首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multiple signaling pathways participate in the regulation of bone remodeling, and pathological negative balance in the regulation results in osteoporosis. However, interactions of signaling pathways that act comprehensively in concert to maintain bone mass are not fully understood. We investigated roles of parathyroid hormone receptor (PTH/PTHrP receptor) signaling in osteoblasts in unloading-induced bone loss using transgenic mice. Hind limb unloading by tail suspension reduced bone mass in wild-type mice. In contrast, signaling by constitutively active PTH/PTHrP receptor (caPPR), whose expression was regulated by the osteoblast-specific Col1a1 promoter (Col1a1-caPPR), suppressed unloading-induced reduction in bone mass in these transgenic mice. In Col1a1-caPPR transgenic (Tg) mice, hind limb unloading suppressed bone formation parameters in vivo and mineralized nodule formation in vitro similarly to those observed in wild-type mice. In addition, serum osteocalcin levels and mRNA expression levels of type I collagen, Runx2 and Osterix in bone were suppressed by unloading in both wild-type mice and Tg mice. However, in contrast to unloading-induced enhancement of bone resorption parameters in wild-type mice, Col1a1-caPPR signaling suppressed, rather than enhanced, osteoclast number and osteoclast surface as well as urinary deoxypyridinoline excretion upon unloading. Col1a1-caPPR signaling also suppressed mRNA expression levels of RANK and c-fms in bone upon unloading. Although the M-CSF and monocyte chemoattractant protein 1 (MCP-1) mRNA levels were enhanced in control Tg mice, these levels were suppressed in unloaded Tg mice. These results indicated that constitutive activation of PTH/PTHrP receptor signaling in osteoblastic cells suppresses unloading-induced bone loss specifically through the regulation of osteoclastic activity.  相似文献   

2.
Human monocyte chemoattractant protein-1 (MCP-1) in mice has two orthologs, MCP-1 and MCP-5. MCP-1, which is highly expressed in osteoclasts rather than in osteoclast precursor cells, is an important factor in osteoclast differentiation. However, the roles of MCP-5 in osteoclasts are completely unknown. In this study, contrary to MCP-1, MCP-5 was downregulated during receptor activator of nuclear factor kappa B ligand (RANKL)-induced osteoclast differentiation and was considered an inhibitory factor in osteoclast differentiation. The inhibitory role of MCP-5 in osteoclast differentiation was closely related to the increase in Ccr5 expression and the inhibition of IκB degradation by RANKL. Transgenic mice expressing MCP-5 controlled by Mx-1 promoter exhibited an increased bone mass because of a decrease in osteoclasts. This result strongly supported that MCP-5 negatively regulated osteoclast differentiation. MCP-5 also prevented severe bone loss caused by RANKL.  相似文献   

3.
Physical interaction between the cell surface receptors CD47 and signal regulatory protein alpha (SIRPalpha) was reported to regulate cell migration, phagocytosis, cytokine production, and macrophage fusion. However, it is unclear if the CD47/SIRPalpha-interaction can also regulate macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor (NF)-kappaB ligand (RANKL)-stimulated formation of osteoclasts. Here, we show that functional blocking antibodies to either CD47 or SIRPalpha strongly reduced formation of multinucleated tartrate-resistant acid phosphatase (TRAP)+ osteoclasts in cultures of murine hematopoietic cells, stimulated in vitro by M-CSF and RANKL. In addition, the numbers of osteoclasts formed in M-CSF/RANKL-stimulated bone marrow macrophage cultures from CD47-/- mice were strongly reduced, and bones of CD47-/- mice exhibited significantly reduced osteoclast numbers, as compared with wild-type controls. We conclude that the CD47/SIRPalpha interaction is important for M-CSF/RANKL-stimulated osteoclast formation both in vivo and in vitro, and that absence of CD47 results in decreased numbers of osteoclasts in CD47-/- mice.  相似文献   

4.
Osteoclasts (OCs) undergo rapid apoptosis without trophic factors, such as macrophage colony-stimulating factor (M-CSF). Their apoptosis was associated with a rapid and sustained increase in the pro-apoptotic BH3-only Bcl-2 family member Bim. This was caused by the reduced ubiquitylation and proteasomal degradation of Bim that is mediated by c-Cbl. Although the number of OCs was increased in the skeletal tissues of bim-/- mice, the mice exhibited mild osteosclerosis due to reduced bone resorption. OCs differentiated from bone marrow cells of bim-/- animals showed a marked prolongation of survival in the absence of M-CSF, compared with bim+/+ OCs, but the bone-resorbing activity of bim-/- OCs was significantly reduced. Overexpression of a degradation-resistant lysine-free Bim mutant in bim-/- cells abrogated the anti-apoptotic effect of M-CSF, while wild-type Bim did not. These results demonstrate that ubiquitylation-dependent regulation of Bim levels is critical for controlling apoptosis and activation of OCs.  相似文献   

5.
The ligand for osteoprotegerin (OPGL) directly activates mature osteoclasts   总被引:57,自引:0,他引:57  
Osteoprotegerin (OPG) and OPG-ligand (OPGL) potently inhibit and stimulate, respectively, osteoclast differentiation (Simonet, W.S., D.L. Lacey, C.R. Dunstan, M. Kelley, M.-S. Chang, R. Luethy, H.Q. Nguyen, S. Wooden, L. Bennett, T. Boone, et al. 1997. Cell. 89:309-319; Lacey, D.L., E. Timms, H.-L. Tan, M.J. Kelley, C.R. Dunstan, T. Burgess, R. Elliott, A. Colombero, G. Elliott, S. Scully, et al. 1998. Cell. 93: 165-176), but their effects on mature osteoclasts are not well understood. Using primary cultures of rat osteoclasts on bone slices, we find that OPGL causes approximately sevenfold increase in total bone surface erosion. By scanning electron microscopy, OPGL-treated osteoclasts generate more clusters of lacunae on bone suggesting that multiple, spatially associated cycles of resorption have occurred. However, the size of individual resorption events are unchanged by OPGL treatment. Mechanistically, OPGL binds specifically to mature OCs and rapidly (within 30 min) induces actin ring formation; a marked cytoskeletal rearrangement that necessarily precedes bone resorption. Furthermore, we show that antibodies raised against the OPGL receptor, RANK, also induce actin ring formation. OPGL-treated mice exhibit increases in blood ionized Ca++ within 1 h after injections, consistent with immediate OC activation in vivo. Finally, we find that OPG blocks OPGL's effects on both actin ring formation and bone resorption. Together, these findings indicate that, in addition to their effects on OC precursors, OPGL and OPG have profound and direct effects on mature OCs and indicate that the OC receptor, RANK, mediates OPGL's effects.  相似文献   

6.
Vav3 regulates osteoclast function and bone mass   总被引:1,自引:0,他引:1  
Osteoporosis, a leading cause of morbidity in the elderly, is characterized by progressive loss of bone mass resulting from excess osteoclastic bone resorption relative to osteoblastic bone formation. Here we identify Vav3, a Rho family guanine nucleotide exchange factor, as essential for stimulated osteoclast activation and bone density in vivo. Vav3-deficient osteoclasts show defective actin cytoskeleton organization, polarization, spreading and resorptive activity resulting from impaired signaling downstream of the M-CSF receptor and alpha(v)beta3 integrin. Vav3-deficient mice have increased bone mass and are protected from bone loss induced by systemic bone resorption stimuli such as parathyroid hormone or RANKL. Moreover, we provide genetic and biochemical evidence for the role of Syk tyrosine kinase as a crucial upstream regulator of Vav3 in osteoclasts. Thus, Vav3 is a potential new target for antiosteoporosis therapy.  相似文献   

7.
Osteocytes, former osteoblasts buried within bone, are thought to orchestrate skeletal adaptation to mechanical stimuli. However, it remains unknown whether hormones control skeletal homeostasis through actions on osteocytes. Parathyroid hormone (PTH) stimulates bone remodeling and may cause bone loss or bone gain depending on the balance between bone resorption and formation. Herein, we demonstrate that transgenic mice expressing a constitutively active PTH receptor exclusively in osteocytes exhibit increased bone mass and bone remodeling, as well as reduced expression of the osteocyte-derived Wnt antagonist sclerostin, increased Wnt signaling, increased osteoclast and osteoblast number, and decreased osteoblast apoptosis. Deletion of the Wnt co-receptor LDL related receptor 5 (LRP5) attenuates the high bone mass phenotype but not the increase in bone remodeling induced by the transgene. These findings demonstrate that PTH receptor signaling in osteocytes increases bone mass and the rate of bone remodeling through LRP5-dependent and -independent mechanisms, respectively.  相似文献   

8.
Loss of mechanical stress or unloading causes disuse osteoporosis that leads to fractures and deteriorates body function and affects mortality rate in aged population. This bone loss is due to reduction in osteoblastic bone formation and increase in osteoclastic bone resorption. MuRF1 is a muscle RING finger protein which is involved in muscle wasting and its expression is enhanced in the muscle of mice subjected to disuse condition such as hind limb unloading (HU). However, whether MuRF1 is involved in bone loss due to unloading is not known. We therefore examined the effects of MuRF1 deficiency on unloading-induced bone loss. We conducted hind limb unloading of MuRF1 KO mice and wild-type control mice. Unloading induced about 60% reduction in cancellous bone volume (BV/TV) in WT mice. In contrast, MuRF1 deficiency suppressed unloading-induced cancellous bone loss. The cortical bone mass was also reduced by unloading in WT mice. In contrast, MuRF1 deficiency suppressed this reduction in cortical bone mass. To understand whether the effects of MuRF1 deficiency suppress bone loss is on the side of bone formation or bone resorption, histomorphometry was conducted. Unloading reduced bone osteoblastic formation rate (BFR) in WT. In contrast, MuRF1 deficiency suppressed this reduction. Regarding bone resorption, unloading increased osteoclast number in WT. In contrast, MURF1 deficiency suppressed this osteoclast increase. These data indicated that the ring finger protein, MURF1 is involved in disuse-induced bone loss in both of the two major bone remodeling activities, osteoblastic bone formation and osteoclastic bone resorption.  相似文献   

9.
Skeletal abnormalities including osteoporosis and osteopenia occur frequently in both pediatric and adult neurofibromatosis type 1 (NF1) patients. NF1 (Nf1) haploinsufficient osteoclasts and osteoclast progenitors derived from both NF1 patients and Nf1+/− mice exhibit increased differentiation, migration, and bone resorptive capacity in vitro, mediated by hyperactivation of p21Ras in response to limiting concentrations of macrophage-colony stimulating factor (M-CSF). Here, we show that M-CSF binding to its receptor, c-Fms, results in increased c-Fms activation in Nf1+/ osteoclast progenitors, mediating multiple gain-in-functions through the downstream effectors Erk1/2 and p90RSK. PLX3397, a potent and selective c-Fms inhibitor, attenuated M-CSF mediated Nf1+/− osteoclast migration by 50%, adhesion by 70%, and pit formation by 60%. In vivo, we administered PLX3397 to Nf1 +/ osteoporotic mice induced by ovariectomy (OVX) and evaluated changes in bone mass and skeletal architecture. We found that PLX3397 prevented bone loss in Nf1+/−-OVX mice by reducing osteoclast differentiation and bone resorptive activity in vivo. Collectively, these results implicate the M-CSF/c-Fms signaling axis as a critical pathway underlying the aberrant functioning of Nf1 haploinsufficient osteoclasts and may provide a potential therapeutic target for treating NF1 associated osteoporosis and osteopenia.  相似文献   

10.
Bone homeostasis is maintained by the balance between osteoblastic bone formation and osteoclastic bone resorption. In this study, we used human bone marrow cells (BMCs) to investigate the role of hypoxic exposure on human osteoclast (OC) formation in the presence of tumor necrosis factor (TNF). Exposing the BMCs to 3%, 5%, or 10% O2 in the presence of receptor activator of NF-κB ligand (RANKL) and macrophage colony-stimulating factor (M-CSF) generated tartrate-resistant acid phosphatase (TRAP)-positive multinuclear cells, consistent with OCs. The addition of TNF under hypoxic conditions generated significantly greater numbers of mature OCs with more nuclei than OCs generated under normoxic conditions. Longer initial hypoxic exposure increased the number of OC precursor cells and facilitated the differentiation of OC precursor cells into multinucleated OCs. Quantitative RT-PCR analysis revealed that RANKL and TNFR1 were expressed at higher levels in non-OC cells from BMCs under hypoxic conditions than under normoxic conditions. Furthermore, to confirm the involvement of TNF-induced signaling, we examined the effects of blocking antibodies against TNFR1 and TNFR2 on OC formation under hypoxic conditions. The TNFR1 antibody was observed to significantly suppress OC formation. These results suggest that hypoxic exposure plays an important role in TNF-induced osteoclastogenesis from human BMCs.  相似文献   

11.
MCP-1 (monocyte chemotactic protein-1) is a CC chemokine that is induced by receptor activator of NFkappaB ligand (RANKL) in human osteoclasts. In the absence of RANKL, treatment of human peripheral blood mononuclear cells with macrophage colony-stimulating factor and MCP-1 resulted in tartrate-resistant acid phosphatase (TRAP)-positive multinuclear cells that are positive for calcitonin receptor (CTR) and a number of other osteoclast markers, including nuclear factor of activated t cells, cytoplasmic, calcineurin-dependent 1 (NFATc1). Although NFATc1 was strongly induced by MCP-1 and was observed in the nucleus, MCP-1 did not permit the formation of bone-resorbing osteoclasts, although these cells had the typical TRAP(+)/CTR(+) multinuclear phenotype of osteoclasts. Despite a similar appearance to osteoclasts, RANKL treatment was required in order for TRAP(+)/CTR(+) multinuclear cells to develop bone resorption activity. The lack of bone resorption was correlated with a deficiency in expression of certain genes related to bone resorption, such as cathepsin K and MMP9. Furthermore, calcitonin blocked the MCP-1-induced formation of TRAP(+)/CTR(+) multinuclear cells as well as blocking osteoclast bone resorption activity, indicating that calcitonin acts at two stages of osteoclast differentiation. Ablation of NFATc1 in mature osteoclasts did not prevent bone resorption activity, suggesting NFATc1 is involved in cell fusion events and not bone resorption. We propose that the MCP-1-induced TRAP(+)/CTR(+) multinuclear cells represent an arrested stage in osteoclast differentiation, after NFATc1 induction and cellular fusion but prior to the development of bone resorption activity.  相似文献   

12.
Recently, it has been found that osteoclasts are induced and activated by osteoblastic cells through expression of receptor activator NF-kB ligand (RANKL), and that soluble recombinant RANKL, with M-CSF, can replace the need for osteoblastic cells in osteoclast formation. We exploited this opportunity to compare the responsiveness of osteoclast-like cells (OCL) formed in vitro in the absence of osteoblasts, with that of osteoclasts ex vivo. We found that while OCL responded to several hormones and cytokines like ex vivo osteoclasts, their responsiveness to interleukin-1 (IL-1) was fundamentally different: IL1 directly stimulated actin ring formation in OCL, but had no effect on actin rings or survival in osteoclasts ex vivo unless osteoblastic cells were present. This difference could not be attributed to the use of plastic culture substrates for OCL formation, nor to osteoblastic contamination, and did not seem to be mediated by the macrophages that form in OCL cultures. To understand the mechanisms by which IL-1 induces bone loss, it will need to be determined whether or not IL-1-responsive OCLs have a counterpart in vivo. Whichever is the case, our data suggest that the behavior of osteoclasts formed in culture will not always predict that of osteoclasts in vivo.  相似文献   

13.
The clinical findings that alendronate blunted the anabolic effect of human parathyroid hormone (PTH) on bone formation suggest that active resorption is involved and enhances the anabolic effect. PTH signals via its receptor on the osteoblast membrane, and osteoclasts are impacted indirectly via the products of osteoblasts. Microarray with RNA from rats injected with human PTH or vehicle showed a strong association between the stimulation of monocyte chemoattractant protein-1 (MCP-1) and the anabolic effects of PTH. PTH rapidly and dramatically stimulated MCP-1 mRNA in the femora of rats receiving daily injections of PTH or in primary osteoblastic and UMR 106-01 cells. The stimulation of MCP-1 mRNA was dose-dependent and a primary response to PTH signaling via the cAMP-dependent protein kinase pathway in vitro. Studies with the mouse monocyte cell line RAW 264.7 and mouse bone marrow proved that osteoblastic MCP-1 can potently recruit osteoclast monocyte precursors and facilitate receptor activator of NF-kappaB ligand-induced osteoclastogenesis and, in particular, enhanced fusion. Our model suggests that PTH-induced osteoblastic expression of MCP-1 is involved in recruitment and differentiation at the stage of multinucleation of osteoclast precursors. This information provides a rationale for increased osteoclast activity in the anabolic effects of PTH in addition to receptor activator of NF-kappaB ligand stimulation to initiate greater bone remodeling.  相似文献   

14.
The aim of this study is to identify the exact mechanism(s) by which cytoskeletal structures are modulated during bone resorption. In this study, we have shown the possible role of different actin-binding and signaling proteins in the regulation of sealing ring formation. Our analyses have demonstrated a significant increase in cortactin and a corresponding decrease in L-plastin protein levels in osteoclasts subjected to bone resorption for 18 h in the presence of RANKL, M-CSF, and native bone particles. Time-dependent changes in the localization of L-plastin (in actin aggregates) and cortactin (in the sealing ring) suggest that these proteins may be involved in the initial and maturation phases of sealing ring formation, respectively. siRNA to cortactin inhibits this maturation process but not the formation of actin aggregates. Osteoclasts treated as above but with TNF-α demonstrated very similar effects as observed with RANKL. Osteoclasts treated with a neutralizing antibody to TNF-α displayed podosome-like structures in the entire subsurface and at the periphery of osteoclast. It is possible that TNF-α and RANKL-mediated signaling may play a role in the early phase of sealing ring configuration (i.e. either in the disassembly of podosomes or formation of actin aggregates). Furthermore, osteoclasts treated with alendronate or αv reduced the formation of the sealing ring but not actin aggregates. The present study demonstrates a novel mechanistic link between L-plastin and cortactin in sealing ring formation. These results suggest that actin aggregates formed by L-plastin independent of integrin signaling function as a core in assembling signaling molecules (integrin αvβ3, Src, cortactin, etc.) involved in the maturation process.  相似文献   

15.
Macrophage-CSF (M-CSF) is critical for osteoclast (OC) differentiation and is reported to enhance mature OC survival and motility. However, its role in the regulation of bone resorption, the main function of OCs, has not been well characterised. To address this we analysed short-term cultures of fully differentiated OCs derived from human colony forming unit-granulocyte macrophages (CFU-GM). When cultured on dentine, OC survival was enhanced by M-CSF but more effectively by receptor activator of NFκB ligand (RANKL). Resorption was entirely dependent on the presence of RANKL. Co-treatment with M-CSF augmented RANKL-induced resorption in a concentration-dependent manner with a (200-300%) stimulation at 25 ng/mL, an effect observed within 4-6 h. M-CSF co-treatment also increased number of resorption pits and F-actin sealing zones, but not the number of OCs or pit size, indicating stimulation of the proportion of OCs activated. M-CSF facilitated RANKL-induced activation of c-fos and extracellular signal-regulated kinase (ERK) 1/2 phosphorylation, but not NFκB nor nuclear factor of activated T-cells, cytoplasmic-1 (NFATc1). The mitogen-activated protein kinase kinase (MEK) 1 inhibitor PD98059 partially blocked augmentation of resorption by M-CSF. Our results reveal a previously unidentified role of M-CSF as a potent stimulator of mature OC resorbing activity, possibly mediated via ERK upstream of c-fos.  相似文献   

16.
Osteoclastic activity induces osteomodulin expression in osteoblasts   总被引:2,自引:0,他引:2  
Bone resorption by osteoclasts stimulates bone formation by osteoblasts. To isolate osteoblastic factors coupled with osteoclast activity, we performed microarray and cluster analysis of 8 tissues including bone, and found that among 10,490 genes, osteomodulin (OMD), an extracellular matrix keratan sulfate proteoglycan, was simultaneously induced with osteoclast-specific markers such as MMP9 and Acp5. OMD expression was detected in osteoblasts and upregulated during osteoblast maturation. OMD expression in osteoblasts was also detected immunohistochemically using a specific antibody against OMD. The immunoreactivity against OMD decreased in op/op mice, which lack functional macrophage colony stimulating factor (M-CSF) and are therefore defective in osteoclast formation, when compared to wild-type littermates. OMD expression in op/op mice was upregulated by M-CSF treatment. Since the M-CSF receptor c-Fms was not expressed in osteoblasts, it is likely that OMD is an osteoblast maturation marker that is induced by osteoclast activity.  相似文献   

17.
Human osteoclast formation from monocyte precursors under the action of receptor activator of nuclear factor-kappaB ligand (RANKL) was suppressed by granulocyte macrophage colony-stimulating factor (GM-CSF), with down-regulation of critical osteoclast-related nuclear factors. GM-CSF in the presence of RANKL and macrophage colony-stimulating factor resulted in mononuclear cells that were negative for tartrate-resistant acid phosphatase (TRAP) and negative for bone resorption. CD1a, a dendritic cell marker, was expressed in GM-CSF, RANKL, and macrophage colony-stimulating factor-treated cells and absent in osteoclasts. Microarray showed that the CC chemokine, monocyte chemotactic protein 1 (MCP-1), was profoundly repressed by GM-CSF. Addition of MCP-1 reversed GM-CSF suppression of osteoclast formation, recovering the bone resorption phenotype. MCP-1 and chemokine RANTES (regulated on activation normal T cell expressed and secreted) permitted formation of TRAP-positive multinuclear cells in the absence of RANKL. However, these cells were negative for bone resorption. In the presence of RANKL, MCP-1 significantly increased the number of TRAP-positive multinuclear bone-resorbing osteoclasts (p = 0.008). When RANKL signaling through NFATc1 was blocked with cyclosporin A, both MCP-1 and RANTES expression was down-regulated. Furthermore, addition of MCP-1 and RANTES reversed the effects of cyclosporin A and recovered the TRAP-positive multinuclear cell phenotype. Our model suggests that RANKL-induced chemokines are involved in osteoclast differentiation at the stage of multinucleation of osteoclast precursors and provides a rationale for increased osteoclast activity in inflammatory conditions where chemokines are abundant.  相似文献   

18.
It has been reported that lipopolysaccharide (LPS) has the ability to induce inflammation and osteoclastogenesis. Osteoclast formation is dependent on macrophage-colony-stimulating factor (M-CSF) and ligand for the receptor activator of necrosis factor-kB. In this study, the effect of antibody against c-Fms, which is the receptor of M-CSF, on LPS-mediated osteoclastogenesis was investigated in mice. LPS was administered with or without anti-c-Fms antibody into the supracalvaria of mice. The number of osteoclasts and the levels of mRNA for cathepsin K and tartrate-resistant acid phosphatase, which are osteoclast markers, in mice administered both LPS and anti-c-Fms antibody were lower than those in mice administered LPS alone. The level of tartrate-resistant acid phosphatase 5b as a marker of bone resorption in mice administered both LPS and anti-c-Fms antibody was also lower. Furthermore, the expression of the receptor activator of necrosis factor-kB, which is receptor activator of nuclear factor kappa-B ligand, was increased upon LPS administration, but the expression was inhibited by anti-c-Fms antibody. These results showed that anti-c-Fms antibody inhibits LPS-induced osteoclast formation. In conclusion, M-CSF and its receptor are potential therapeutic targets in bacterial infection-induced osteoclastogenesis, and anti-c-Fms antibody might be useful for inhibition of bacterial infection-induced bone destruction.  相似文献   

19.
20.
Receptor activator of NF-κB (RANK) plays a critical role in osteoclastogenesis, an essential process for the initiation of bone remodeling to maintain healthy bone mass and structure. Although the signaling and function of RANK have been investigated extensively, much less is known about the negative regulatory mechanisms of its signaling. We demonstrate in this paper that RANK trafficking, signaling, and function are regulated by VPS35, a major component of the retromer essential for selective endosome to Golgi retrieval of membrane proteins. VPS35 loss of function altered RANK ligand (RANKL)–induced RANK distribution, enhanced RANKL sensitivity, sustained RANKL signaling, and increased hyperresorptive osteoclast (OC) formation. Hemizygous deletion of the Vps35 gene in mice promoted hyperresorptive osteoclastogenesis, decreased bone formation, and caused a subsequent osteoporotic deficit, including decreased trabecular bone volumes and reduced trabecular thickness and density in long bones. These results indicate that VPS35 critically deregulates RANK signaling, thus restraining increased formation of hyperresorptive OCs and preventing osteoporotic deficits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号