首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cholesterol 7alpha-hydroxylase, a rate-limiting enzyme for bile acid synthesis, has been implicated in genetic susceptibility to atherosclerosis. The gene, CYP7A1, encoding a protein with this activity, is expressed normally only in hepatocytes and is highly regulated. Our cyp7A1 gene knockout mouse colony, as young adults on a chow diet, is hypercholesterolemic. These mice were characterized extensively to understand how cyp7A1 affects lipid and bile acid homeostasis in different tissue compartments and whether gender plays a modifying role. Both male and female cyp7A1-deficient mice had decreased hepatic LDL receptors, unchanged hepatic cholesterol synthesis, increased intestinal cholesterol synthesis and bile acid transporters, and decreased fecal bile acids but increased fecal sterols. In females, cyp7A1 deficiency also caused changes in hepatic fatty acid metabolism, decreased hepatic canalicular bile acid transporter, Bsep, and gallbladder bile composition altered to a lithogenic profile. Taken together, the data suggest that cyp7A1 deficiency results in a proatherogenic phenotype in both genders and leads to a prolithogenic phenotype in females.  相似文献   

2.
The CYP27A gene encodes a mitochondrial cytochrome P450 enzyme, sterol 27-hydroxylase, that is expressed in many different tissues and plays an important role in cholesterol and bile acid metabolism. In humans, CYP27A deficiency leads to cerebrotendinous xanthomatosis. To gain insight into the roles of CYP27A in the regulation of cholesterol and bile acid metabolism, cyp27A gene knockout heterozygous, homozygous, and wild-type littermate mice were studied. In contrast to homozygotes, heterozygotes had increased body weight and were mildly hypercholesterolemic, with increased numbers of lipoprotein particles in the low density lipoprotein size range. Cyp7A expression was not increased in heterozygotes but was in homozygotes, suggesting that parts of the homozygous phenotype are secondary to increased cyp7A expression and activity. Homozygotes exhibited pronounced hepatomegaly and dysregulation in hepatic cholesterol, bile acid, and fatty acid metabolism. Hepatic cholesterol synthesis and synthesis of bile acid intermediates were increased; however, side chain cleavage was impaired, leading to decreased bile salt concentrations in gallbladder bile. Expression of Na-taurocholate cotransporting polypeptide, the major sinusoidal bile salt transporter, was increased, and that of bile salt export pump, the major canalicular bile salt transporter, was decreased. Gender played a modifying role in the homozygous response to cyp27A deficiency, with females being generally more severely affected. Thus, both cyp27A genotype and gender affected the regulation of hepatic bile acid, cholesterol, and fatty acid metabolism.  相似文献   

3.
Hepatic triacylglycerol levels are governed through synthesis, degradation and export of this lipid. Here we demonstrate that enforced expression of hepatic lipase in the endoplasmic reticulum in McArdle RH7777 hepatocytes resulted in a significant decrease in the incorporation of fatty acids into cellular triacylglycerol and cholesteryl ester accompanied by attenuation of secretion of apolipoprotein B-containing lipoproteins. Hepatic lipase-mediated depletion of intracellular lipid storage increased the expression of peroxisome proliferator-activated receptor α and its target genes and augmented oxidation of fatty acids. These data show that 1) hepatic lipase is active in the endoplasmic reticulum and 2) intracellular hepatic lipase modulates cellular lipid metabolism and lipoprotein secretion.  相似文献   

4.
Lysophosphatidic acid (LPA) is a bioactive phospholipid that stimulates cell proliferation, migration, and protects cells from apoptosis. It interacts with specific G protein-coupled transmembrane receptors. Recently, it has been reported that alterations of LPA receptor expression might be important in the malignant transformation of tumor cells. Therefore, to assess an involvement of DNA methylation in reduced expression of the LPA receptor-1 (lpa1) gene, we investigated the expression of the lpa1 gene and its DNA methylation patterns in rat tumor cell lines. Both rat brain-derived neuroblastoma B103 and liver-derived hepatoma RH7777 cells used in this study indicated no expression of lpa1. For the analysis of methylation status, bisulfite sequencing was performed with B103 and RH7777 cells, comparing with other lpa1 expressed cells and normal tissues of brain and liver. The lpa1 expressed cells and tissues were all unmethylated in this region of lpa1. In contrast, both B103 and RH7777 cells were highly methylated, correlating with reduced expression of the lpa1. Treatment with 5-aza 2'-deoxycytidine induced expression of lpa1 gene in B103 and RH7777 cells after 24h. In RH7777 cells treated with 5-aza 2'-deoxycytidine, stress fiber formation was also observed in response to LPA in RH7777 cells, but not in untreated RH7777 cells. These results suggest that aberrant DNA methylation of the lpa1 gene may be involved in its reduced expression in rat tumor cells.  相似文献   

5.
6.
7.
The activity of cholesterol 7alpha-hydroxylase (gpCYP7A1), the rate limiting enzyme in bile acid synthesis, has been postulated to be regulated by phosphorylation/dephosphorylation. This study has found that several kinase activators rapidly reduce the amount of bile acid produced by the human hepatoma cell line, HepG2, and that gpCYP7A1 from HepG2 cell extracts eluted in the phosphoprotein fraction of FeIII columns. After incubating the HepG2 cells with radioactive orthophosphate, the band identified as gpCYP7Al on immunoblots was strongly labeled. Recombinant gpCYP7A was expressed as 6xHIS fusion polypeptides and subjected to kinase assays. The locations of phosphorylation were mapped further by screening synthetic peptides against AMP-activated protein kinase (AMPK), c-Jun N-terminal kinase, protein kinase A, and a panel of nine protein kinase C isoforms. AMPK, also known as 3-hydroxy-3-methylglutaryl coenzyme A reductase kinase, phosphorylated cholesterol 7alpha-hydroxylase, suggesting a potential mechanism of coordination of cholesterol synthesis and degradation.  相似文献   

8.
Bile acid synthesis occurs mainly via two pathways: the "classic" pathway, initiated by microsomal cholesterol 7alpha-hydroxylase (CYP7A1), and an "alternative" (acidic) pathway, initiated by sterol 27-hydroxylase (CYP27). CYP27 is located in the inner mitochondrial membrane, where cholesterol content is very low. We hypothesized that cholesterol transport into mitochondria may be rate-limiting for bile acid synthesis via the "alternative" pathway. Overexpression of the gene encoding steroidogenic acute regulatory (StAR) protein, a known mitochondrial cholesterol transport protein, led to a 5-fold increase in bile acid synthesis. An increase in StAR protein coincided with an increase in bile acid synthesis. CYP27 overexpression increased bile acid synthesis by <2-fold. The rates of bile acid synthesis following a combination of StAR plus CYP27 overexpression were similar to those obtained with StAR alone. TLC analysis of (14)C-labeled bile acids synthesized in cells overexpressing StAR showed a 5-fold increase in muricholic acid; in chloroform-extractable products, a dramatic increase was seen in bile acid biosynthesis intermediates (27- and 7,27-hydroxycholesterol). High-performance liquid chromatography analysis showed that 27-hydroxycholesterol accumulated in the mitochondria of StAR-overexpressing cells only. These findings suggest that cholesterol delivery to the inner mitochondrial membrane is the predominant rate-determining step for bile acid synthesis via the alternative pathway.  相似文献   

9.
To study the effect of steroid hormones on bile acid synthesis by cultured rat hepatocytes, cells were incubated with various amounts of these compounds during 72 h and conversion of [4-14C]cholesterol into bile acids was measured. Bile acid synthesis was stimulated in a dose-dependent way by glucocorticoids, but not by sex steroid hormones, pregnenolone or the mineralocorticoid aldosterone in concentrations up to 10 microM. Dexamethasone proved to be the most efficacious inducer, giving 3-fold and 7-fold increases in bile acid synthesis during the second and third 24 h incubation periods respectively, at a concentration of 50 nM. Mass production of bile acids as measured by g.l.c. during the second day of culture (28-52 h) was 2.2-fold enhanced by 1 microM-dexamethasone. No change in the ratio of bile acids produced was observed during this period in the presence of dexamethasone. Conversion of [4-14C]7 alpha-hydroxycholesterol, an intermediate of the bile acid pathway, to bile acids was not affected by dexamethasone. Measurement of cholesterol 7 alpha-hydroxylase activity in homogenates of hepatocytes, incubated with 1 microM-dexamethasone, showed 10-fold and 90-fold increases after 48 and 72 h respectively, as compared with control cells. As with bile acid synthesis from [14C]cholesterol, no change in enzyme activity was found in hepatocytes cultured in the presence of 10 microM steroid hormones other than glucocorticoids. Addition of inhibitors of protein and mRNA synthesis lowered bile acid production and cholesterol 7 alpha-hydroxylase activity and prevented the rise of both parameters with dexamethasone, suggesting regulation at the mRNA level. We conclude that glucocorticoids regulate bile acid synthesis in rat hepatocytes by induction of enzyme activity of cholesterol 7 alpha-hydroxylase.  相似文献   

10.
The effect of individual bile acids on bile acid synthesis was studied in primary hepatocyte cultures. Relative rates of bile acid synthesis were measured as the conversion of lipoprotein [4-14C]cholesterol into 4-14C-labeled bile acids. Additions to the culture media of cholate, taurocholate, glycocholate, chenodeoxycholate, taurochenodeoxycholate, glycochenodeoxycholate, deoxycholate, and taurodeoxycholate (10-200 microM) did not inhibit bile acid synthesis. The addition of cholate (100 microM) to the medium raised the intracellular level of cholate 10-fold, documenting effective uptake of added bile acid by cultured hepatocytes. The addition of 200 microM taurocholate to cultured hepatocytes prelabeled with [4-14C]cholesterol did not result in inhibition of bile acid synthesis. Taurocholate (10-200 microM) also failed to inhibit bile acid synthesis in suspensions of freshly isolated hepatocytes after 2, 4, and 6 h of incubation. Surprisingly, the addition of taurocholate and taurochenodeoxycholate (10-200 microM) stimulated taurocholate synthesis from [2-14C]mevalonate-labeled cholesterol (p less than 0.05). Neither taurocholate nor taurochenodeoxycholate directly inhibited cholesterol 7 alpha-hydroxylase activity in the microsomes prepared from cholestyramine-fed rats. By contrast, 7-ketocholesterol and 20 alpha-hydroxycholesterol strongly inhibited cholesterol 7 alpha-hydroxylase activity at low concentrations (10 microM). In conclusion, these data strongly suggest that bile acids, at the level of the hepatocyte, do not directly inhibit bile acid synthesis from exogenous or endogenous cholesterol even at concentrations 3-6-fold higher than those found in rat portal blood.  相似文献   

11.
The current studies were undertaken to characterize the localization and regulation of cholesterol synthesis and acyl-CoA:cholesterol acyltransferase activity in rat intestinal crypt and villus cells. Both parameters were determined in groups of animals with widely varying sterol fluxes across the intestinal mucosa. In animals on control diet the rates of cholesterol synthesis, measured by the incorporation of [3H]water per mg of protein, were similar along the villus/crypt axis in the jejunum, whereas in the ileum, villus cells were significantly more active than crypt cells. In both areas, however, the majority of total synthetic activity was found in cells from the crypts and lower villi. In contrast, the highest specific and total acyl-CoA:cholesterol acyltransferase activity was recovered in the villus cells of the jejunum and ileum. Dietary cholesterol did not affect sterol synthesis in any of the cell fractions but increased acyl-CoA:cholesterol acyltransferase activity approximately 2-fold in jejunal cell fractions. Inhibition of cholesterol absorption or sequestration of intestinal bile acids stimulated sterol synthetic activity up to 7-fold, and this occurred mainly in the lower villus and crypt cells in both jejunum and ileum. An increased demand for lipoprotein cholesterol, generated by triglyceride feeding, similarly was associated with enhanced synthetic rates. However, unlike cholesterol feeding, these manipulations did not increase acyl-CoA:cholesterol acyltransferase activity in any of the villus cell fractions. These studies suggest, therefore, that the intracellular pools of cholesterol that regulate the rate of cholesterol synthesis and the rate of cholesterol esterification are functionally distinct.  相似文献   

12.
13.
Cerebrotendinous xanthomatosis [CTX] is a rare disease characterized by the accumulation of cholesterol and cholestanol in brain and tendons caused by a mutation in the sterol 27-hydroxylase gene [CYP27A1] involved in bile acid synthesis. Disruption of this gene in mice does not give rise to xanthomas. The gene defect leads to reduced bile acid synthesis with a compensatory increase in the activity of the rate-limiting enzyme in bile acid synthesis, cholesterol 7α-hydroxylase. This leads to a marked accumulation of 7α-hydroxylated bile acid precursors, in particular 7α-hydroxy-4-cholesten-3-one. The latter oxysterol passes the blood-brain barrier and is an efficient precursor to cholestanol. The activity of cholesterol 7α-hydroxylase is normalized by treatment with bile acids. Such treatment reduces the xanthomas in CTX patients in parallel with decreased cholestanol levels. The relationship between the accumulation of cholestanol and the development of cholesterol-rich xanthomas has however not been clarified and a suitable animal model is still lacking.  相似文献   

14.
The effect of individual 7 beta-hydroxy bile acids (ursodeoxycholic and ursocholic acid), bile acid analogues of ursodeoxycholic acid, combination of bile acids (taurochenodeoxycholate and taurocholate), and mixtures of bile acids, phospholipids and cholesterol in proportions found in rat bile, on bile acids synthesis was studied in cultured rat hepatocytes. Individual steroids tested included ursodeoxycholate (UDCA), ursocholate (UCA), glycoursodeoxycholate (GUDCA) and tauroursodeoxycholate (TUDCA). Analogues of UDCA (7-methylursodeoxycholate, sarcosylursodeoxycholate and ursooxazoline) and allochenodeoxycholate, a representative of 5 alpha-cholanoic bile acid were also tested in order to determine the specificity of the bile acid biofeedback. Each individual steroid was added to the culture media at concentrations ranging from 10 to 200 microM. Mixtures of taurochenodeoxycholate (TDCA) and taurocholate in concentrations ranging from 150 to 600 microM alone and in combination with phosphatidylcholine (10-125 microM) and cholesterol (3-13 microM) were also tested for their effects on bile acid synthesis. Rates of bile acid synthesis were determined as the conversion of added lipoprotein [4-14C]cholesterol or [2-14C]mevalonate into 14C-labeled bile acids and by GLC quantitation of bile acids secreted into the culture media. Individual bile acids, bile acid analogues, combination of bile acids and mixture of bile acids with phosphatidylcholine and cholesterol failed to inhibit bile acid synthesis in cultured hepatocytes. The addition of UDCA or UCA to the culture medium resulted in a marked increase in the intracellular level of both bile acids, and in the case of UDCA there was a 4-fold increase in beta-muricholate. These results demonstrate effective uptake and metabolism of these bile acids by the rat hepatocytes. UDCA, UCA, TUDCA and GUDCA also failed to inhibit cholesterol-7 alpha-hydroxylase activity in microsomes prepared from cholestyramine-fed rats. The current data confirm and extend our previous observations that, under conditions employed, neither single bile acid nor a mixture of bile acids with or without phosphatidylcholine and cholesterol inhibits bile acid synthesis in primary rat hepatocyte cultures. We postulate that mechanisms other than a direct effect of bile acids on cholesterol-7 alpha-hydroxylase might play a role in the regulation of bile acid synthesis.  相似文献   

15.
The availability of different sources of cholesterol for bile acid synthesis by cultured chick embryo hepatocytes was studied. Mevalonolactone was taken up by the cells and converted to cholesterol, cholesterol ester and tauroconjugates of bile acids. The addition of mevalonolactone had little effect on the conversion of endogenous cholesterol to taurocholic acid; however, taurochenodeoxycholic acid synthesis was stimulated. 25-30% of the cholesterol synthesized from mevalonolactone was converted to taurochenodeoxycholic, taurocholic and two so-far unidentified bile acids. All bile acids were secreted into the incubation medium. When cholesterol was added as mixed liposomes with phosphatidylcholine, it was taken up by the cells and converted to bile acids. At low concentrations of liposomes, the greater part of the cholesterol which was taken up by the cells was converted to bile acids. At higher concentrations, considerable amounts of cholesterol and cholesterol ester accumulated inside the cells. When mevalonolactone and cholesterol liposomes was added together, both substrates were used simultaneously for bile acids synthesis. HDL cholesterol was the best substrate tested, yielding large amounts of two, so-far, unidentified bile acids (possibly allo-bile acids) and smaller amounts of taurocholic and taurochenodeoxycholic acid. Addition of HDL suppressed the conversion of endogenous cholesterol to taurocholic acid; taurochenodeoxycholic acid synthesis, however, was stimulated.  相似文献   

16.
17.
Elevated concentrations of fecal bile acids are a known risk factor for colon cancer, owing to alterations in cellular signaling. In colonic cells, where bile acid uptake is minimal, the hydrophobicity-induced membrane perturbation and alterations have been proposed, but these membrane alterations are largely uncharacterized. In this study, we examined the determinants and characteristics of bile acid-induced membrane alterations, utilizing PKCalpha activation and cholesterol up-regulation as model indicators. We found that bile acid-induced PKCalpha activation is a function of hydrophobicity and correlated with alteration in membrane lipid composition, as evident by the significant up-regulation in membrane cholesterol and phospholipid. We found that bile acid do not cause cell membrane disruption at a concentration sufficient to activate PKCalpha, but do induce drastic alterations in membrane composition. Bile acid also induced the modification and up-regulation of caveolin-1 in a hydrophobicity-dependent manner, implying widespread receptor dysregulation. Similarly, ERK1/2 activation was observed only in response to hydrophobic bile acids, suggesting hydrophobicity-induced caveolar or membrane stress. Experiments with sodium lauryl sarcosine and cholesteryl hemisuccinate showed that bile acid-induced membrane alterations can be mimicked by hydrophobic molecules unrelated to bile acids, strongly implicating hydrophobicity as an important determinant of bile acid signaling.  相似文献   

18.
19.
20.
Intravenous administration of 26-hydroxycholesterol to the rabbit with a bile fistula yielded cholic acid in proportions (84 and 86%) not significantly different from that derived from cholesterol. By contrast, the naturally occurring C27 bile acid 3 beta-hydroxy-5-cholestenoic acid yielded not more than 8% cholic acid. Thus initial 26-hydroxylation of cholesterol followed by 7-alpha-hydroxylation can provide sufficient amounts of cholic acid to be considered a quantitatively significant pathway for bile acid synthesis, and in addition it is the only pathway that can be the source of the circulating levels of C24 and C27 monohydroxy bile acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号