首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This report describes the design and use of a new type of Continuous Plug Flow Reactor (CPFR). The reactor comprises a continuous glass tube (diameter of 19 mm) arranged into a spiral (0.4 m external diameter) consisting of five loops, which rotate around an axle. The CPFR has advantages over other reactors in that continuous fermentation is possible without dilution of the culture and biomass or metabolite yield is increased. In addition temperature and water activity may be adjusted to a different optimum level for each physiological stage of the cultivated microorganism.  相似文献   

2.
Continuous ethanol fermentation by immobilized whole cells ofZymomonas mobilis was investigated in an expanded bed bioreactor and in a continuous stirred tank reactor at glucose concentrations of 100, 150 and 200 g L–1. The effect of different dilution rates on ethanol production by immobilized whole cells ofZymomonas mobilis was studied in both reactors. The maximum ethanol productivity attained was 21 g L–1 h–1 at a dilution rate of 0.36 h–1 with 150 g glucose L–1 in the continuous expanded bed bioreactor. The conversion of glucose to ethanol was independent of the glucose concentration in both reactors.  相似文献   

3.
This study was aimed at developing a process of solid state fermentation (SSF) with the fungi Pleurotus ostreatus and Trametes versicolor on apple processing residues for wastewater decolorization. Both fungi were able to colonize apple residues without any addition of nutrients, material support or water. P. ostreatus produced the highest levels of laccases (up to 9 U g−1 of dry matter) and xylanases (up to 80 U g−1 of dry matter). A repeated batch decolorization experiment was set up with apple residues colonized by P. ostreatus, achieving 50% decolorization and 100% detoxification after 24 h, and, adding fresh wastewater every 24 h, a constant decolorization of 50% was measured for at least 1 month. A continuous decolorization experiment was set up by a packed-bed reactor based on colonized apple residues achieving a performance of 100 mg dye L−1 day−1 at a retention time of 50 h.  相似文献   

4.
The ability of heterotrophic bacteria in a nitrite-oxidising bioreactor to respire with nitrate as an electron acceptor was examined. Approximately 70% of 1000 heterotrophic isolates were able to express a nitrate reductase. A detailed survey of 15 isolates showed that five expressed the azide-insensitive nitrate reductase encoded by the napA gene. A two-round PCR amplification of the napA gene using degenerate PCR primers and DNA sequence analysis of these products confirmed the presence of this gene in the positive isolates. Partial 16S rDNA products and napA products were amplified from the biomass in the bioreactor and denaturing gradient gel electrophoresis of these products identified 21 distinct ribotypes and 12 distinct napA sequences. The results show that the ability to respire with nitrate as an electron acceptor under aerobic conditions is widespread among the heterotrophic population of this bioreactor.  相似文献   

5.
自然环境中99%微生物在实验室条件下仍是不能被培养的,称之为"未培养"微生物或微生物"暗物质"。对其进行研究不仅有助于认识环境中微生物代谢多样性,丰富生命之树,同时未培养微生物还蕴含着巨大的新基因和新天然产物资源。但传统培养技术的局限性阻碍了"未培养"微生物资源的开发和利用。虽然随着分子生物学技术的发展,可以直接从环境中获得未培养微生物的遗传信息,分析微生物的广泛代谢多样性,但微生物的生理特征和代谢产物等分析仍然需要建立在研究纯菌株的基础上。目前,已经有很多新颖的培养技术被研发,如原位培养技术、共培养技术和连续流生物反应器培养技术等用于挖掘未培养微生物资源。本文主要介绍了连续流生物反应器培养新技术的发展与改进,探讨了"未培养"微生物培养技术及设备的发展方向,以进一步促进"未培养"微生物资源的开发与利用。  相似文献   

6.
The steady-state behavior of a continuous bioreactor containing antibiotic-resistant recombinant cells has been investigated. Only the plasmid-free cell is susceptible to and killed by antibiotics. A Monod form of specific death rate was found to simulate quite well the experimental death rates of various cells due to antibiotics. The stability characteristics, including bifurcation of the possible steady states, are examined. Appropriate numerical illustrations for the steady-state characteristics have been provided. Theoretically, two coexistence steady states (CO), three partial washout steady states (PW), and one total washout steady state (TW) are feasible, but only one CO, one PW, and one TW were realized. When antibiotic consumption is not extremely significant the CO can exist over one or two ranges of dilution rates depending upon the antibiotic concentration in the feed. The CO is globally stable. Whenever the PW and/or the TW exist(s) together with the CO they are unstable. Sensitivity analyses for several key kinetic parameters have been made. The rate at which the plasmid-bearing cells revert to the plasmid-free cells has the most significant effect on the antibiotic susceptibility of the system. Some simplified optimization calculations for maximum profit have been carried out.  相似文献   

7.
Saccharomyces cerevisiae was cultivated in a controlled aerated, dual-stage (column), continuous flow bioreactor in a hybrid free-cell and immobilized-cell state. The yeast cells maintained an ethanol concentration of 58-64 and 91-98 g/L in stages I and II, respectively. The lipid composition of the cells cultivated under these conditions was correlated to the effects of aeration by interrupting the aeration on days 113 and 266 of continuous operation. Under conditions of aeration or nonaeration, an alternating increase and decrease in the contents of squalene, sterols, and fatty acids of the respiratory-competent and -deficient unattached free cells was observed. The cellular free lipid compositions of the immobilized cells in the aerated and nonaerated conditions were similar and characteristic of respiratory-deficient cells with the exception of the immobilized cells exposed to a higher ethanol concentration (stage II). These cells contained a broader range of sterol components and increased levels of unsaturated fatty acids than immobilized cells at a lower ethanol concentration (stage I). The neutral lipid to phospholipid ratio decreased for respiratory-deficient cells with phosphatidylethanolamine and phosphatidylinositol being the principal phospholipids. The data demonstrated the essentiality of the hybrid bioreactor design for continuous long term performance and the importance of maintaining specific yeast lipid constituents for continuous high alcohol productivity.  相似文献   

8.
采用膜生物反应器系统连续发酵制取甲醇能够及时分离产物,有效抑制甲醇对细胞的毒副作用,因此延长稳定期产甲醇的时间以提高产量。本文对比间歇发酵,研究了不同稀释率0.05h^-1~0.13h^-1下连续发酵的甲醇生成和甲烷氧化菌株Methylomonas.QJ16生长状况,并且初步探讨了该菌株的生长、甲醇形成的动力学特性。结果表明,稀释率为0.1h^-1时,菌体积累和甲醇的体积产率均较高,最长连续发酵持续时间为300h左右;描述连续发酵过程的动力学模型,菌体生长和产物合成的曲线拟合优度分别为0.991、0.994,基本反映了该甲烷氧化菌株连续发酵过程的动力学特征。  相似文献   

9.
Aerobic granular sludge technology has been extensively studied over the past 20 years and is regarded as the upcoming new standard for biological treatment of domestic and industrial wastewaters. Aerobic granules (AG) are dense, compact, self-immobilized microbial aggregates that allow better sludge-water separation and thereby higher biomass concentrations in the bioreactor than conventional activated sludge aggregates. This brings potential practical advantages in terms of investment cost, energy consumption and footprint. Yet, despite the relevant advances regarding the process of AG formation, instability of AG during long-term operation is still seen as a major barrier for a broad practical application of this technology. This paper presents an up-to-date review of the literature focusing on AG stability, aiming to contribute to the identification of key factors for promoting long-term stability of AG and to a better understanding of the underlying mechanisms. Operational conditions leading to AG disintegration are described, including high organic loads, particulate substrates in the influent, toxic feed components, aerobic feeding and too short famine periods. These operational and influent wastewater composition conditions were shown to influence the micro-environment of AG, consequently affecting their stability. Granule stability is generally favored by the presence of a dense core, with microbial growth throughout the AG depth being a crucial intrinsic factor determining its structural integrity. Accordingly, possible practical solutions to improve granule long-term stability are described, namely through the promotion of minimal substrate concentration gradients and control of microbial growth rates within AG, including anaerobic, plug-flow feeding and specific sludge removal strategies.  相似文献   

10.
The effects of changing operating conditions on the biooxidation of methyl ethyl and/or methyl isobutyl ketone in continuous flow enrichment culture are examined. Particular emphasis is placed on responses to step changes in feed stream concentrations and to substrate pulses injected directly into the culture supernatant. In general, the enrichment culture was better able to handle transients involving methyl isobutyl ketone, the preferred carbon substrate. However, the highly complex response patterns observed clearly indicated major gaps in knowledge concerning the physiology of methyl ketone-oxidizing bacteria. In spite of the two carbon substrates investigated being major environmental pollutants, their removal in waste biotreatment processes is remarkably little understood.  相似文献   

11.
Contamination of a high-cell-density continuous bioreactor   总被引:2,自引:0,他引:2  
Continuous fermentations were carried out with a recombinant flocculent Saccharomyces cerevisiae strain in an airlift bioreactor. Once operating under steady state at a dilution rate of 0.45 h(-1), the bioreactor was contaminated with Escherichia coli cells. The faster growing E. coli strain was washed out of the bioreactor and the recombinant, slower growing flocculating S. cerevisiae strain remained as the only species detected in the bioreactor. Flocculation, besides allowing for the realization of high-cell-density systems with corresponding unusual high productivity, may be used as a selective property for controlling some contamination problems associated with prolonged continuous operation.  相似文献   

12.
Summary A continuous fermentation based on a recombinant Escherichia coli strain producing tryptophan synthetase has been simulated by a back-propagation neural network. Data for the network were generated through known kinetics applied to a reactor model with an adjustable degree of macromixing of the broth. A network with just one hidden layer performed satisfactorily for both poor and good macromixing. The best performance was at an intermediate level of mixing, in the region of maximum productivity of the recombinant protein.  相似文献   

13.
Motivated by biometric applications, we analyze oscillatory flow in a cone-and-plate geometry. The cone is rotated in a simple harmonic way on a stationary plate. Based on assuming that the angle between the cone and plate is small, we describe the flow analytically by a perturbation method in terms of two small parameters, the Womersley number and the Reynolds number, which account for the influences of the local acceleration and centripetal force, respectively. Working equations for the shear stresses induced both by laminar primary and secondary flows on the plate surface are presented.  相似文献   

14.
This work describes the first step towards combination of the bioreactor with a starch-degrading microbial consortium and hydrogenase electrode (HE) in one unit for electricity generation. For this purpose, the bioreactor for microbial fermentation was designed with a set of electrodes (pH-sensor, Ag|AgCl reference electrode, Pt-electrode, and HE) inside the bioreactor. Potentials of all electrodes and H2 accumulation were monitored in the system under the precise pH control. Results obtained with the hydrogen-producing microbial consortium indicated that HE generates the potential equal to the H2|2H+ equilibrium potential. Furthermore, HE was able to catalyze the current generation (200 μA) by consuming H2 gas produced in the microbial consortium from starch. After 220 h of operation, HE retained at least 81% of the initial activity. Calculations of carbon balance indicated that fermentation products were similar in microbial cells without HE and with HE generating the current due to H2 consumption.  相似文献   

15.
Biodegradation of nonylphenol in a continuous packed-bed bioreactor   总被引:1,自引:0,他引:1  
A packed bed bioreactor, with 170 ml glass bead carriers and 130 ml medium, was tested for the removal of the endocrine disrupter, nonylphenol, with a Sphingomonas sp. The bioreactor was first continuously fed with medium saturated with nonylphenol in an attempt to simulate groundwater pollution. At best, nonylphenol was degraded by 99.5% at a feeding rate of 69 ml h–1 and a removal rate of 4.3 mg nonylphenol day–1, resulting in a 7.5-fold decrease in effluent toxicity according to the Microtox. The bioreactor was then fed with soil leachates at 69 ml h–1 from artificially contaminated soil (1 g nonylphenol kg–1 soil) and a real contaminated soil (0.19 g nonylphenol kg–1 soil). Nonylphenol was always completely removed from the leachates of the two soils. It was removed by 99% from the artificial soil but only 62% from real contaminated soil after 18 and 20 d of treatment, respectively, showing limitation due to nonylphenol adsorption.  相似文献   

16.
The gas phase continuous production of acetaldehyde was studied with particular emphasis on the development of biocatalyst (alcohol oxidase on solid phase support materials) for a fixed bed reactor. Based on the experimental results in a batch bioreactor, the biocatalysts were prepared by immobilization of alcohol oxidase on Amberlite IRA-400, packed into a column, and the continuous acetaldehyde production in the gas phase by alcohol oxidase was performed. The effects of the reaction temperature, flow rates of gaseous stream, and ethanol vapor concentration on the performance of the continuous bioreactor were investigated. (c) 1993 John Wiley & Sons, Inc.  相似文献   

17.
18.
The production and utilization of carboxylic acids during aerobic thermophilic treatment of a model sludge composed of bacterial cells were examined in a laboratory treatment system. Operation under a limited supply of O2, typical for such treatment systems, resulted in a distinct pattern of production and simultaneous utilization of low molecular weight carboxylic acids. Pulse-addition of a mixture of carboxylic acids at the end of a fed-batch cycle indicated that simultaneous utilization of acetate, propionate, isobutyrate, n-butyrate and isovalerate could occur, but only after a lag phase during which only acetate was utilized. In an attempt to differentiate between production and utilization of the carboxylic acids, a series of pulse experiments were performed using 14C-labelled acetate. The results indicated that production continued late into the fed-batch cycle whereas utilization could occur during the entire cycle. When acetate was pulsed to the process, only 11% of the acetate carbon was incorporated into new biomass, whereas 75% was converted into CO2. However, 14% of the original radioactivity persisted in the supernatant despite complete acetate utilization. This suggested that some of the acetate was metabolized into more slowly biodegradable products. Correspondence to: G. Hamer  相似文献   

19.
Multi-rate nonlinear state and parameter estimation in a bioreactor   总被引:3,自引:0,他引:3  
This paper concerns real-time, multi-rate, nonlinear state and parameter estimation in a pilot-scale biochemical reactor in which cultivation of mouse-mouse hybridoma cells takes place. A multi-rate estimator is designed and implemented to estimate specific growth rate and concentrations of viable cells, total cells, glucose, glutamine, and monoclonal antibodies (MAb) in the reactor. These are estimated from frequent measurement (inferred values) of oxygen uptake rate (OUR) and infrequent and delayed measurements of the concentrations of viable cells, total cells, glucose, glutamine, and MAb. The infrequent measurements are available every 2 to 17 h with a time delay of 0.08 to 2.00 h, and OUR is inferred from dissolved oxygen concentration measurements that are available very 0.17 h. For each of the process variables, its infrequent measurement data and the profile of its estimate are presented to show the performance of the multi-rate estimator.  相似文献   

20.
Mechanically stimulating cell-seeded scaffolds by flow-perfusion is one approach utilized for developing clinically applicable bone graft substitutes. A key challenge is determining the magnitude of stimuli to apply that enhances cell differentiation but minimizes cell detachment from the scaffold. In this study, we employed a combined computational modeling and experimental approach to examine how the scaffold mean pore size influences cell attachment morphology and subsequently impacts upon cell deformation and detachment when subjected to fluid-flow. Cell detachment from osteoblast-seeded collagen-GAG scaffolds was evaluated experimentally across a range of scaffold pore sizes subjected to different flow rates and exposure times in a perfusion bioreactor. Cell detachment was found to be proportional to flow rate and inversely proportional to pore size. Using this data, a theoretical model was derived that accurately predicted cell detachment as a function of mean shear stress, mean pore size, and time. Computational modeling of cell deformation in response to fluid flow showed the percentage of cells exceeding a critical threshold of deformation correlated with cell detachment experimentally and the majority of these cells were of a bridging morphology (cells stretched across pores). These findings will help researchers optimize the mean pore size of scaffolds and perfusion bioreactor operating conditions to manage cell detachment when mechanically simulating cells via flow perfusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号