首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Lactobacillus casei ATCC 7469 was successfully converted to protoplasts by treatment with endo-7V-acetyl muramidase in sucrose phosphate buffer. For full hydrolysis of cell walls, a high concentration of sucrose and a cold shock were necessary. Mg2+ ions enhanced the stability of protoplasting cells. The cell wall regeneration of protoplasts was more effective on gelatin-induced regeneration medium than with the soft overlay method. The optimal concentration of gelatin was 2.5%. The frequency of regeneration was found to be about 6% for the protoplast prepared by enzyme treatment for 20 min. The mutants having streptomycin resistance and rifampicin resistance, as selection markers for the detection of fusion, were isolated by UV irradiation and NTG treatment. These mutants were stable for at least several transfers. Protoplast fusion was carried out using PEG (50% solution of polyethyleneglycol, M.W. 6,000). The frequency of protoplast fusion was found to be about 10-5.  相似文献   

2.
3.
Previous studies by others have indicated that the synthesis of secreted enzymes is unusually sensitive to many translation inhibitors and resistant, for about 30 min, to rifampicin. We have studied the sensitivity of secreted (periplasmic) phosphatases to such inhibitors. Alkaline phosphatase synthesis is more sensitive than total protein synthesis to tetracyclin and spectinomycin, but not to sparsomycin, streptomycin, chloramphenicol, kasugamycin, blasticidin S or thiostrepton; it is slightly more resistant than total protein synthesis to the latter two antibiotics. Acid hexose-phosphatase was also preferentially sensitive to tetracyclin and spectinomycin and also to kasugamycin. beta-galactosidase was also included in the study, as an intracellular enzyme, and was found to be preferentially inhibited ("repressed"), sometimes transiently, by all eight translation inhibitors. This effect did not seem to be mediated through cyclic AMP or guanosine tetraphosphate; the "repression" was still evident in mutants with altered rho factor indicating that it may also not be related to artificial polarity. Synthesis of both periplasmic phosphatases was immediately inhibited by rifampicin. These results differ from those found in previous studies with other organisms and suggest a reappraisal of the usual interpretation of these phenomena.  相似文献   

4.
Summary Two classes of mutants ofXanthomonas campestris B1459 were isolated that accumulate more xanthan gum than the parental wild-type in culture broths of shake flask cultures and both batch and fed-batch fermentations. The first mutant class was resistant to the antibiotic rifampicin and accumulated, on average, about 20% more xanthan gum than wild-type. The second mutant class, a derivative of the first, was resistant to both bacitracin and rifampicin, and accumulated about 10% more xanthan than its parent. On a weight basis, the viscosities of the polysaccharides made by each strain were not distinguishable. Only a subset of the drug-resistant mutants were overproducers of xanthan. The biochemical basis for the overproduction of xanthan by the mutant strains has not been determined. Both new strains served as recipients for recombinant plasmids bearing xanthan genes and further augmented the effects of multiple copies of those genes on xanthan productivity.  相似文献   

5.
Mutagenesis provoked by exposure to increased concentration of antibiotics of five indigenous Rhizobium galegae strains resulted in the generation of several antibiotic-resistant mutants. The mutants differed from the wild type and one from another in respect to the nodulation capacity, the nitrogenase activity, the nodule ultrastructure, and the plant growth response. Galega plants inoculated with mutants resistant to streptomycin and rifampicin formed nodules with higher nitrogenase activity and accumulated more shoot dry biomass than plants inoculated with the parent strains. Resistance to kanamycin and nalidixic acid was associated with significant decrease of nitrogenase activity. A correlation between nitrogen-fixing efficiency and nodule infected cell ultrastructure was found. When the bacteroids occupied about 10 times higher area in infected cells of nodule than peribacteroid spaces and host cytosol had electron dense and homogenous structure, the nitrogenase activity was the highest. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
Genetical analysis of rifampicin resistant mutants of E. coli K 12   总被引:4,自引:0,他引:4  
Summary E. coli rifampicin-resistant (rif-r) mutants were divided into two conventional groups: A, resistant to 50–100g/ml of rifampicin both on complete and minimal medium and B, sensitive to these concentrations of rifampicin on minimal, but resistant on complete medium. RNA polymerase from rif-r-A mutants is resistant to high concentrations of rifampicin in vitro while the enzyme from rif-r-B mutants but slightly if at all differs from the wild-type enzyme in its response to the drug.All rif-r-A and rif-r-B mutants are closely linked and map between argH and thi on E. coli K 12 chromosome. We failed to isolate any rifampicin-resistant mutants which would map outside this region.  相似文献   

7.
Summary A new class of rifamicin-resistant mutants of Escherichia coli was obtained by lysogenic insertions of bacteriophage Mu Amp DNA. Rifamycin resistance is closely linked to the ampicillin resistance conferred by the prophage. Mapping by conjugation with auxotrophic markers revealed that the rifamycin-resistant mutations are located between 28 and 37 min on the E. coli chromosome standard map, some distance from the rpoB gene at 89.5 min. The DNA-dependent RNA polymerase of these mutants is highly sensitive to rifampicin.  相似文献   

8.
Spontaneously-occurring rifampicin-resistant mutants of Staphylococcus aureus were isolated on 4% (w/v) Tryptone Soya Agar containing 4 and 40 times the m.i.c. for rifampicin. A number of colonies were selected at each rifampicin concentration and were grown aerobically in 3% (w/v) Tryptone Soya Broth for 24 h at 37 degrees C. In the case of S. aureus RN4220 all the mutants grew to bacterial densities up to approximately 1.7 times more than the parent organism. The corresponding levels of extracellular protein secretion varied over a 5-fold range, all the mutants being less productive than the parent. By contrast, mutants of the wild-type Wood 46 strain achieved bacterial densities of only 45-83% that of the parent whilst exoprotein secretion showed a smaller 1.7-fold variation. However, widely-differing patterns of exoproteins were revealed by SDS-polyacrylamide gel electrophoresis of the parent and mutant organisms of both strains.  相似文献   

9.
The frequency of mutants resistant to the antibiotic rifampicin has been shown to increase in aging (starved), compared to young colonies of Eschierchia coli. These increases in resistance frequency occur in the absence of any antibiotic exposure, and similar increases have also been observed in response to additional growth limiting conditions. Understanding the causes of such increases in the frequency of resistance is important for understanding the dynamics of antibiotic resistance emergence and spread. Increased frequency of rifampicin resistant mutants in aging colonies is cited widely as evidence of stress-induced mutagenesis (SIM), a mechanism thought to allow bacteria to increase mutation rates upon exposure to growth-limiting stresses. At the same time it has been demonstrated that some rifampicin resistant mutants are relatively fitter in aging compared to young colonies, indicating that natural selection may also contribute to increased frequency of rifampicin resistance in aging colonies. Here, we demonstrate that the frequency of mutants resistant to both rifampicin and an additional antibiotic (nalidixic-acid) significantly increases in aging compared to young colonies of a lab strain of Escherichia coli. We then use whole genome sequencing to demonstrate conclusively that SIM cannot explain the observed magnitude of increased frequency of resistance to these two antibiotics. We further demonstrate that, as was previously shown for rifampicin resistance mutations, mutations conferring nalidixic acid resistance can also increase fitness in aging compared to young colonies. Our results show that increases in the frequency of antibiotic resistant mutants in aging colonies cannot be seen as evidence of SIM. Furthermore, they demonstrate that natural selection likely contributes to increases in the frequency of certain antibiotic resistance mutations, even when no selection is exerted due to the presence of antibiotics.  相似文献   

10.
Experiments were performed with two strains of plague bacteria--231 (isolated from marmot) and 358 (isolated from human) and their isogenic variants with Fra- and Fra-Tox- phenotype. Mutants resistant to rifampicin (Rifr) and nalidixic acid (Nalr) appeared independently of pathogen phenotype and genotype with frequency n.10(-8)-n.10(-9), subsequently. Rifr mutation influenced on virulence manifestation at albino mice and antigendeficient variants with Fra- and Fra-Tox- phenotype. In every group of strains highly virulent subcultures were registered. Resistance to nalidixic acid mainly was not associated with virulence loss. Nalr mutants of parent and antigenmodified mutants were cross resistant to fluoroqinolones (ciprofloxacin, ofloxacin, pefloxacin, lomefloxacin). LD50 for untreated albino mice did not differ from LD50, for mice treated with rifampicin (when mice were infected with strain resistant to rifampicin) or with nalidixic acid and fluoroquinolones (when animals were infected with Nalr mutants). Antigenmodified strains of plague bacteria and their Rifr, Nalr mutants were able to overcome specific immune reaction. The drugs should be used in synergic combinations (with aminoglycosides or cephalosporines of III generation) to prevent appearance of virulent strains resistant to rifampicin and fluroquinolones.  相似文献   

11.
Summary Mu specific DNA synthesis starts at 10 min after infection. All essential amber mutants of Mu were tested for the ability to replicate in a non permissive host. Except for the amber mutants A and B, which were already known to be blocked in Mu DNA synthesis (Wijffelman et al., 1974), all the other mutants showed normal Mu DNA replication.Using mitomycin C-treated cells Mu DNA synthesis was found to start at about 20 min after induction. However using the much more sensitive method of DNA-RNA hybridization, it was found that the DNA synthesis starts already at 10 min after induction, and that at 20 min after induction about 7 copies of the Mu DNA are present per cell.  相似文献   

12.
To study the role of cell division in the process of nucleoid segregation, we measured the DNA content of individual nucleoids in isogenic Escherichia coli cell division mutants by image cytometry. In pbpB(Ts) and ftsZ strains growing as filaments at 42 degrees C, nucleoids contained, on average, more than two chromosome equivalents compared with 1.6 in wild-type cells. Because similar results were obtained with a pbpB recA strain, the increased DNA content cannot be ascribed to the occurrence of chromosome dimers. From the determination of the amount of DNA per cell and per individual nucleoid after rifampicin inhibition, we estimated the C and D periods (duration of a round of replication and time between termination and cell division respectively), as well as the D' period (time between termination and nucleoid separation). Compared with the parent strain and in contrast to ftsQ, ftsA and ftsZ mutants, pbpB(Ts) cells growing at the permissive temperature (28 degrees C) showed a long D' period (42 min versus 18 min in the parent) indicative of an extended segregation time. The results indicate that a defective cell division protein such as PbpB not only affects the division process but also plays a role in the last stage of DNA segregation. We propose that PbpB is involved in the assembly of the divisome and that this structure enhances nucleoid segregation.  相似文献   

13.
The antibacterial activity of rifampicin was studied in comparison with other antibiotics with respect to clinical strains isolated from cases with various purulent inflammatory processes caused by Staphylococcus, E. coli, Ps. aeruginose, Proteus. The aim of the study was to define the role of rifampicin in the treatment of the above infections. No rifampicin resistant strains were found among staphylococci belonging to the phenotype carrying the determinants of resistance to 2-8 antibiotics. Rifampicin was less active against gramnegative organisms. High heterogeneity of the microbial population of rifampicin was shown with respect to all microbial strains tested. The rate of the spontaneous mutants was high. The average rate of the mutants was 1-7.7-10-8. The studies on the dynamics of the rifampicin resistance increase in the strains of Staphylococci, E. Coli, Ps. aeruginosa and Proteus showed that the resistance increased after 1-2 passages, which means that one-stage mutation was characteristic rifampicin.  相似文献   

14.
A procedure for determination of rifampicin and 25-desacetylrifampicin in plasma by HPLC was developed. The plasma proteins are precipitated by acetonitrile and the supernatant layer (50 microliters) is used for the assay under isocratic conditions on an analytical column 250 x 4.6 mm in size containing the reversed phase sorbent (C18). The size of the precolumn is 50 x 4.6 mm. An UV detector (at lambda 335 nm) is used. For preparing the mobile phase 630 ml of methanol and 370 ml of 0.058 M sodium nitrite solution are mixed. The flow rate of the mobile phase is 40.7 ml/min. The assay duration is about 10 min. The retention time is 9.6 min for rifampicin and 6.5 min for 25-desacetylrifampicin. The minimum detectable amount of the antibiotic and its metabolite is 0.10 micrograms/ml. The standard curves of rifampicin and 25-desacetylrifampicin are linear within the concentration ranges of 0.5-100 and 0.5-10 micrograms/ml respectively. The procedure is useful in studies on pharmacokinetics of rifampicin and 25-desacetylrifampicin.  相似文献   

15.
Escherichia coli mutants with alterations in the electrophoretic mobility of ribosomal protein S9 were used to locate rpsI, the gene for this protein, on the linkage map. rpsI was located at about 70 min, roughly halfway between argG and fabE. It was very close to the gene for ribosomal protein L13, rplM. Another mutation at the rpsI locus gave rise to a phenotype of kasugamycin dependence and resistance. In this mutant, dependence on antibiotic came from kasugamycin being necessary to slow the rate of protein synthesis.  相似文献   

16.
Copy mutants of the R plasmid R1drd-19 were used to study gene dosage effects in Escherichia coli K-12. The specific activity of β-lactamase, chloramphenicol acetyltransferase, and streptomycin adenylylase, as well as ampicillin resistance, increased linearly with the gene dosage up to a level at least tenfold higher than that of the wild-type plasmid. This makes it possible to use ampicillin resistance to determine plasmid copy number and also to select for plasmid copy mutants with defined copy number. Chloramphenicol resistance, despite the increase in enzyme activity, reached a plateau level at a gene dosage less than twice that of the wild-type plasmid, presumably due to the high energy demand on the cells during inactivation of the antibiotic by acetylation with acetyl-coenzyme A. Similarly, resistance to streptomycin plateaued at a gene dosage about three times that of the wild-type plasmid, presumably because of a decreased efficiency of the cells' outer penetration barriers when carrying the R plasmid. The susceptibility of the cells to rifampicin was increased by the presence of plasmid copy mutants.  相似文献   

17.
Summary Based on a dose-survival curve, a radiation dose of 3.99 C/kg was used to induce antibiotic-resistant mutants inBacteroides fragilis. Escherichia coli B/r membrane fragments were employed as a reducing agent. Antibiotic-resistant mutants ofB. fragilis were utilized to study the mechanism by which these organisms become resistant to selected chemotherapeutic agents. Decreased accumulation of tetracycline by resistant mutants ofB. fragilis suggests that the resistance to this antibiotic is associated with the outer membrane permeability. There is a marked difference in the inhibitory action of rifampicin on RNA polymerase activity in rifampicin-sensitive and-resistant strains ofB. fragilis. This enzyme is, therefore, the likely target for inhibition of bacterial growth in this anaerobe by rifampicin.  相似文献   

18.
THE bactericidal effect of rifampicin, a semi-synthetic rifamycin, is due to its action on DNA-dependent RNA polymerase1 and all rifampicin-resistant mutants of Escherichia coli contain an altered RNA polymerase with an increased resistance to rifampicin in vitro2–4. While studying a possible curing effect of rifampicin on E. coli R factors, we observed that R+ recombinants of some rif-r mutants are more sensitive to rifampicin (Table 1). Of the cells harbouring certain R factors, less than 1% are able to form colonies on rifampicin-supplemented agar, while with certain others there is no detectable effect.  相似文献   

19.
When cultures of Escherichia coli B/r WP2 thy trp were prestarved for thymine for 30 min, DNA replication after readdition of thymine was limited to an increase of about 100% in the presence of rifampicin, an antibiotic which inhibits DNA-dependent RNA polymerase. However, chloramphenicol, an antibiotic which blocks protein but not RNA synthesis, did not limit replication. After prolonged thymine prestarvation (55 min) DNA increased only about 50% in the presence of rifampicin, but no such limitation occurred in the presence of chloramphenicol. The ability of a high concentration of rifampicin to limit DNA replication was eliminated by addition of either high or low concentrations of chloramphenicol, indicating that stoichiometric interaction of the antibiotics is not responsible for this effect.  相似文献   

20.

Background

Mutations in a small region of the rpoB gene are responsible for most rifamycin resistance in Mycobacterium tuberculosis. In this study we have sequentially generated resistant strains to first rifampicin and then rifabutin. Portions of the rpoB gene were sequenced from 131 randomly selected mutants. Second round selection resulted in a changed frequency of specific mutations.

Methods

Mycobacterium tuberculosis (strain Mtb72) rifamycin resistant mutants were selected in vitro with either rifampicin or rifabutin. One mutant R190 (rpoB S522L) selected with rifampicin had a rifampicin MIC of 32 μg/ml but remained sensitive to rifabutin (MIC<0.8 μg/ml). This mutant was subjected to a second round of selection with rifabutin.

Results

All 105 first round resistant mutants derived from the parent strain (Mtb72) screened acquired mutations within the 81 bp rpoB hotspot. When the rifampicin resistant but rifabutin sensitive S522L mutant was subjected to a second round of selection, single additional rpoB mutations were identified in 24 (92%) of 26 second round mutants studied, but 14 (54%) of these strains contained mutations outside the 81 bp hotspot (codons 144, 146, 148, 505). Additionally, spontaneous rifabutin resistant mutants were produced at >10 times the frequency by the S522L mutant than the parent strain.

Conclusion

First round selection of mutation S522L with rifampicin increased the frequency and changed the spectrum of mutations identified after selection with rifabutin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号