首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purple pigmented bacterium Chromobacterium violaceum is a dominant component of tropical soil microbiota that can cause rare but fatal septicaemia in humans. Its sequenced genome provides insight into the abundant potential of this organism for biotechnological and pharmaceutical applications and allowed an ORF encoding a protein that is 60% identical to the fucose binding lectin (PA-IIL) from Pseudomonas aeruginosa and the mannose binding lectin (RS-IIL) from Ralstonia solanacearum to be identified. The lectin, CV-IIL, has recently been purified from C. violaceum [Zinger-Yosovich, K., Sudakevitz, D., Imberty, A., Garber, N. C., and Gilboa-Garber, N. (2006) Microbiology 152, 457-463] and has been confirmed to be a tetramer with subunit size of 11.86 kDa and a binding preference for fucose. We describe here the cloning of CV-IIL and its expression as a recombinant protein. A complete structure-function characterization has been made in an effort to analyze the specificity and affinity of CV-IIL for fucose and mannose. Crystal structures of CV-IIL complexes with monosaccharides have yielded the molecular basis of the specificity. Each monomer contains two close calcium cations that mediate the binding of the monosaccharides, which occurs in different orientations for fucose and mannose. The thermodynamics of binding has been analyzed by titration microcalorimetry, giving dissociation constants of 1.7 and 19 microM for alpha-methyl fucoside and alpha-methyl mannoside, respectively. Further analysis demonstrated a strongly favorable entropy term that is unusual in carbohydrate binding. A comparison with both PA-IIL and RS-IIL, which have binding preferences for fucose and mannose, respectively, yielded insights into the monosaccharide specificity of this important class of soluble bacterial lectins.  相似文献   

2.
PA-IIL is a fucose-binding lectin from Pseudomonas aeruginosa that is closely related to the virulence factors of the bacterium. Previous structural studies have revealed a new carbohydrate-binding mode with direct involvement of two calcium ions (Mitchell E, Houles C, Sudakevitz D, Wimmerova M, Gautier C, Perez S, Wu AM, Gilboa-Garber N, Imberty A. Structural basis for selective recognition of oligosaccharides from cystic fibrosis patients by the lectin PA-IIL of Pseudomonas aeruginosa. Nat Struct Biol 2002;9:918-921). A combination of thermodynamic, structural, and computational methods has been used to study the basis of the high affinity for the monosaccharide ligand. A titration microcalorimetry study indicated that the high affinity is enthalpy driven. The crystal structure of the tetrameric PA-IIL in complex with fucose and calcium was refined to 1.0 A resolution and, in combination with modeling, allowed a proposal to be made for the hydrogen-bond network in the binding site. Calculations of partial charges using ab initio computational chemistry methods indicated that extensive delocalization of charges between the calcium ions, the side chains of the protein-binding site and the carbohydrate ligand is responsible for the high enthalpy of binding and therefore for the unusually high affinity observed for this unique mode of carbohydrate recognition.  相似文献   

3.
Pseudomonas aeruginosa galactose- and fucose-binding lectins (PA-IL and PA-IIL) contribute to the virulence of this pathogenic bacterium, which is a major cause of morbidity and mortality in cystic fibrosis patients. The crystal structure of PA-IIL in complex with fucose reveals a tetrameric structure. Each monomer displays a nine-stranded, antiparallel b-sandwich arrangement and contains two close calcium cations that mediate the binding of fucose in a recognition mode unique among carbohydrate-protein interactions. Experimental binding studies, together with theoretical docking of fucose-containing oligosaccharides, are consistent with the assumption that antigens of the Lewis a (Le(a)) series may be the preferred ligands of this lectin. Precise knowledge of the lectin-binding site should allow a better design of new antibacterial-adhesion prophylactics.  相似文献   

4.
5.
A small-scale affinity chromatographic procedure was developed to screen for the presence of fucose and mannose/N-acetylglucosamine-binding lectins in small amounts of rat tissues. Of all tissues examined, only the liver contained the fucose-binding lectin, whereas both liver and blood serum contained the mannose/N-acetylglucosamine lectin. By means of immunocytological methods using antibodies to hepatic lectins, the fucose lectin was shown to be uniquely present in Kupffer cells and absent in all other types of rat macrophages examined. The binding and uptake of different neoglycoproteins by nonparenchymal cell fractions of liver indicated that the fucose-binding lectin was either not responsible for the uptake or that more than one lectin was acting. With the identification of another lectin (Mr = 180,000) by the above screening procedure for hepatic lectins and the results of studies in the following paper (Haltiwanger, R.S., and Hill, R. L. (1986) J. Biol. Chem. 261, 7440-7444) two lectins appear to be involved. A small amount of the hepatic mannose/N-acetylglucosamine lectin was found by the above screening procedure to have a higher affinity for L-fucosyl-bovine serum albumin-Sepharose than the majority of the lectin in hepatocytes. This lectin, called the high affinity form, was purified and its properties examined. On a weight basis the high affinity form bound 7-12 times more ligand than the normal form. Its Ka for L-fucosyl-bovine serum albumin was 2.3 X 10(9) M-1 compared to 3.5 X 10(8) M-1 for the normal form. Moreover, the concentrations of monosaccharides required to inhibit the high affinity form were about 3 times less than those required to inhibit binding of the normal form. The two forms, however, have identical molecular weights (32,000) under reducing and nonreducing conditions, bind anti-lectin antibodies in the same way, and give identical peptide maps after V-8 protease digestion. The structural basis for the different binding affinities of the two forms remains unknown.  相似文献   

6.
Pseudomonas aeruginosa produces several lectins, including the galactophilic PA-IL and the fucose- and mannose-binding PA-IIL. The great advantage of these two lectins is their stability in purified preparations. Following observations that pigeon egg white blocks Escherichia coli P-fimbriae and PA-IL, we examined the interactions of diverse avian egg white components with PA-IIL. This lectin may represent both mannose- and fucose-specific microbial adhesins. For comparison, Con A (which also binds mannose) and Ulex europaeus lectin (UEA-I, which binds fucose) were analyzed in parallel. The lectin interactions with chicken, quail, and pigeon egg whites and several purified chicken egg white glycoproteins were examined by a hemagglutination inhibition test and Western blotting. Both analyses showed that like Con A and unlike UEA-I, which was not sensitive to any of these three egg whites, PA-IIL most strongly reacted with the quail egg white. However, in contrast with Con A, its interactions with the chicken egg white components, excluding avidin, were very poor. The results of this study might indicate the possibility that some of the egg white components that interacted with the above two mannose-binding lectins (exhibiting individual heterogeneity) might be associated with the innate immunity against mannose-specific microbial or viral adhesion during the fowl embryonic period.  相似文献   

7.
Rat peritoneal macrophages were shown to have two distinct mannose/fucose/N-acetylglucosamine-specific lectins. The major lectin of 180 kDa, which is similar in size to the mannose receptor first isolated from alveolar macrophages (Wileman, T.E., Lennartz, M.R., & Stahl, P.D. (1986) Proc. Natl. Acad. Sci. U.S. 83, 2501-2505), was shown to occur as a dimer under nondenaturing conditions. The 29 and 32 kDa lectins were identified as members of the liver mannan-binding protein family on the basis of their immunochemical crossreactivity, collagenase sensitivity, and molecular sizes (Oka, S., Ikeda, K., Kawasaki, T., & Yamashina, I. (1988) Arch. Biochem. Biophys. 260, 257-266). Despite the similarity in the sugar binding specificity, these two types of lectin were clearly differentiated with regard to the binding to IgM molecules. The 29 and 32 kDa lectins bound to IgM most likely through high-mannose type oligosaccharides on IgM, whereas the 180 kDa lectin did not.  相似文献   

8.
A lectin with a high affinity for binding ligands through fucose residues has been purified to homogeneity from rat liver. Affinity chromatography of the lectin on fucosyl-bovine serum albumin-agarose is the key step in the purification. Contaminating amounts of a previously described lectin that binds mannose and N-acetylglucosamine are removed from the fucose-binding lectin by either immunoadsorption on anti-mannose/N-acetylglucosamine lectin IgG-agarose or by specific elution of the fucose-binding lectin from fucosyl-bovine serum albumin-agarose. The pure fucose-binding lectin contains two polypeptide subunits with molecular weights of 88,000 and 77,000, respectively, as judged by gel electrophoresis. Peptide maps of the subunits, however, show that they are very similar structurally. In addition, peptide maps show that the fucose lectin is structurally distinct from other rat hepatic lectins. This is supported by the lack of cross-reaction among the different rat liver lectins and their specific antibodies and the inability of specific antibodies to the mannose/N-acetylglucosamine lectin to inhibit the binding of fucosyl-bovine serum albumin by the fucose lectin.  相似文献   

9.
Chronic colonization of the lungs by opportunist bacteria such as Pseudomonas aeruginosa and members of the Bcc (Burkholderia cepacia complex) is the major cause of morbidity and mortality among CF (cystic fibrosis) patients. PA-IIL (lecB gene), a soluble lectin from Ps. aeruginosa, has been the subject of much interest because of its very strong affinity for fucose. Orthologues have been identified in the opportunist bacteria Ralstonia solanacearum, Chromobacterium violaceum and Burkholderia of Bcc. The genome of the J2315 strain of B. cenocepacia, responsible for epidemia in CF centres, contains three genes that code for proteins with PA-IIL domains. The shortest gene was cloned in Escherichia coli and pure recombinant protein, BclA (B. cenocepacia lectin A), was obtained. The presence of native BclA in B. cenocepacia extracts was checked using a proteomic approach. The specificity of recombinant BclA was characterized using surface plasmon resonance showing a preference for mannosides and supported with glycan array experiments demonstrating a strict specificity for oligomannose-type N-glycan structures. The interaction thermodynamics of BclA with methyl alpha-D-mannoside demonstrates a dissociation constant (K(d)) of 2.75 x 10(-6) M. The X-ray crystal structure of the complex with methyl alpha-D-mannoside was determined at 1.7 A (1 A=0.1 nm) resolution. The lectin forms homodimers with one binding site per monomer, acting co-operatively with the second dimer site. Each monomer contains two Ca2+ ions and one sugar ligand. Despite strong sequence similarity, the differences between BclA and PA-IIL in their specificity, binding site and oligomerization mode indicate that the proteins should have different roles in the bacteria.  相似文献   

10.
We present the results of a series of 10-ns molecular dynamics simulations on Pseudomonas aeruginosa lectin-II (PA-IIL) and its complexes with four different monosaccharides. We compare the saccharide-free, saccharide-occupied, and saccharide- and ion-free forms of the lectin. The results are coupled with analysis of the water density map and calcium coordination. The water density pattern around the binding site in the free lectin molecular dynamics was fitted with that in the X-ray and with the hydroxyl groups of the monosaccharide within the lectin/monosaccharide complexes and the best ligand was predicted based on the best fit. Interestingly, the water density pattern around the binding site in the uncomplexed lectin exactly fitted the O2, O3, and O4 hydroxyl groups of the fucose complex with the lectin. This observation could lead to a hypothesis that the replacement of these three water molecules from the binding site by the monosaccharide decreases the entropy of the complex and increases the entropy of the water molecules, which favors the binding. It suggests that the high density peaks of the solvent around the binding site in the free protein could be the tool to predict hydroxyl group orientation of the sugar in the protein/sugar complexes. The high affinity of PA-IIL binding site is also attributed to the presence of two calcium ions, each of them making five to six coordinations with the protein part and two coordinations with either water or the monosaccharide. When the calcium ions are removed from the simulated system, they are replaced by sodium ions from the solvent. These observations rationalize the high binding affinity of PA-IIL towards fucose.  相似文献   

11.
Binding characteristics of N-acetylglucosamine- (GlcNAc) specific lectin on the chicken hepatocyte surface were probed by an inhibition assay using various sugars and glycosides as inhibitors. Results indicated that the binding area of the lectin is small, interacting only with GlcNAc residues whose 3- and 4-OH's are open. The combining site is probably of trough-type, since substitution with as large a group as monosaccharide is permitted on the C-6 side of GlcNAc, and on the C-1 side, the aglycon of GlcNAc can be very large (e.g., a glycoprotein). These binding characteristics are shared with the homologous mammalian lectin specific for galactose/N-acetylgalactosamine, suggesting that tertiary structure of the combining area of these two lectins is similar. This is understandable, since there is approximately 40% amino acid sequence identity in the carbohydrate recognition domain of these two lectins [Drickamer, K., Mannon, J. F., Binns, G., & Leung, J. O. (1984) J. Biol. Chem. 259, 770-778]. A series of glycosides, each containing two GlcNAc residues separated by different distances (from 0.8 to 4.7 nm), were synthesized. Inhibition assay with these and other cluster glycosides indicated that clustering of two or more GlcNAc residues increased the affinity toward the chicken lectin tremendously. Among the ligands containing two GlcNAc residues, the structure which allows a maximal inter-GlcNAc distance of 3.3 nm had the strongest affinity, its affinity increase over GlcNAc (monosaccharide) amounting to 100-fold. Longer distances slightly diminished the affinity, while shortening the distance caused substantial decrease in the affinity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
A lectin (HTTL) was isolated from Helianthus tuberosus L. (wild sunflower) tubers using ion-exchange chromatography, gel filtration, and affinity chromatography. The lectin agglutinated both untreated and trypsin-treated rabbit erythrocytes and did not agglutinate human blood cells of groups A, B, and O. The gel filtration showed the native molecular mass of 72 kDa and subunit molecular masses of 17 and 18.5 kDa on 12% SDS-PAGE. The lectin activity was inhibited by D-mannose. The tetrameric protein revealed a unique characteristic by forming a broad zone of protein in native PAGE at pH 8.3, which dissociated into seven subunits of varying e/m ratios on acid gel at pH 4.3. These seven bands revealed two polypeptide species of molecular masses 17 and 18.5 kDa on 12% SDS-PAGE, as in the case of the native protein. The result indicated that of the seven subunits, three were homotetramers of 17 kDa, one was a homotetramer of 18.5 kDa, and three were heterotetramers of 17 and 18.5 kDa. The lectin was thermostable with broad pH optima (pH 4-8) and had no requirement for divalent metal cations for its activity. The amino acid composition showed that the lectin contained higher amounts of glycine, alanine, and lysine, but no methionine. The sugar content was estimated to be 5.3% mannose equivalent. The HTTL was mitogenic to mouse spleen (total) cells at 25 microg/ml concentration. The lectin showed characteristics different from those of the earlier reported H. tuberosus tuber lectins and hence opens up a new avenue to investigate the structure-function relationship of lectin in Helianthus species.  相似文献   

13.
《Phytochemistry》1986,25(10):2371-2374
A lectin was isolated from the seeds of Erythrina vespertilio by affinity chromatography on lactose-Sepharose 6B. The lectin has an M, of 59 000 and consists of two non-covalently associated subunits (M, ∼ 30 000). The lectin is devoid of cysteine but has six methionine residues/mol and a neutral sugar content of 9.7% The carbohydrate composition was mannose, N-acetylglucosamine, fucose, xylose and galactose in amounts of 15.0, 4.0, 1.0, 5.0 and 25 mol/59 000 g, respectively. Alkaline gel electrophoresis and isoelectric focusing showed that the affinity purified lectin consists of a family ofisolectins. Valine was the only N-terminal amino acid found and the N-terminal sequence was homologous with that found for other legume lectins. The lectin was inhibited by galactosyl containing carbohydrates; p-nitrophenyl-β-galactoside was the best inhibitor and the lectin showed a slight preference for β-galactosides. Comparison of its properties with those of other Erythrina lectins shows that most of the lectins of this genus are closely related.  相似文献   

14.
A plant lectin was isolated from barley (Hordeum vulgare) coleoptiles using acidic extraction and different chromatographic methods. Sequencing of more than 50% of the protein sequence by Edman degradation confirmed a full-length cDNA clone. The subsequently identified open reading frame encodes for a 15 kDa protein which could be found in the soluble fraction of barley coleoptiles. This protein exhibited specificity towards mannose sugar and is therefore, accordingly named as Horcolin (Hordeum vulgare coleoptile lectin). Database searches performed with the Horcolin protein sequence revealed a sequence and structure homology to the lectin family of jacalin-related lectins. Together with its affinity towards mannose, Horcolin is now identified as a new member of the mannose specific subgroup of jacalin-related lectins in monocot species. Horcolin shares a high amino acid homology to the highly light-inducible protein HL#2 and, in addition to two methyl jasmonic acid-inducible proteins of 32.6 and 32.7 kDa where the jasmonic acid-inducible proteins are examples of bitopic chimerolectins containing a dirigent and jacalin-related domain. Immunoblot analysis with a cross-reactive anti-HL#2 antibody in combination with Northern blot analysis of the Horcolin cDNA revealed tissue specific expression of Horcolin in the coleoptiles. The function of Horcolin is discussed in the context of its particular expression in coleoptiles and is then compared to other lectins, which apparently share a related response to biotic or abiotic stress factors.  相似文献   

15.
A new galactose-specific lectin was isolated from African yam bean (Sphenostyles stenocarpa Harms) by affinity chromatography on galactose-Sepharose 4B. SDS-PAGE analysis resulted in four polypeptide bands of approximately 27, 29, 32 and 34 kDa, respectively. Based on the analysis of carbohydrate content and native PAGE, it is likely that the Sphenostyles lectin is a tetrameric glycoprotein with M(r) of approximately 122 kDa. N-terminal protein sequencing of purified lectins from four different Sphenostyles accessions shows that the four polypeptides have largely identical amino acid sequences. The sequences contain the conserved consensus sequence F-F-LILG characteristic of legume lectins, as well as Phaseolus vulgaris proteins in the arcelin-alpha-amylase inhibitor gene family. The lectin agglutinates both rabbit and human erythrocytes, but with a preference for blood types A and O. Using Western blotting, the lectin was shown to accumulate rapidly during seed development, but levels dropped slightly as seeds attained maturity. This is the first time a lectin has been purified from the genus Sphenostyles. The new lectin was assigned the abbreviation LECp.SphSte.se.Hga1.  相似文献   

16.
The worldwide distributed plant aggressive pathogen Ralstonia solanacearum, which causes lethal wilt in many agricultural crops, produces a potent L-fucose-binding lectin (RSL) exhibiting sugar specificity similar to that of PA-IIL of the human aggressive opportunistic pathogen Pseudomonas aeruginosa. Both lectins show L-fucose > L-galactose > D-arabinose > D-mannose specificity, but the affinities of RSL to these sugars are substantially lower. Unlike Ulex europaeus anti-H lectin, but like PA-IIL and Aleuria aurantia lectin (AAL), RSL agglutinates H-positive human erythrocytes regardless of their type, O, A, B, or AB, and animal erythrocytes (papain-treated ones more strongly than untreated ones). It also interacts with H and Lewis chains in the saliva of "secretors" and "nonsecretors." RSL purification is easier than that of PA-IIL since R. solanacearum extracts do not contain a galactophilic PA-IL-like activity. Mass spectrometry and 35 N-terminal amino acid sequencing enabled identification of the RSL protein (subunit approximately 9.9 kDa, approximately 90 amino acids) in the complete genome sequence of this bacterium. Despite the greater phylogenetic proximity of R. solanacearum to P. aeruginosa, and the presence of a PA-IIL-like gene in its genome, the RSL structure is not related to that of PA-IIL, but to that of the fucose-binding lectin of the mushroom (fungus) Aleuria aurantia, which like the two bacteria is a soil inhabitant.  相似文献   

17.
The carbohydrate-binding specificity of a novel plant lectin isolated from the seeds of Tetracarpidium conophorum (Nigerian walnut) has been studied by quantitative hapten inhibition assays and by determining the behavior of a number of oligosaccharides and glycopeptides on lectin-Sepharose affinity columns. The Tetracarpidium lectin shows preference for simple, unbranched oligosaccharides containing a terminal Gal beta 1----4GlNAc sequence over a Gal beta 1----3GlcNAc sequence and substitution by sialic acid or fucose of the terminal galactose residue, the subterminal N-acetylglucosamine or more distally located sugar residues of oligosaccharides reduce binding activity. Branched complex-type glycans containing either Gal beta 1----4GlcNAc or Gal beta 1----3GlcNAc termini bind with higher affinity than simpler oligosaccharides. The lectin shows highest affinity for a tri-antennary glycan carrying Gal beta 1----4GlcNAc substituents on C-2 and C-4 of Man alpha 1----3 and C-2 of Man alpha 1----6 core residues. Bi- and tri-glycans lacking this branching pattern bind more weakly. Tetra-antennary glycans and mono- and di-branched hybrid-type glycans also bind weakly to the immobilized lectin. Therefore, Tetracarpidium lectin complements the binding specificities of well-known lectins such as Datura stramonium agglutinin, Phaseolus vulgaris agglutinin, and lentil lectin and will be a useful additional tool for the identification and separation of complex-type glycans.  相似文献   

18.
A new mannose-recognizing lectin (MOL) was purified on an asialofetuin-column from fruiting bodies of Marasmius oreades grown in Japan. The lectin (MOA) from the fruiting bodies of the same fungi is well known to be a ribosome-inactivating type lectin that recognizes blood-group B sugar. However, in our preliminary investigation, MOA was not found in Japanese fruiting bodies of M. oreades, and instead, MOL was isolated. Gel filtration showed MOL is a homodimer noncovalently associated with two subunits of 13 kDa. The N-terminal sequence of MOL was blocked. The sequence of MOL was determined by cloning from cDNA and by protein sequencing of enzyme-digested peptides. The sequence shows mannose-binding motifs of bulb-type mannose-binding lectins from plants, and similarity to the sequences. Analyses of sugar-binding specificity by hemagglutination inhibition revealed the preference of MOL toward mannose and thyroglobulin, but asialofetuin was the strongest inhibitor of glycoproteins tested. Furthermore, glycan-array analysis showed that the specificity pattern of MOL was different from those of typical mannose-specific lectins. MOL preferred complex-type N-glycans rather than high-mannose N-glycans.  相似文献   

19.
Burkholderia ambifaria is generally associated with the rhizosphere of plants where it has biocontrol effects on other microorganisms. It is also a member of the Burkholderia cepacia complex, a group of closely related bacteria that cause lung infections in immunocompromised patients as well as in patients with granulomatous disease or cystic fibrosis. Our previous work indicated that fucose on human epithelia is a frequent target for lectins and adhesins of lung pathogens (Sulák, O., Cioci, G., Lameignère, E., Balloy, V., Round, A., Gutsche, I., Malinovská, L., Chignard, M., Kosma, P., Aubert, D. F., Marolda, C. L., Valvano, M. A., Wimmerová, M., and Imberty, A. (2011) PLoS Pathog. 7, e1002238). Analysis of the B. ambifaria genome identified BambL as a putative fucose-binding lectin. The 87-amino acid protein was produced recombinantly and demonstrated to bind to fucosylated oligosaccharides with a preference for αFuc1-2Gal epitopes. Crystal structures revealed that it associates as a trimer with two fucose-binding sites per monomer. The overall fold is a six-bladed β-propeller formed by oligomerization as in the Ralstonia solanacearum lectin and not by sequential domains like the fungal fucose lectin from Aleuria aurantia. The affinity of BambL for small fucosylated glycans is very high as demonstrated by microcalorimetry (K(D) < 1 μM). Plant cell wall oligosaccharides and human histo-blood group oligosaccharides H-type 2 and Lewis Y are bound with equivalent efficiency. Binding to artificial glycosphingolipid-containing vesicles, human saliva, and lung tissues confirmed that BambL could recognize a wide spectrum of fucosylated epitopes, albeit with a lower affinity for biological material from nonsecretor individuals.  相似文献   

20.
The lectin from Pseudomonas aeruginosa (PA-IIL) is involved in host recognition and biofilm formation. Lectin not only displays an unusually high affinity for fucose but also binds to L-fucose, L-galactose and D-arabinose that differ only by the group at position 5 of the sugar ring. Isothermal calorimetry experiments provided precise determination of affinity for the three methyl-glycosides and revealed a large enthalpy contribution. The crystal structures of the complexes of PA-IIL with L-galactose and Met-beta-D-arabinoside have been determined and compared with the PA-IIL/fucose complex described previously. A combination of the structures and thermodynamics provided clues for the role of the hydrophobic group in affinity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号