI7-9 showed abilities to oxidize the highly toxic As(III) to the less toxic As(V), in both co-culture and after-collection systems. In the co-culture system containing 10 mM Mn(II) and 55 μM As(III), the maximum percentage of As(III) oxidation was 83.5%. In the after-collection system using the generated biogenic Mn oxides, 90% of the As(III) was oxidized into As(V), and the concentration of As(III) decreased from 55.02 to 5.55 μM. This study demonstrates the effective bioremediation by a deep-sea Mn(II)-oxidizing bacterium for the treatment of As-containing water and increases the knowledge of deep-sea bacterial Mn(II) oxidation mechanisms. Supplemental materials are available for this article. Go to the publisher's online edition of Geomicrobiology Journal to view the supplemental file.  相似文献   

4.
A new isolate of Salmonella, strain MR4, reduced Mn(IV)O2 at 2.3 mM under aerobic conditions by about 83% over 24 h. Direct contact of cells to MnO2 was not necessary as the cell-free spent medium produced a similar amount of Mn(II). Pyruvate (1.6 mM) and oxalate (0.8 mM) were identified in the culture medium and presumed to have a role in Mn(II) production in this microorganism.  相似文献   

5.
Abstract

Mn oxides have long been considered the primary environmental oxidant of Cr(III), however, since most of the reactive Mn oxides in the environment are believed to be of biological origin, microorganisms may indirectly mediate Cr(III) oxidation and accelerate the rate over that seen in purely abiotic systems. In this study, we examined the ability of the Mn(II)-oxidizing bacterium, Pseudomonas putida strain GB-1, to oxidize Cr(III). Our results show that GB-1 cannot oxidize Cr(III) directly, but that in the presence of Mn(II), Cr(III) can be rapidly and completely oxidized. Growth studies suggest that in growth medium with few organics the resulting Cr(VI) may be less toxic to P. putida GB-1 than Cr(III), which is generally considered less hazardous. In addition, Cr(III) present during the growth of P. putida GB-1 appeared to cause iron stress as determined by the production of the fluorescent siderophore pyoverdine. When stressed by Fe limitation or Cr(III) toxicity, Mn(II) oxidation by GB-1 is inhibited.  相似文献   

6.
菌株SRF是1株从意大利树莓(Rubus corchorifolius)果实表面分离、可产胞外多糖的新菌株。在鉴定其分类归属的基础上,对其产生的胞外多糖进行了结构分析和发酵条件优化,为寻找微生物多糖提供新的菌株,为开发利用资源微生物提供借鉴。通过形态学和ITS序列对比分析进行菌株鉴定;通过薄层层析和红外光谱分析,确定胞外多糖结构;通过单因素检测试验,确定影响产糖量的主要因素;响应面Plackett-Burman和Box-Behnken设计筛选发酵产胞外多糖的最优条件。结果表明,出发菌株SRF隶属于出芽短梗霉属,命名为Aureobasidium sp. SRF;SRF所产胞外多糖为普鲁兰多糖;单因素检测表明,对多糖产量影响最大的因素为碳源浓度、氮源浓度、无机离子浓度,其次是碳源、氮源、无机离子、pH值;根据响应面结果确定最优发酵条件为麦芽糖8%(质量分数)、酵母提取物3%(质量分数)、钙离子0.3 g/L、pH 6,产糖量达5.93 g/L。SRF是1株来源于树莓浆果表面,可产胞外普鲁兰多糖的出芽短梗霉新菌株,是1株产微生物多糖的候选菌株。  相似文献   

7.
Microbial extracellular polymeric substances (EPS) are potential biosorbents for metal remediation and recovery. The Langmuir and Freundlich kinetics of Mn(II) binding by the EPS from a novel Mn(II) oxidising strain of Rhizobium etli were determined. Maximum manganese specific adsorptions (q max) decreased in the sequence: sulphate (62 mg Mn per g EPS) > nitrate (53 mg g–1) > chloride (21 mg g–1). Consideration of the anion during kinetic studies is usually neglected but is important in providing more practical and comparable data between different biosorbent systems.  相似文献   

8.
In this study, a N-deregulated mutant (der8-5) of Phanerochaete chrysosporium was used as a tool to investigate the interrelationships between N, C, and Mn(II) regulation of LIP and MNP production in this organism. The results showed that LIP and MNP production by der8-5 was blocked in excess C medium but not in excess N medium. Furthermore, LIP and MNP production in this organism was subject to Mn(II) regulation regardless of the fact whether it is grown in low N medium or in high N medium. These and other results indicate that N regulation of LIP and MNP production in P. chrysosporium is independent of C and Mn(II) regulation.Abbreviations LIP lignin peroxidase - MNP manganese-dependent peroxidase - WT wild-type - der8-5 nitrogen-deregulated mutant  相似文献   

9.
Abstract

Metal-oxidizing bacteria may play a key role in the submarine weathering of volcanic rocks and the formation of ferromanganese crusts. Putative fossil microbes encrusted in Mn oxide phases are commonly observed on volcanic glasses recovered from the deep ocean; however, no known Mn(II)-oxidizing bacteria have been directly identified or cultured from natural weathered basalts. To isolate epilithic Mn(II) oxidizing bacteria, we collected young, oxidized pillow basalts from the cold, outer portions of Loihi Seamount, and from nearby exposures of pillow basalts at South Point and Kealakekua Bay, HI. SEM imaging, EDS spectra and X-ray absorption spectroscopy data show that microbial biofilms and associated Mn oxides were abundant on the basalt surfaces. Using a series of seawater-based media that range from highly oligotrophic to organic-rich, we have obtained 26 mesophilic, heterotrophic Mn(II)-oxidizing isolates dominated by α- and γ-Proteobacteria, such as Sulfitobacter, Methylarcula and Pseudoalteromonas spp. Additional isolates include Microbulbifer, Alteromonas, Marinobacter, and Halomonas spp. None of the isolates, nor their closest relatives, were previously recognized as Mn(II) oxidizing bacteria. The physiological function of Mn(II) oxidation is clearly spread amongst many phylogenetically diverse organisms colonizing basalt surfaces. Our findings support a biological catalysis of Mn(II) oxidation during basalt-weathering, and suggest heterotrophic Mn(II) oxidizing bacteria may be ubiquitously associated with submarine glasses within epilithic and endolithic biofilms.  相似文献   

10.
Results are reported for tomato (Lycopersicon esculentum L. var. Ailsa craig) and wheat (Triticum aestivum L. cv. Mara) which demonstrate that increasing concentrations of Mg in the plant raises plant tolerance to Mn toxicity.Water culture experiments with tomato show that under conditions of high Mn supply (200 µM, Mn), not only does increasing Mg application (0.75 mM to 15 mM) depress Mn uptake, but the higher Mg concentrations in the shoot counteract the onset of Mn toxicity when the concentrations of Mn in the shoot are also high. The ratio of Mg: Mn in the tissues is a better indicator of the appearance of toxicity symptoms than Mn concentration alone. Toxicity symptoms were observed when the Mg:Mn ratio in the shoot tissue was from 1.13 to a value between 3.53 and 6.54. The corresponding Mg: Mn ratio in the older leaves was from 0.82 to between 2.27 and 3.51.For wheat grown in soil, analyses of leaves revealed that growth could be expressed by the following relationship: Y=A+B exp(-kX), where Y=growth, X=Mg:Mn ratio, A, B and k=constants. Growth was significantly reduced when the Mg:Mn ratio fell below 20:1. From a measurement of this ratio it is therefore possible to predict the appearance of Mn toxicity and its influence on growth.  相似文献   

11.
Nitric oxide (NO) participates in the pathogenesis of inflammatory reactions in many autoimmune diseases such as rheumatoid arthritis (RA). There is a reciprocal pathway between arginase and nitric oxide synthese (NOS) for NO production, and Mn is required for arginase activity and stability. To investigate whether NO production related with the arginine-nitric oxide pathway in patients with RA, we measured synovial fluid and plasma nitrite (NOx) levels, arginase activities, and its cofactor manganese (Mn) concentrations in 21 RA patients and 13 healthy control subjects. Plasma albumin levels were measured as an index of nutritional status. NOx levels were determined after the reduction of nitrates to nitrites using the Griess reaction. Whereas, synovial fluid arginase activities and Mn levels were found to be significantly lower (p<0.001, p<0.001, respectively), plasma arginase activities and Mn levels were similar in patients with RA when compared to the control subjects. Plasma and synovial fluid NO levels were similar in patients with RA and in healthy subjects (p>0.05, p>0.05, respectively). There were significantly positive correlations between synovial fluid and plasma arginase activities vs Mn content (r=0.543, p=0.011; r=0.516, p=0.017, respectively) and significantly negative correlations between synovial fluid and plasma NO levels vs arginase activities (r=−0.497, p=0.022; r=−0.508, p=0.019 respectively) in the patients group. Our results indicate that the lower concentration of synovial fluid Mn could cause lower arginase activity and this could also upregulate NO production by increasing L-arginine content in patients with RA.  相似文献   

12.
It has been demonstrated that the lowest intakes of manganese (Mn) were associated with more than a fivefold increased risk of bronchial reactivity. It was also known that nitric oxide (NO) production was found to be significantly higher in asthmatics. There is a reciprocal pathway between arginase and nitric oxide synthase (NOS) for NO production, and Mn is required for arginase activity and stability. We investigated plasma NO, arginase, and its cofactor Mn levels to evaluate this reciprocal pathway in patients with childhood asthma. Arginase activities and Mn and NO levels were measured in plasma from 31 patients with childhood asthma and 22 healthy control subjects. Plasma arginase activities and Mn concentrations were found to be significantly lower and NO levels were significantly higher found to be significantly lower and NO levels were significantly higher in patients with childhood asthma as compared to the control subjects. There was a significantly positive correlation between plasma Mn and arginase and negative correlations between arginase and NO values and Mn and NO values in patients with childhood asthma. These data indicate that the lower concentration of Mn could cause lower arginase activity and this could also upregulate NO production by increasingl-arginine content in patients with childhood asthma.  相似文献   

13.
Oxidation of Co by Mn oxide has been investigated using abiotically synthesized Mn oxide. However, oxidation of Co by biogenic Mn oxide is not well known. In this study, we isolated a Mn-oxidizing bacterium (Pseudomonas sp.), designated as strain NGY-1, from stream water. Sorption experiments on Co were carried out using biogenic Mn oxide produced by strain NGY-1. Similar sorption experiments were also conducted using a synthetic analogue of δ-MnO2. Sorption of Co on δ-MnO2 was faster and stronger than that on biogenic Mn oxide, which was possibly due to their structural difference and/or the presence of bacterial cells in biogenic Mn oxide. X-ray absorption near-edge structure spectra clearly demonstrated that Co was oxidized from the divalent to the trivalent state on biogenic Mn and δ-MnO2. The oxidation property of both the biogenic Mn oxide and δ-MnO2 was stronger under circumneutral conditions than under acidic conditions. Linear combination fitting using divalent and trivalent Co reference materials suggested that ~90% of Co was oxidized at pH ~ 6, whereas ~80% was oxidized at pH ~ 3. Oxidation properties of the biogenic Mn oxide and δ-MnO2 were similar, but Co(II) oxidation by biogenic Mn oxide was slower than that by δ-MnO2. The difference of Co oxidation may be caused by the coexisting bacterial cells or structural differences in the Mn oxides.

Supplemental materials are available for this article. Go to the publisher's online edition of Geomicrobiology Journal to view the supplemental file.  相似文献   

14.
A black yeast strain “NG” was isolated from strawberry fruit and identified as Aureobasidium pullulans. Strain NG displayed yeast-like cell (YL), swollen cell (SC), septate swollen cell (SSC), meristematic structure (MS), and chlamydospore (CH) morphologies. pH was the key factor regulating cell morphogenesis of strain NG. Differentiation of YL controlled by extracellular pH had no relationship with nutrition level. YL was maintained at pH >6.0, but was transformed into SC at pH ∼4.5. SC, a stable cell type of A. pullulans, could bud, septate, or transform into MS or CH, in response to nutrition level and low pH. SC produced swollen cell blastospores (SCB) at pH 2.1 with abundant nutrition, and could transform into MS at lower pH (1.5). SC was induced to form CH by low level nutrition and pH <3, and this transition was suppressed by adjusting pH to ∼4.5. Crude polysaccharides without pigment (melanin) were produced by SC of strain NG. Pullulan content of the polysaccharides was very high (98.37%). Fourier-transform infrared spectroscopy confirmed that chemical structures of the polysaccharides and standard pullulan were identical. Swollen cells produced 2.08 mg/ml non-pigmented polysaccharides at 96 h in YPD medium. Controlling pH of fermentation is an effective and convenient method to harvest SC for melanin-free pullulan production.  相似文献   

15.
The present investigation reports the isolation, molecular identification and screening of manganese (Mn) solubilizing fungal strains from low-grade Mn mine tailings. Six morphologically distinct Mn solubilizing fungal strains were isolated on MnO2-supplemented agar plates with Mn concentration of 0.1% (w/v). The biochemical characterization of the isolated fungal strains was carried out. The molecular identification by internal transcribed spacer (ITS) sequencing identified the strains as Aspergillus terreus, Aspergillus oryzae, Penicillium sp., Penicillium sp., Penicillium daleae and Penicillium sp. with GenBank accession numbers KP309809, KP309810, KP309811, KP309812, KP309813 and KP309814, respectively. The ability of the isolated fungal strains to tolerate and solubilize Mn was investigated by subculturing them on Mn-supplemented plates with concentration ranging from 0.1 to 0.5% (w/v). Mn solubilizing ability of the fungal isolates is possibly due to the mycelia production of biogenerated organic acids such as oxalic acid, citric acid, maleic acid and gluconic acid as revealed by ion chromatography. Our investigation signifies the role of fungi in biotransformation of insoluble Mn oxide.  相似文献   

16.
The ZIP (ZRT-, IRT-like Protein) protein ZupT from Escherichia coli is a transporter with a broad substrate range. Phenotypic and transport analysis showed that ZupT, in addition to Zn(II), Fe(II) and Co(II) uptake, is also involved in transport of Mn(II) and Cd(II). Competition experiments with other substrate cations suggested that ZupT has a slight preference for Zn(II) and kinetic parameters for Zn(II) in comparison to Co(II) and Mn(II) transport support this observation. Metal uptake into cells by ZupT was optimum at near neutral pH and inhibited by ionophores. Bicarbonate or other ions did not influence metal-uptake via ZupT. Amino acid residues of ZupT contributing to substrate specificity were identified by site directed mutagenesis. ZupT with a H89A exchange lost Co(II) and Fe(II) transport activity, while the S117V mutant no longer transported Mn(II). ZupT with E152D was impaired in overall metal uptake but completely lost its ability to transport the substrates Zn(II) and Mn(II). These experimental findings expand our knowledge on the substrate specificity of ZupT and provide further insight into the function of ZupT as a bacterial member of the vastly distributed and important ZIP family.  相似文献   

17.
18.
The ability of micro‐organisms to oxidize manganese (Mn) from Mn(II) to Mn(III/IV) oxides transcends boundaries of biological clade or domain. Many bacteria and fungi oxidize Mn(II) to Mn(III/IV) oxides directly through enzymatic activity or indirectly through the production of reactive oxygen species. Here, we determine the oxygen isotope fractionation factors associated with Mn(II) oxidation via various biotic (bacteria and fungi) and abiotic Mn(II) reaction pathways. As oxygen in Mn(III/IV) oxides may be derived from precursor water and molecular oxygen, we use a twofold approach to determine the isotope fractionation with respect to each oxygen source. Using both 18O‐labeled water and closed‐system Rayleigh distillation approaches, we constrain the kinetic isotope fractionation factors associated with O atom incorporation during Mn(II) oxidation to ?17.3‰ to ?25.9‰ for O2 and ?1.9‰ to +1.8‰ for water. Results demonstrate that stable oxygen isotopes of Mn(III/IV) oxides have potential to distinguish between two main classes of biotic Mn(II) oxidation: direct enzymatic oxidation in which O2 is the oxidant and indirect enzymatic oxidation in which superoxide is the oxidant. The fraction of Mn(III/IV) oxide‐associated oxygen derived from water varies significantly (38%–62%) among these bio‐oxides with only weak relationship to Mn oxidation state, suggesting Mn(III) disproportionation may account for differences in the fraction of mineral‐bound oxygen from water and O2. Additionally, direct incorporation of molecular O2 suggests that Mn(III/IV) oxides contain a yet untapped proxy of of environmental O2, a parameter reflecting the integrated influence of global respiration, photorespiration, and several other biogeochemical reactions of global significance.  相似文献   

19.
Ascomycetes that can deposit Mn(III, IV) oxides are widespread in aquatic and soil environments, yet the mechanism(s) involved in Mn oxide deposition remains unclear. A Mn(II)-oxidizing ascomycete, Acremonium sp. strain KR21-2, produced a Mn oxide phase with filamentous nanostructures. X-ray absorption near-edge structure (XANES) spectroscopy showed that the Mn phase was primarily Mn(IV). We purified to homogeneity a laccase-like enzyme with Mn(II) oxidase activity from cultures of strain KR21-2. The purified enzyme oxidized Mn(II) to yield suspended Mn particles; XANES spectra indicated that Mn(II) had been converted to Mn(IV). The pH optimum for Mn(II) oxidation was 7.0, and the apparent half-saturation constant was 0.20 mM. The enzyme oxidized ABTS [2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid)] (pH optimum, 5.5; Km, 1.2 mM) and contained two copper atoms per molecule. Moreover, the N-terminal amino acid sequence (residues 3 to 25) was 61% identical with the corresponding sequence of an Acremonium polyphenol oxidase and 57% identical with that of a Myrothecium bilirubin oxidase. These results provide the first evidence that a fungal multicopper oxidase can convert Mn(II) to Mn(IV) oxide. The present study reinforces the notion of the contribution of multicopper oxidase to microbially mediated precipitation of Mn oxides and suggests that Acremonium sp. strain KR21-2 is a good model for understanding the oxidation of Mn in diverse ascomycetes.  相似文献   

20.
Relatively little is known about the responses of plants to micronutrients when these nutrients are maintained at the very low levels found in soils of low fertility. We have determined the requirement of barley (Hordeum vulgare L. cv Herta) for ionic Mn2+ in plant culture solutions using the chelating agent HEDTA as a buffer for micronutrient metal ions. The chemical activity of Mn2+ was varied approximately 10,000-fold from log(Mn2+)=–10.8 to –6.8 (pMn 10.8 to pMn 6.8), while holding constant the activities of the other micronutrient cations. Growth, appearance, and composition of Herta barley indicated that log(Mn2+) of approximately –8.3 would permit optimal dry matter production and normal plant development. The specific accumulation rate of Mn by 15 to 23 day old seedlings was a linear function of the Mn2+ activity in solution. At log(Mn2+) of about –9.8 or below, barley seedlings were unable to accumulate significant amounts of Mn, and at some harvests, suffered a net loss of Mn to solution. Seedlings younger than 11 days old were ineffective accumulators of several cations, including Mn, Fe, Zn, Cu, Mg, and Ca. Differences in Mn availability did not influence uptake of other cations, except that Cu uptake by roots increased with increasing Mn uptake.Abbreviations MES 2-(N-morpholino)-ethanesulphonic acid - HEDTA N-(2-hydroxyethyl)ethylene-dinitrilotriacetic acid - DTPA diethylenetrinitrilopentaacetic acid  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号