首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pro-aminopeptidase processing protease (PA protease) is a thermolysin-like metalloprotease produced by Aeromonas caviae T-64. The N-terminal propeptide acts as an intramolecular chaperone to assist the folding of PA protease and shows inhibitory activity toward its cognate mature enzyme. Moreover, the N-terminal propeptide strongly inhibits the autoprocessing of the C-terminal propeptide by forming a complex with the folded intermediate pro-PA protease containing the C-terminal propeptide (MC). In order to investigate the structural determinants within the N-terminal propeptide that play a role in the folding, processing, and enzyme inhibition of PA protease, we constructed a chimeric pro-PA protease by replacing the N-terminal propeptide with that of vibriolysin, a homologue of PA protease. Our results indicated that, although the N-terminal propeptide of vibriolysin shares only 36% identity with that of PA protease, it assists the refolding of MC, inhibits the folded MC to process its C-terminal propeptide, and shows a stronger inhibitory activity toward the mature PA protease than that of PA protease. These results suggest that the N-terminal propeptide domains in these thermolysin-like proteases may have similar functions, in spite of their primary sequence diversity. In addition, the conserved regions in the N-terminal propeptides of PA protease and vibriolysin may be essential for the functions of the N-terminal propeptide.  相似文献   

2.
Thermolysin and other secreted broad-specificity proteases, such as subtilisin or alpha-lytic protease, are produced as pre-pro-proteins that stay at least partially unfolded while in the cytosol. After secretion, the pro-proteases fold to their active conformations in a process that includes the autolytic removal of the pro-peptide. We review the life cycle of the thermolysin-like protease from Bacillus stearothermophilus in light of the calcium dependent stability and instability of the N-terminal domain. The protease binds calcium ions in the regions that are involved in the autolytic maturation process. It is generally assumed that the calcium ions contribute to the extreme stability of the protease, but experimental evidence for TLP-ste indicates that at least one of the calcium ions plays a regulatory role. We hypothesize that this calcium ion plays an important role as a switch that modulates the protease between stable and unstable states as appropriate to the biological need.  相似文献   

3.
Protein stabilization by immobilization has been proposed to be most effective if the protein is attached to the carrier at that region where unfolding is initiated. To probe this hypothesis, we have studied the effects of site-specific immobilization on the thermal stability of mutants of the thermolysin-like protease from Bacillus stearothermophilus (TLP-ste). This enzyme was chosen because previous studies had revealed which parts of the molecule are likely to be involved in the early steps of thermal unfolding. Cysteine residues were introduced by site-directed mutagenesis into various positions of a cysteine-free variant of TLP-ste. The mutant enzymes were immobilized in a site-specific manner onto Activated Thiol-Sepharose. Two mutants (T56C, S65C) having their cysteine in the proposed unfolding region of TLP-ste showed a 9- and 12-fold increase in half-lives at 75 degrees C due to immobilization. The stabilization by immobilization was even larger (33-fold) for the T56C/S65C double mutant enzyme. In contrast, mutants containing cysteines in other parts of the TLP-ste molecule (N181C, S218C, T299C) showed only small increases in half-lives due to immobilization (maximum 2.5-fold). Thus, the stabilization obtained by immobilization was strongly dependent on the site of attachment. It was largest when TLP-ste was fixed to the carrier through its postulated unfolding region. The concept of the unfolding region may be of general use for the design of strategies to stabilize proteins.  相似文献   

4.
Serine proteases are among the most important biological additives in various industries such as detergents, leather, animal feed and food. A serine protease gene, Fgapt4, from Fusarium graminearum 2697 was identified, cloned and expressed in Pichia pastoris. The optimal pH and temperature of FgAPT4 were 8.5 and 40°C, respectively. The relative activity was >30% even at 10°C. It had a wide range of pH stability (4.0–12.0) and detergent compatibility. To improve the catalytic activity, a strategy combining molecular docking and evolutionary analysis was adopted. Twelve amino acid residue sites and three loops (A, B and C) were selected as potential hot spots that might play critical roles in the enzyme's functional properties. Twenty-eight mutants targeting changes in individual sites or loops were designed, and mutations with good performance were combined. The best mutant was FgAPT4-M3 (Q70N/D142S/A143S/loop C). The specific activity and catalytic efficiency of FgAPT4-M3 increased by 1.6 (1008.5 vs. 385.9 U/mg) and 2.2-fold (3565.1 vs. 1106.3/s/mM), respectively. Computational analyses showed that the greater flexibility of the substrate pocket may be responsible for the increased catalytic activity. In addition, its application in detergents indicated that FgAPT4-M3 has great potential in washing.  相似文献   

5.
The Bacillus cereus cnp gene coding for the thermolysin-like neutral protease (TNP) has been cloned, sequenced, and expressed in Bacillus subtilis. The protease is first produced as a pre-pro-protein (M(r) = 61,000); the pro-peptide is approximately two-thirds of the size of the mature protein. The pro-sequence has been compared with those of six other TNPs, and significant homologies have been found. Additionally, the TNP pro-sequences are shown to be homologous to the pro-sequence of Pseudomonas aeruginosa elastase. A mutant has been constructed from cnp, in which 23 amino acids upstream from the pro-protein processing site have been deleted. This region has no homologous analogue in any of the other TNP pro-sequences. The deletion results in a delay of six to eight hours in detection of active protease in the growth medium, as well as a 75% decrease in maximum protease production. N-terminal analysis of the mutant mature protein demonstrates that the processing site is unaltered by the pro-sequence deletion. The deletion must, therefore, modulate the kinetics of processing and/or secretion of the pro-protein.  相似文献   

6.
7.
An immunoglobulin L chain (HIR) was treated with lysyl-endopeptidase. Gel filtration chromatography of the digestion mix identified a peak displaying a significantly higher specific catalytic activity than that of the original sample. The protein in the peak was 11 kDa in size and constituted the VL fragment of HIR. The Km and Kcat values of Chromozym TRY hydrolysis for HIR were 1.5 x 10(-4) M and 6.2 min(-1), and for the VL fragment 7.3 x 10(-4) M and 4.8 x 10(2) min(-1), respectively. Three out of the five BJPs studied in this paper displayed elevated catalytic activity after processing with lysyl-endopeptidase. Similar results were also obtained for the complete antibody.  相似文献   

8.
Summary The design, synthesis and catalytic properties of a cyclic branched peptide carrier that possesses the catalytic triad residues of the serine proteases is reported. The synthesis of the peptide model was totally completed on solid support using three different orthogonal amino protecting groups. Hydrolytic activity measurements against Suc-Ala-Ala-Ala-pNA substrate showed that it is hydrolysed by the peptide model to a small extent. Despite this small hydrolytic activity, it is the first time, to our knowledge, that hydrolysis of such a substrate is reported by an enzyme model compound. Contrary, this enzyme model peptide showed considerable activity against the Boc-Ala-pNP substrate (k cat =0.414 min−1 andK m =0.228 mm). These results suggest that the designed carrier brings in appropriate contact the catalytic triad residues (Ser, His, Asp) resulting in the obtained hydrolytic activity.  相似文献   

9.
10.
The design, synthesis and catalytic properties of acyclic branched peptide carrier that possesses thecatalytic triad residues of the serine proteases isreported. The synthesis of the peptide model wastotally completed on solid support using threedifferent orthogonal amino protecting groups.Hydrolytic activity measurements againstSuc-Ala-Ala-Ala-pNA substrate showed that it ishydrolysed by the peptide model to a small extent.Despite this small hydrolytic activity, it is thefirst time, to our knowledge, that hydrolysis of such a substrate is reported by an enzyme model compound.Contrary, this enzyme model peptide showedconsiderable activity against the Boc-Ala-pNPsubstrate (kcat = 0.414 min–1 and Km = 0.228 mm). These results suggest that thedesigned carrier brings in appropriate contact thecatalytic triad residues (Ser, His, Asp) resulting inthe obtained hydrolytic activity.  相似文献   

11.
Rhomboids comprise a broad family of intramembrane serine proteases that are found in a wide range of organisms and participate in a diverse array of biological processes. High-resolution structures of the catalytic transmembrane domain of the Escherichia coli GlpG rhomboid have provided numerous insights that help explain how hydrolytic cleavage can be achieved below the membrane surface. Key to this are observations that GlpG hydrophobic domain dimensions may not be sufficient to completely span the native lipid bilayer. This formed the basis for a model where hydrophobic mismatch Induces thinning of the local membrane environment to promote access to transmembrane substrates. However, hydrophobic mismatch also has the potential to alter the functional properties of the rhomboid, a possibility we explore in the current work. For this purpose, we purified the catalytic transmembrane domain of GlpG into phosphocholine or maltoside detergent micelles of varying alkyl chain lengths, and assessed proteolytic function with a model water-soluble substrate. Catalytic turnover numbers were found to depend on detergent alkyl chain length, with saturated chains containing 10–12 carbon atoms supporting maximal activity. Similar results were obtained in phospholipid bicelles, with no proteolytic activity being detected in longer-chain lipids. Although differences in thermal stability and GlpG oligomerization could not explain these activity differences, circular dichroism spectra suggest that mismatch gives rise to a small change in structure. Overall, these results demonstrate that hydrophobic mismatch can exert an inhibitory effect on rhomboid activity, with the potential for changes in local membrane environment to regulate activity in vivo.  相似文献   

12.
The influence of melittin on two DMPA membrane systems at pH 4.2 and 8.2 has been investigated by solid-state 31P and 2H NMR, as a function of temperature and peptide concentration. Melittin promotes greater morphological changes for both systems in the fluid phase, the effect being larger at pH 4.2. Close inspection of fatty acyl chain dynamics suggests that some parallels can be drawn between the DMPA/melittin at pH 8.2 and PC/melittin systems. In addition, at pH 8.2 a direct neutralization at the interface of one of the lipid negative charges by a positive charge of the peptide occurs, as can be monitored by 31P NMR at the molecular level. For the system at pH 4.2 and at high temperature, a lipid-to-peptide molar ratio of 30 is sufficient to transform the whole system into an isotropic phase, proposed to be inverted micelles. When the system is cooled down towards the gel phase one observes an intermediate hexagonal phase in a narrow range of temperature.  相似文献   

13.
We have compared surface charge and the surface charge density on the polyanions heparin and potassium polyvinyl sulfate (KPVS), as well as on hydrolyzed heparin and KPVS, with their accelerating effect on the inhibitory action of antithrombin III on thrombin. Polyelectrolyte titration of thrombin with KPVS or heparin at pH 7.4 clearly indicates an electrostatic interaction. In contrast, at the same pH no electrostatic interaction is observed between polyanions and antithrombin III. KPVS accelerates the inhibitory action of antithrombin III to the same extent as heparin on the basis of charge equivalence. Heparin and KPVS with a mean distance between two charged centers of less than 0.75 and 0.95 nm, respectively, accelerate strongly whereas hydrolysates with lower charge densities are far less active. The following observations are indicated. Intramolecular neutralization of oppositely charged residues occurs within thrombin, antithrombin III, and partially hydrolyzed heparin. Heparin acts on the antithrombin III-thrombin reaction through cooperative electrostatic binding to thrombin and nonelectrostatic interaction with antithrombin III. This indicates a quasi-catalytic action of the polyelectrolyte. Hydrolysis of only a few N-sulfate residues within the heparin molecule decreases the linear surface charge density to such an extent that the accelerating action is drastically reduced. The loss of accelerating capacity agrees with the sudden loss of counterion condensation due to the decrease of the linear surface charge density beyond limits postulated by Manning in a theory of polyelectrolytes.  相似文献   

14.
Khayat R  Batra R  Massariol MJ  Lagacé L  Tong L 《Biochemistry》2001,40(21):6344-6351
Herpesvirus proteases belong to a new class of serine proteases and contain a novel Ser-His-His catalytic triad, while classical serine proteases have an acidic residue as the third member. To gain a better understanding of the molecular basis for the functional role of the third-member His residue, we have carried out structural and biochemical investigations of human cytomegalovirus (HCMV) protease that bears mutations of the His157 third member. Kinetic studies showed that all the mutants have reduced catalytic activity. Structural studies revealed that a solvent molecule is hydrogen-bonded to the His63 second member and Ser134 in the H157A mutant, partly rescuing the activity of this mutant. This is confirmed by our kinetic and structural observations on the S134A/H157A double mutant, which showed further reductions in the catalytic activity. The structure of the H157A mutant is also in complex with the PMSF inhibitor. The H157E mutant has the best catalytic activity among the mutants; its structure, however, showed conformational readjustments of the His63 and Ser132 residues. The Ser132-His63 diad of HCMV protease has similar activity as the diads in classical serine proteases, whereas the contribution of the His157 third member to the catalysis is much smaller. Finally, structural comparisons revealed the presence of two conserved structural water molecules at the bottom of the S(1) pocket, suggesting a possible new direction for the design of HCMV protease inhibitors.  相似文献   

15.
Biochemical studies indicate that dimerization is required for the catalytic activity of herpesvirus proteases, whereas structural studies show a complete active site in each monomer, away from the dimer interface. Here we report kinetic, biophysical and crystallographic characterizations of structure-based mutants in the dimer interface of human cytomegalovirus (HCMV) protease. Such mutations can produce a 1,700-fold reduction in the kcat while having minimal effects on the K(m). Dimer stability is not affected by these mutations, suggesting that dimerization itself is insufficient for activity. There are large changes in monomer conformation and dimer organization of the apo S225Y mutant enzyme. However, binding of an activated peptidomimetic inhibitor induced a conformation remarkably similar to the wild type protease. Our studies suggest that appropriate dimer formation may be required to indirectly stabilize the protease oxyanion hole, revealing a novel mechanism for dimerization to regulate enzyme activity.  相似文献   

16.
17.
18.
Various industrially used protein substrates were hydrolysed by a recently constructed, thermally stable, thermolysin-like protease variant (Boilysin; Van den Burg et al., Proc. Natl. Acad. Sci. 95: 2056–2060) and three industrial protease preparations. Hydrolysates were analysed by measuring the acid-soluble products and by SDS-PAGE of the breakdown products. The rate and extent of hydrolysis obtained by Boilysin was, in most cases, higher than those obtained with the three commercially available enzyme preperations tested. This suggests that protein hydrolysis with this new protease variant at elevated temperatures can result in improved substrate conversions.  相似文献   

19.
The evolution of species is a complex phenomenon based on the optimization of a multidimensional function referred to as fitness. At the level of biomolecular evolution, the fitness function can be reduced to include physiochemical properties relevant to the biological function of a particular molecule. In this work, questions involving the physical-chemical mechanisms underlying the evolution of HIV-1 protease are addressed through molecular simulation and subsequent analysis of thermodynamic properties related to the activity of the enzyme. Specifically, the impact of 40 single amino acid mutations on the binding affinity toward the matrix/capsid (MA/CA) substrate and corresponding transition state intermediate has been characterized using a molecular mechanics Poisson-Boltzmann surface area approach. We demonstrate that this approach is capable of extracting statistically significant information relevant to experimentally determined catalytic activity. Further, no correlation was observed between the effect of mutations on substrate and transition state binding, suggesting independent evolutionary pathways toward optimizing substrate specificity and catalytic activity. In addition, a detailed analysis of calculated binding affinity data suggests that ground-state destabilization (reduced binding affinity for the substrate) could be a contributing factor in the evolutionary optimization of HIV-1 protease. A numerical model is developed to demonstrate that ground-state destabilization is a valid mechanism for activity optimization given the high concentrations of substrate experienced by the functional enzyme in vivo.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号