首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Detection of variations in blood glucose concentrations by pancreatic &#103 -cells and a subsequent appropriate secretion of insulin are key events in the control of glucose homeostasis. Because a decreased capability to sense glycemic changes is a hallmark of type 2 diabetes, the glucose signalling pathway leading to insulin secretion in pancreatic &#103 -cells has been extensively studied. This signalling mechanism depends on glucose metabolism and requires the presence of specific molecules such as GLUT2, glucokinase and the K ATP channel subunits Kir6.2 and SUR1. Other cells are also able to sense variations in glycemia or in local glucose concentrations and to modulate different physiological functions participating in the general control of glucose and energy homeostasis. These include cells forming the hepatoportal vein glucose sensor, which controls glucose storage in the liver, counterregulation, food intake and glucose utilization by peripheral tissues and neurons in the hypothalamus and brainstem whose firing rates are modulated by local variations in glucose concentrations or, when not protected by a blood-brain barrier, directly by changes in blood glucose levels. These glucose-sensing neurons are involved in the control of insulin and glucagon secretion, food intake and energy expenditure. Here, recent physiological studies performed with GLUT2 -/- mice will be described, which indicate that this transporter is ess ential for glucose sensing by pancreatic &#103 -cells, by the hepatoportal sensor and by sensors, probably located centrally, which control activity of the autonomic nervous system and stimulate glucagon secretion. These studies may pave the way to a fine dissection of the molecular and cellular components of extra-pancreatic glucose sensors involved in the control of glucose and energy homeostasis.  相似文献   

2.
GLP-1 has both peripheral and central actions, as this hormone is secreted by gut endocrine cells and brainstem neurons projecting into the hypothalamus and other brain regions. GLP-1 has multiple regulatory functions participating in the control of glucose homeostasis, beta-cell proliferation and differentiation, food intake, heart rate and even learning. GLP-1 action depends on binding to a specific G-coupled receptor linked to activation of the adenylyl cyclase pathway. Analysis of mice with inactivation of the GLP-1 receptor gene has provided evidence that absence of GLP-1 action in the mouse, despite this hormone potent physiological effects when administered in vivo, only leads to mild abnormalities in glucose homeostasis without any change in body weight. However, a critical role for this hormone and its receptor was demonstrated in the function of the hepatoportal vein glucose sensor, in contrast to that of the pancreatic beta-cells, although absence of both GLP-1 and GIP receptors leads to a more severe phenotype characterized by a beta-cell-autonomous defect in glucose-stimulated insulin secretion. Together, the studies of these glucoincretin receptor knockout mice provide evidence that these hormones are part of complex regulatory systems where multiple redundant signals are involved.  相似文献   

3.
Glucose-sensing mechanisms in pancreatic beta-cells   总被引:9,自引:0,他引:9  
The appropriate secretion of insulin from pancreatic beta-cells is critically important to the maintenance of energy homeostasis. The beta-cells must sense and respond suitably to postprandial increases of blood glucose, and perturbation of glucose-sensing in these cells can lead to hypoglycaemia or hyperglycaemias and ultimately diabetes. Here, we review beta-cell glucose-sensing with a particular focus on the regulation of cellular excitability and exocytosis. We examine in turn: (i) the generation of metabolic signalling molecules; (ii) the regulation of beta-cell membrane potential; and (iii) insulin granule dynamics and exocytosis. We further discuss the role of well known and putative candidate metabolic signals as regulators of insulin secretion.  相似文献   

4.
Glucose homeostasis is regulated primarily by the opposing actions of insulin and glucagon, hormones that are secreted by pancreatic islets from beta-cells and alpha-cells, respectively. Insulin secretion is increased in response to elevated blood glucose to maintain normoglycemia by stimulating glucose transport in muscle and adipocytes and reducing glucose production by inhibiting gluconeogenesis in the liver. Whereas glucagon secretion is suppressed by hyperglycemia, it is stimulated during hypoglycemia, promoting hepatic glucose production and ultimately raising blood glucose levels. Diabetic hyperglycemia occurs as the result of insufficient insulin secretion from the beta-cells and/or lack of insulin action due to peripheral insulin resistance. Remarkably, excessive secretion of glucagon from the alpha-cells is also a major contributor to the development of diabetic hyperglycemia. Insulin is a physiological suppressor of glucagon secretion; however, at the cellular and molecular levels, how intraislet insulin exerts its suppressive effect on the alpha-cells is not very clear. Although the inhibitory effect of insulin on glucagon gene expression is an important means to regulate glucagon secretion, recent studies suggest that the underlying mechanisms of the intraislet insulin on suppression of glucagon secretion involve the modulation of K(ATP) channel activity and the activation of the GABA-GABA(A) receptor system. Nevertheless, regulation of glucagon secretion is multifactorial and yet to be fully understood.  相似文献   

5.
6.
7.
Insulin secretion in mature beta-cells increases vigorously when extracellular glucose concentration rises. Glucose-stimulated insulin secretion depends on Ca(2+) influx through voltage-gated Ca(2+) channels. During fetal development, this structured response is not well established, and it is after birth that beta-cells acquire glucose sensitivity and a robust secretion. We compared some elements of glucose-induced insulin secretion coupling in beta-cells obtained from neonatal and adult rats and found that neonatal cells are functionally immature compared with adult cells. We observed that neonatal cells secrete less insulin and cannot sense changes in extracellular glucose concentrations. This could be partially explained because in neonates Ca(2+) current density and synthesis of mRNA alpha1 subunit Ca(2+) channel are lower than in adult cells. Interestingly, immunostaining for alpha1B, alpha1C, and alpha1D subunits in neonatal cells is similar in cytoplasm and plasma membrane, whereas it occurs predominantly in the plasma membrane in adult cells. We also observed that GLUT2 expression in adult beta-cells is mostly located in the membrane, whereas in neonatal cells glucose transporters are predominantly in the cytoplasm. This could explain, in part, the insensitivity to extracellular glucose in neonatal beta-cells. Understanding neonatal beta-cell physiology and maturation contributes toward a better comprehension of type 2 diabetes physiopathology, where alterations in beta-cells include diminished L-type Ca(2+) channels and GLUT2 expression that results in an insufficient insulin secretion.  相似文献   

8.
Glucose transporter 4 (GLUT4) is the main insulin-responsive glucose transporter in skeletal muscle and adipose tissue of human and rodent, and is translocated to the plasma membrane in response to insulin. GLUT2 is well known as the main glucose transporter in pancreatic islets and could highly regulate glucose-stimulated insulin secretion by B-cells as a glucose sensor. We confirmed the presence of GLUT4 mRNA and GLUT4 protein in pancreas in the human. Indirect immunohistochemistry showed that the pancreatic islets of human and rat were conspicuously labeled by anti-GLUT4 antibody. The presence of placental leucine aminopeptidase (P-LAP), a homologue of insulin-regulated aminopeptidase (IRAP), was also shown in the human pancreatic islet. IRAP/P-LAP is thought to be involved in glucose metabolism. This study provides the first evidence that GLUT4 is present in human and rat pancreatic islets and may suggest its specific role in glucose homeostasis in conjunction with IRAP/P-LAP.  相似文献   

9.
10.
Ramey G  Faye A  Durel B  Viollet B  Vaulont S 《FEBS letters》2007,581(5):1053-1057
Diabetes Mellitus is found with increasing frequency in iron overload patients with hemochromatosis. In these conditions, the pancreas shows predominant iron overload in acini but also islet beta-cells. We assess glucose homeostasis status in iron-overloaded hepcidin-deficient mice. These mice presented with heavy pancreatic iron deposits but only in the acini. The beta-cell function was found unaffected with a normal production and secretion of insulin. The mutant mice were not diabetic, responded as the control group to glucose and insulin challenges, with no alteration of insulin signalling in the muscle and the liver. These results indicate that, beta-cells iron deposits-induced decreased insulin secretory capacity might be of primary importance to trigger diabetes in hemochromatosic patients.  相似文献   

11.
Insulin secretion from pancreatic islet beta-cells is a tightly regulated process, under the close control of blood glucose concentrations, and several hormones and neurotransmitters. Defects in glucose-triggered insulin secretion are ultimately responsible for the development of type II diabetes, a condition in which the total beta-cell mass is essentially unaltered, but beta-cells become progressively "glucose blind" and unable to meet the enhanced demand for insulin resulting for peripheral insulin resistance. At present, the mechanisms by which glucose (and other nutrients including certain amino acids) trigger insulin secretion in healthy individuals are understood only in part. It is clear, however, that the metabolism of nutrients, and the generation of intracellular signalling molecules including the products of mitochondrial metabolism, probably play a central role. Closure of ATP-sensitive K+(K(ATP)) channels in the plasma membrane, cell depolarisation, and influx of intracellular Ca2+, then prompt the "first phase" on insulin release. However, recent data indicate that glucose also enhances insulin secretion through mechanisms which do not involve a change in K(ATP) channel activity, and seem likely to underlie the second, sustained phase of glucose-stimulated insulin secretion. In this review, I will discuss recent advances in our understanding of each of these signalling processes.  相似文献   

12.
p8 protein expression is known to be upregulated in the exocrine pancreas during acute pancreatitis. Own previous work revealed glucose-dependent p8 expression also in endocrine pancreatic beta-cells. Here we demonstrate that glucose-induced INS-1 beta-cell expansion is preceded by p8 protein expression. Moreover, isopropylthiogalactoside (IPTG)-induced p8 overexpression in INS-1 beta-cells (p8-INS-1) enhances cell proliferation and expansion in the presence of glucose only. Although beta-cell-related gene expression (PDX-1, proinsulin I, GLUT2, glucokinase, amylin) and function (insulin content and secretion) are slightly reduced during p8 overexpression, removal of IPTG reverses beta-cell function within 24 h to normal levels. In addition, insulin secretion of p8-INS-1 beta-cells in response to 0-25 mM glucose is not altered by preceding p8-induced beta-cell expansion. Adenovirally transduced p8 overexpression in primary human pancreatic islets increases proliferation, expansion, and cumulative insulin secretion in vitro. Transplantation of mock-transduced control islets under the kidney capsule of immunosuppressed streptozotocin-diabetic mice reduces blood glucose and increases human C-peptide serum concentrations to stable levels after 3 days. In contrast, transplantation of equal numbers of p8-transduced islets results in a continuous decrease of blood glucose and increase of human C-peptide beyond 3 days, indicating p8-induced expansion of transplanted human beta-cells in vivo. This is underlined by a doubling of insulin content in kidneys containing p8-transduced islet grafts explanted on day 9. These results establish p8 as a novel molecular mediator of glucose-induced pancreatic beta-cell expansion in vitro and in vivo and support the notion of existing beta-cell replication in the adult organism.  相似文献   

13.
The insulin/insulin-like growth factor-1 (IGF-1) signalling pathways are present in most mammalian cells and play important roles in the growth and metabolism of tissues. Most proteins in these pathways have also been identified in the beta-cells of the pancreatic islets. Tissue-specific knockout of the insulin receptor (betaIRKO) or IGF-1 receptor (betaIGFRKO) in pancreatic beta-cells leads to altered glucose-sensing and glucose intolerance in adult mice, and betaIRKO mice show an age-dependent decrease in islet size and beta-cell mass. These data indicate that these receptors are important for differentiated function and are unlikely to play a major role in the early growth and/or development of the pancreatic islets. Conventional insulin receptor substrate-1 (IRS-1) knockouts manifest growth retardation and mild insulin resistance. The IRS-1 knockouts also display islet hyperplasia, defects in insulin secretory responses to multiple stimuli both in vivo and in vitro, reduced islet insulin content and an increased number of autophagic vacuoles in the beta-cells. Re-expression of IRS-1 in cultured beta-cells is able to partially restore the insulin content indicating that IRS-1 is involved in the regulation of insulin synthesis. Taken together, these data provide evidence that insulin and IGF-1 receptors and IRS-1, and potentially other proteins in the insulin/IGF-1 signalling pathway, contribute to the regulation of islet hormone secretion and synthesis and therefore in the maintenance of glucose homeostasis.  相似文献   

14.
Amylin is a 37-amino acid polypeptide co-secreted with insulin from the pancreatic beta-cells. It complements insulin's stimulation of the rate of glucose disappearance (Rd) by slowing the rate of glucose appearance (Ra) through several mechanisms, including an inhibition of mealtime glucagon secretion and a slowing of gastric emptying. To determine if endogenous amylin tonically inhibits these processes, we studied the effects of the amylin receptor blocker AC187 upon glucagon secretion during euglycemic, hyperinsulinemic clamps in Sprague-Dawley (HSD) rats, upon gastric emptying in HSD rats, and upon gastric emptying and plasma glucose profile in hyperamylinemic, and genetically obese, Lister Albany/NIH rats during a glucose challenge. Amylin blockade increased glucagon concentration, accelerated gastric emptying of liquids, and resulted in an exaggerated post-challenge glycemia. These data collectively indicate a physiologic role for amylin in glucose homeostasis via mechanisms that include regulation of glucagon secretion and gastric emptying.  相似文献   

15.
GLUT2-null mice are hyperglycemic, hypoinsulinemic, hyperglucagonemic, and glycosuric and die within the first 3 weeks of life. Their endocrine pancreas shows a loss of first phase glucose-stimulated insulin secretion (GSIS) and inverse alpha to beta cell ratio. Here we show that reexpression by transgenesis of either GLUT1 or GLUT2 in the pancreatic beta cells of these mice allowed mouse survival and breeding. The rescued mice had normal-fed glycemia but fasted hypoglycemia, glycosuria, and an elevated glucagon to insulin ratio. Glucose tolerance was, however, normal. In vivo, insulin secretion assessed following hyperglycemic clamps was normal. In vitro, islet perifusion studies revealed that first phase of insulin secretion was restored as well by GLUT1 or GLUT2, and this was accompanied by normalization of the glucose utilization rate. The ratio of pancreatic insulin to glucagon and volume densities of alpha to beta cells were, however, not corrected. These data demonstrate that 1) reexpression of GLUT1 or GLUT2 in beta cells is sufficient to rescue GLUT2-null mice from lethality, 2) GLUT1 as well as GLUT2 can restore normal GSIS, 3) restoration of GSIS does not correct the abnormal composition of the endocrine pancreas. Thus, normal GSIS does not depend on transporter affinity but on the rate of uptake at stimulatory glucose concentrations.  相似文献   

16.
Glucagon-like peptide 1 (GLP-1) is an intestine-derived insulinotropic hormone that stimulates glucose-dependent insulin production and secretion from pancreatic beta-cells. Other recognized actions of GLP-1 are to suppress glucagon secretion and hepatic glucose output, delay gastric emptying, reduce food intake, and promote glucose disposal in peripheral tissues. All of these actions are potentially beneficial for the treatment of type 2 diabetes mellitus. Several GLP-1 agonists are in clinical trials for the treatment of diabetes. More recently, GLP-1 agonists have been shown to stimulate the growth and differentiation of pancreatic beta-cells, as well as to exert cytoprotective, antiapoptotic effects on beta-cells. Recent evidence indicates that GLP-1 agonists act on receptors on pancreas-derived stem/progenitor cells to prompt their differentiation into beta-cells. These new findings suggest an approach to create beta-cells in vitro by expanding stem/progenitor cells and then to convert them into beta-cells by treatment with GLP-1. Thus GLP-1 may be a means by which to create beta-cells ex vivo for transplantation into patients with insulinopenic type 1 diabetes and severe forms of type 2 diabetes.  相似文献   

17.
The AMP-activated protein kinase (AMPK) is a central regulator of the energy status of the cell, based on its unique ability to respond directly to fluctuations in the ratio of AMP:ATP. Because glucose and amino acids stimulate insulin release from pancreatic beta-cells by the regulation of metabolic intermediates, AMPK represents an attractive candidate for control of beta-cell function. Here, we show that inhibition of AMPK in beta-cells by high glucose inversely correlates with activation of the mammalian Target of Rapamycin (mTOR) pathway, another cellular sensor for nutritional conditions. Forced activation of AMPK by AICAR, phenformin, or oligomycin significantly blocked phosphorylation of p70S6K, a downstream target of mTOR, in response to the combination of glucose and amino acids. Amino acids also suppressed the activity of AMPK, and this at a minimum required the presence of leucine and glutamine. It is unlikely that the ability of AMPK to sense both glucose and amino acids plays a role in regulation of insulin secretion, as inhibition of AMPK by amino acids did not influence insulin secretion. Moreover, activation of AMPK by AICAR or phenformin did not antagonize glucose-stimulated insulin secretion, and insulin secretion was also unaffected in response to suppression of AMPK activity by expression of a dominant negative AMPK construct (K45R). Taken together, these results suggest that the inhibition of AMPK activity by glucose and amino acids might be an important component of the mechanism for nutrient-stimulated mTOR activity but not insulin secretion in the beta-cell.  相似文献   

18.
19.
20.
Type 2 diabetes is characterized by two major defects: a dysregulation of pancreatic hormone secretion (quantitative and qualitative--early phase, pulsatility--decrease of insulin secretion, increase in glucagon secretion), and a decrease in insulin action on target tissues (insulin resistance). The defects in insulin action on target tissues are characterized by a decreased in muscle glucose uptake and by an increased hepatic glucose production. These abnomalities are linked to several defects in insulin signaling mechanisms and in several steps regulating glucose metabolism (transport, key enzymes of glycogen synthesis or of mitochondrial oxidation). These postreceptors defects are amplified by the presence of high circulating concentrations of free fatty acids. The mechanisms involved in the of long-chain fatty acids are reviewed in this paper. Indeed, elevated plasma free fatty acids contribute to decrease muscle glucose uptake (mainly by reducing insulin signaling) and to increase hepatic glucose production (stimulation of gluconeogenesis by providing cofactors such as acetyl-CoA, ATP and NADH). Chronic exposure to high levels of plasma free fatty acids induces accumulation of long-chain acyl-CoA into pancreatic beta-cells and to the death of 50 % of beta-cell by apoptosis (lipotoxicity).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号