首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neuropharmacological analysis of previously revealed antihypoxic activity of benzodiazepines (BDZ) has been performed in experiments on mice exposed to hypoxia. Antihypoxic effect of diazepam is shown to be antagonized by the central BDZ receptor blocker, Ro 15-1788. A certain degree of antihypoxic activity also abolished by Ro 15-1788 is exhibited by hypothetical ligands of BDZ receptors: inosin, nicotinamide, ethyl-beta-carboline-3-carboxylate. The effect of dipyridamole, a drug with high affinity for BDZ receptors of the peripheral type is not antagonized by Ro 15-1788, another evidence of Ro 15-1788 affinity precisely to the central BDZ receptors. GABA-mimetics (muscimol and GABA cetyl ester) were also found to have marked antihypoxic activity. Unlike BDZ receptor agonists, this effect is reduced by bicuculline and not by Ro 15-1788. The data obtained suggest that antihypoxic activity of BDZ is caused by their direct interaction with the central BDZ receptors, probably with the type which is not modulated by GABAA receptors.  相似文献   

2.
The distribution and the pharmacological properties of the binding of the benzodiazepine receptor antagonist [3H]-Ro 15–1788 (8-fluoro-3-carboethoxy-5,6-dihydro-5-methyl-6-oxo-4H imidazol [1,5-a] 1,4 benzodiazepine) were compared in some brain membranes of the saltwater teleost fish, Mullus surmuletus: only a single population of [3H]-Ro 15–1788 binding sites was detected. The binding was saturable and reversible with a high affinity, revealing a significant population of binding sites (Kd value of 2.1 ± 0.2 nM and Bmax value of 1400-900 fmol mg−1 of protein, depending on fish length). The highest concentration of benzodiazepine recognition sites labelled with [3H]-Ro 15–1788 was present in the optic lobe and the olfactory bulb and the lowest concentration was found in the medulla oblongata, cerebellum and spinal cord. In order to explore behavioural selectivity as a consequence of multiple receptor subtypes, six benzodiazepine receptor ligands, flunitrazepam (5-(2-fluoro-phenyl)-1,3,dihydro-1-methyl-7-nitro-2H-1,4-benzodiazepine-2-one), alpidem, (N,N-dipropyl-6-chloro-2-(4-chlorophenyl) imidazo [1,2-a] pyridine-3-acetamide) zolpidem {N,N,6, trimethyl-2-(4-methyl-phenyl) imidazo [1,2-a] pyridine-3-acetamide hemitartrate}, methyl β carboline-3-carboxylate (βCCM), Ro 15–1788 and Ro 5–4864 (4′-chlorodiazepam), were tested in vitro by binding of [3H]-Ro 15–1788 to membrane preparations from various brain areas of Mullus surmuletus. Displacement studies showed a similar rank order of efficacy of various unlabelled ligands. In all regions of the brain and in the spinal cord, GABA potentiate [3H]-flunitrazepam binding in a similar order, suggesting that the BDZ recognition sites are part of the GABAA receptor structure. These results suggest that central-type benzodiazepine receptors are present in one class of benzodiazepine binding sites in the saltwater teleost fish brain of Mullus surmuletus (type I-like). Here we report initial evidence of homogeneity of subtypes of central benzodiazepine receptors in the spinal cord of the saltwater teleost fish, Mullus surmuletus.  相似文献   

3.
Y Ida  M Tanaka  A Tsuda  S Tsujimaru  N Nagasaki 《Life sciences》1985,37(26):2491-2498
One-hour immobilization stress increased levels of the major metabolite of brain noradrenaline (NA), 3-methoxy-4-hydroxyphenyl-ethyleneglycol sulfate (MHPG-SO4), in nine brain regions of rats. Diazepam at 5 mg/kg attenuated the stress-induced increases in MHPG-SO4 levels in the hypothalamus, amygdala, hippocampus, cerebral cortex and locus coeruleus (LC) region, but not in the thalamus, pons plus medulla oblongata excluding the LC region and basal ganglia. The attenuating effects of the drug on stress-induced increases in metabolite levels in the above regions were completely antagonized by pretreatment with Ro 15-1788 at 5 or 10 mg/kg, a potent and specific benzodiazepine (BDZ) receptor antagonist. When given alone, Ro 15-1788 did not affect the increases in MHPG-SO4 levels. Behavioral changes observed during immobilization stress such as vocalization and defecation, were also attenuated by diazepam at 5 mg/kg and this action of diazepam was antagonized by Ro 15-1788 at 10 mg/kg, which by itself had no effects on these behavioral measurements. These findings suggest: (1) that diazepam acts via BDZ receptors to attenuate stress-induced increases in NA turnover selectively in the hypothalamus, amygdala, hippocampus, cerebral cortex and LC region and (2) that this decreased noradrenergic activity might be closely related to relief of distress-evoked hyperemotionality, i.e., fear and/or anxiety in animals.  相似文献   

4.
To elucidate the relationship between the occupancy of BDZ binding sites and phospholipid methylation in brain, we examined phosphatidylethanolamine-N-methyltransferase (PEMT) activity in synaptosomes of rat hippocampi and cerebella in the presence of BDZ ligands with different modes of action. We found that Ro 5-4864, a specific ligand for "peripheral type" receptors, increased PL methylation in hippocampal and cerebellar synaptosomes. This effect was directly related to receptor occupancy, since the specific antagonist PK 11195 inhibited the rise in PEMT activity induced by Ro 5-4864. Clonazepam, on the other hand, tended to reduce PL production in cerebellum and hippocampus except for hippocampal (3H)-phosphatidyl-N-monomethylethanolamine which was elevated by 40 to 70% at doses ranging from 10(-9) to 10(-6) M. When equimolar concentrations of the antagonist Ro 15-1788 were given in association the clonazepam-induced phosphatidyl-N-monomethylethanolamine increase was reduced by 70%. These data support the involvement of structural and functional membrane alterations in the action of BDZ.  相似文献   

5.
The equilibrium binding parameters of the benzodiazepine antagonist [3H]Ro 15-1788 (8-fluoro-3-carboethoxy-5,6-dihydro-5-methyl-6-oxo-4H-imidazol-[1,5-a]-1,4 benzodiazepine) were evaluated in brain membranes of the saltwater teleost fish, Mugil cephalus. To test receptor subtype specificity, displacement studies were carried out by competitive binding of [3H]Ro 15-1788 against six benzodiazepine receptor ligands, flunitrazepam [5-(2-fluoro-phenyl)-1,3-dihydro-1-methyl-7-nitro-2H-1,4-benzodiazepin-2-one], alpidem [N,N-dipropyl-6-chloro-2-(4-chlorophenyl)imidazo[1,2-a]pyridine-3-acetamide], zolpidem [N,N-6 trimethyl-2-(4-methyl-phenyl)imidazo[1,2-a]pyridine-3-acetamide hemitartrate], and beta-CCM (methyl beta-carboline-3-carboxylate). Saturation studies showed that [3H]Ro 15-1788 bound saturatably, reversibly and with a high affinity to a single class of binding sites (Kd value of 1.18-1.5 nM and Bmax values of 124-1671 fmol/mg of protein, depending on brain regions). The highest concentration of benzodiazepine recognition sites labeled with [3H]Ro 15-1788 was present in the optic lobe and the olfactory bulb and the lowest concentration was found in the medulla oblongata, cerebellum and spinal cord. The rank order of displacement efficacy of unlabelled ligands observed suggested that central-type benzodiazepine receptors are present in one class of binding sites (Type I-like) in brain membranes of Mugil cephalus. Moreover, the uptake of 36Cl- into M. cephalus brain membrane vesicles was only marginally stimulated by concentrations of GABA that significantly enhanced the 36Cl- uptake into mammalian brain membrane vesicles. The results may indicate a different functional activity of the GABA-coupled chloride ionophore in the fish brain as compared with the mammalian brain.  相似文献   

6.
Imidazobenzodiazepine (Ro 15-1788, 5 mg/kg) similarly to a lose dose of apomorphine (0.1 mg/kg) decreased the intensity of footshock aggression in male rats. Ro 15-1788 significantly potentiated the antiaggressive action of apomorphine. Pirenperone (0.01 mg/kg) potentiated the effect of both drugs, whereas haloperidol (0.01 mg/kg) had an opposite action. After long-term treatment with apomorphine and Ro 15-1788 the tolerance to their antiaggressive action developed. This change was in agreement with increased serotonin metabolism in the forebrain. Unlike the action on aggressive behavior, Ro 15-1788 similarly to haloperidol (0.05 mg/kg) decreased the motor depressant effect of apomorphine (0.01 mg/kg) in mice. This effect correlated with the lowered serotonin metabolism after Ro 15-1788 administration. Unlike apomorphine, Ro 15-1788 reversed catalepsy induced by haloperidol (0.25 mg/kg). Administration of pirenperone (0.03 mg/kg) and destruction of serotoninergic terminals by p-chloroamphetamine (2 X 15 mg/kg) significantly potentiated the sedative action of apomorphine. It appears that different action of Ro 15-1788 on behavioral effects of apomorphine is related to different influence of Ro-1788 on serotoninergic processes in the striatum and limbic structures.  相似文献   

7.
Benzodiazepine binding sites have generally been labelled with benzodiazepine agonists: (3H)flunitrazepam and (3H)diazepam in vivo. We studied the in vivo binding of the antagonist (3H)Ro 15-1788 in mice and compared it to the in vivo binding of (3H)flunitrazepam. For this in vivo labelling, mice were injected with labelled and unlabelled ligands. Animals were then sacrificed and bound radioactivity was measured after homogenization of the excised brain and filtration of the homogenate. (3H)Ro 15-1788 is a better tool than (3H)flunitrazepam for in vivo labelling of benzodiazepine receptors since 1) it labels specifically the central type binding sites, 2) injection of 4 times less (3H)Ro 15-1788 (50 microCi/kg) than (3H)flunitrazepam (200 microCi/kg) produced the same amount of bound radioactivity, 3) 70-90% of the total (3H)Ro 15-1788 present in the brain is membrane bound instead of 45-55% with (3H)flunitrazepam, 4) maximal binding of (3H)Ro 15-1788 is reached within 3 min, 5) only 5% of the membrane bound (3H)Ro 15-1788 is nonspecific instead of 15% for (3H)flunitrazepam.  相似文献   

8.
The action of the central-type benzodiazepine-receptor agonist clonazepam on alpha-MSH release has been studied in vitro using perifused frog neurointermediate lobes. High concentrations of clonazepam (3.16 X 10(-5) and 10(-4) M) caused an inhibition of alpha-MSH release and this effect was reversed by the central-type benzodiazepine-receptor antagonist Ro 15-1788. High doses of GABA (10(-5) and 10(-4) M) induced a biphasic effect on pars intermedia cells: a brief stimulation followed by a sustained inhibition of alpha-MSH secretion. Administration of clonazepam (10(-5) M) in the presence of various concentrations of GABA (10(-6) to 10(-4) M) led to a potentiation of both stimulatory and inhibitory phases of alpha-MSH secretion induced by GABA. Ro 15-1788 completely abolished the potentiating effect of clonazepam. Thus our results indicate that endogenous benzodiazepine receptors may modulate the effects of GABA on alpha-MSH secretion.  相似文献   

9.
Four hybridoma lines secreting monoclonal antibodies to benzodiazepines were produced after BALB/c mice were immunized with a benzodiazepine-bovine serum albumin conjugate. The monoclonal antibodies were purified from ascites fluids, and their binding affinities for benzodiazepines and other benzodiazepine receptor ligands were determined. These antibodies have very high binding affinities for diazepam, flunitrazepam, Ro5-4864, Ro5-3453, Ro11-6896, and Ro5-3438 (the Kd values are in the 10(-9) M range). However, these antibodies have very low affinities for the benzodiazepine receptor inverse agonists (beta-carbolines) and antagonists (Ro15-1788 and CGS-8216). One of the monoclonal antibodies (21-7F9) has been used to demonstrate the existence of benzodiazepine-like molecules in the brain and for the purification of these molecules. Immunocytochemical experiments show that these molecules are neuronal and not glial and that they are ubiquitously distributed throughout the brain. Immunoblots indicate the presence of benzodiazepine-like epitopes in several brain peptides. An endogenous substance that binds to the central-type benzodiazepine receptor with agonist properties has been purified to homogeneity from the bovine brain. The purification consisted on immunoaffinity chromatography on immobilized monoclonal anti-benzodiazepine antibody followed by gel filtration on Sephadex G-25 and two reverse phase HPLCs. The purified substance has a small molecular weight and its activity is protease resistant. The endogenous substance blocks the binding of agonists, inverse agonists and antagonists to the central-type benzodiazepine receptor but it does not inhibit the binding of Ro5-4864 to the peripheral-type benzodiazepine receptor. The neurotransmitter gamma-aminobutyric acid increases the affinity of the benzodiazepine receptor for the purified substance. Preliminary evidence indicates that the purified substance is a benzodiazepine with a molecular structure that is identical or very close to N-desmethyldiazepam.  相似文献   

10.
Premazepam (PRZ) in vitro competitively displaced 3H-diazepam (DIA), 3H-flunitrazepam (FLU) and 3H-RO 15-1788 from their binding sites on rat brain synaptosomes, with a potency intermediate to other benzodiazepines (BDZs), and Hill coefficients near 1 in different brain regions. Incubation at 37 degrees C reduced premazepam's affinity for BDZ receptors to a lower extent than other benzodiazepines and had no effect on the Hill coefficient. The IC50 of PRZ on 3H-RO 15-1788 and 3H-FLU binding was markedly reduced by GABA in rat cortex, like those of reference classical BDZs, but was GABA-independent in the cerebellum. The IC50 of the BDZ antagonist, RO 15-1788 was unaffected by GABA in both brain areas. The possibility that PRZ behaves as a partial agonist in the cortex and as an antagonist in the cerebellum is discussed.  相似文献   

11.
The recently discovered benzodiazepine antagonist Ro 15-1788 was characterized in binding studies, and its potency and selectivity were determined in vivo by interaction with drug-induced changes in dopamine turnover and cerebellar cGMP level. Ro 15-1788 reduced [3H]flunitrazepam binding in the brain in vivo with a potency similar to that of diazepam and effectively inhibited [3H]diazepam binding in vitro (IC50 = 2.3 +/- 0.6 nmol/liter). [3H]Ro 15-1788 bound to tissue fractions of rat cerebral cortex with an apparent dissociation (KD) of 1.0 +/- 0.1 nmol/liter. The in vitro potency of various benzodiazepines in displacing [3H]Ro 15-1788 from its binding site was of the same rank order as found previously in [3H]diazepam binding. Autoradiograms of [3H]Ro 15-1788 binding in sections of rat cerebellum showed the same distribution of radioactivity as with [3H]flunitrazepam. The attenuating effect of diazepam on the chlorpromazine- or stress-induced elevation of homovanillic acid in rat brain was antagonized by Ro 15-1788. Among a series of compounds which either decreased or increased the rat cerebellar cGMP level, only the effect of benzodiazepine receptor ligands (diazepam, zopiclone, CL 218 872) was antagonized by Ro 15-1788. Thus, Ro 15-1788 is a selective benzodiazepine antagonist acting at the level of the benzodiazepine receptor in the central nervous system. Peripheral benzodiazepine binding sites in kidney and schistosomes were not affected by Ro 15-1788.  相似文献   

12.
Abstract: The recently discovered benzodiazepine antagonist Ro 15-1788 was characterized in binding studies, and its potency and selectivity were determined in vivo by interaction with drug-induced changes in dopamine turnover and cerebellar cGMP level. Ro 15-1788 reduced [3H]flunitrazepam binding in the brain in vivo with a potency similar to that of diazepam and effectively inhibited [3H]diazepam binding in vitro (IC50= 2.3 ± 0.6 nmol/liter). [3H]Ro 15-1788 bound to tissue fractions of rat cerebral cortex with an apparent dissociation constant ( K D) of 1.0 ± 0.1 nmol/liter. The in vitro potency of various benzodiazepines in displacing [3H]Ro 15-1788 from its binding site was of the same rank order as found previously in [3H]diazepam binding. Autoradiograms of [3H]Ro 15-1788 binding in sections of rat cerebellum showed the same distribution of radioactivity as with [3H]flunitrazepam. The attenuating effect of diazepam on the chlorpromazine- or stress-induced elevation of homovanillic acid in rat brain was antagonized by Ro 15-1788. Among a series of compounds which either decreased or increased the rat cerebellar cGMP level, only the effect of benzodiazepine receptor ligands (diazepam, zopiclone, CL 218 872) was antagonized by Ro 15-1788. Thus, Ro 15-1788 is a selective benzodiazepine antagonist acting at the level of the benzodiazepine receptor in the central nervous system. Peripheral benzodiazepine binding sites in kidney and schistosomes were not affected by Ro 15-1788.  相似文献   

13.
S Liljequist  J A Engel 《Life sciences》1984,34(25):2525-2533
The effects of RO 15-1788, RO 5-3663, picrotoxin and bicuculline on the anti-conflict properties of valproate were studied in rats using a modified Vogel 's conflict test procedure. A low dose of the benzodiazepine (BDZ) antagonist, RO 15-1788 (5 mg/kg), blocked the anti-punishment properties of valproate (400 mg/kg), whereas no antagonism was observed after a high dose (25 mg/kg) of the BDZ antagonist. High doses of RO 5-3663 or picrotoxin also reversed the anti-conflict action of valproate. Bicuculline did not change the effects of valproate in this test situation. The suppressive effect of valproate on locomotor activity was reversed by a low dose (5 mg/kg) of RO 15-1788, but not by the other antagonists. RO 5-3663 was the only antagonist which effectively reversed the muscle relaxant effects of valproate observed in a Rotarod performance test. These findings indicate that various pharmacological actions of valproate may be due to a complex interplay with several sites at the GABA-BDZ-receptor complex.  相似文献   

14.
J M Witkin  J E Barrett 《Life sciences》1985,37(17):1587-1595
The selective benzodiazepine receptor antagonist, Ro 15-1788, produced behavioral effects in pigeons at doses at least 100 times lower than those previously reported to possess intrinsic pharmacological activity in mammals. In contrast to its effects in mammalian species, in pigeons, Ro 15-1788 does not exhibit partial agonist activity. Key-peck responses of pigeons were studied under a multiple fixed-interval 3-min, fixed-interval 3-min schedule in which the first response after 3-min produced food in the presence of red or white keylights. In addition, every 30th response during the red keylight produced a brief electric shock (punishment). Under control conditions, punished responding was suppressed to 30% of unpunished response levels. Ro 15-1788 (0.01 mg/kg, i.m.) increased unpunished response rates by 33% without affecting rates of punished responding. Doses of 0.1 to 1.0 mg/kg Ro 15-1788 produced dose-related decreases in both punished and unpunished responding. As is characteristic of other benzodiazepines, midazolam (0.1 and 0.3 mg/kg, i.m.) markedly increased punished responding but had little effect on rates of unpunished responding. Ro 15-1788 antagonized the increases in punished responding and also reversed the rate-decreasing effects of higher doses of midazolam. However, the effectiveness of Ro 15-1788 as a benzodiazepine antagonist was limited by its intrinsic activity: rate-decreasing doses of Ro 15-1788 were unable to completely reverse behavioral effects of midazolam. Midazolam was an effective antagonist of the behavioral effects of Ro 15-1788 (up to 0.1 mg/kg) but midazolam did not influence the rate-decreasing effects of 1.0 mg/kg Ro 15-1788 across a 100-fold dose range. In the pigeon, the behavioral effects of relatively low doses of Ro 15-1788 (0.01-0.1 mg/kg) appear to be related to benzodiazepine receptor mechanisms, whereas other systems appear to be involved in the effects of higher doses.  相似文献   

15.
The benzodiazepine antagonist properties of Ro 15-1788 were evaluated in rats trained to discriminate between saline and either 1.0 mg/kg of diazepam or 10 mg/kg of pentobarbital in a two-choice discrete-trial shock avoidance procedure. When administered alone, 1.0 mg/kg of diazepam and 10 mg/kg of pentobarbital produced comparable amounts of drug-appropriate responding (> 84%), whether rats were trained to discriminate between diazepam or pentobarbital and saline. Ro 15-1788 (3–32 mg/kg, p.o.), administered 10 min before diazepam or pentobarbital, produced a dose-related blockade of the discriminative effects of diazepam in both groups of rats, but was completely ineffective in blocking the discriminative effects of pentobarbital. The dose-effect curve for the discriminative effects of diazepam was shifted to the right in a parallel fashion 3- and 13-fold by 10 and 32 mg/kg of Ro 15-1788, respectively, indicating that Ro 15-1788 acts as a surmountable, competitive antagonist of diazepam. When administered alone, Ro 15-1788 (32–100 mg/kg, p.o.) produced primarily saline-appropriate responding, although 100 mg/kg of Ro 15-1788 produced drug-appropriate responding in one out of eight rats. When administered orally 30 min after diazepam, Ro 15-1788 (32 mg/kg) completely reversed within 10 min the discriminative effects of diazepam. The blockade of diazepam's discriminative effects by 32 mg/kg of Ro 15-1788 appeared to last at least as long (approximately 2 hr) as the effects of diazepam alone.  相似文献   

16.
Prenatal stress can affect foetal neurodevelopment and result in increased risk of depression in adulthood. It promotes increased maternal hypothalamo–pituitary–adrenal gland (HPA) secretion of glucocorticoid (GC), leading to increased foetal and maternal GC receptor activity. Prenatal GC receptor activity is also increased during prenatal treatment with dexamethasone (DEX), which is commonly prescribed as a prophylactic treatment of preterm delivery associated morbid symptoms. Here, we exposed pregnant Wistar rats to 0.1 mg/kg/d DEX during the last week of pregnancy and performed cross-fostering at birth. In the adult offspring we then studied the effects of prenatal DEX exposure per se and the effects of rearing by a dam exposed to prenatal DEX. Offspring were assessed in the following paradigms testing biobehavioural processes that are altered in depression: progressive ratio schedule of reinforcement (anhedonia), Porsolt forced swim test (behavioural despair), US pre-exposure active avoidance (learned helplessness), Morris water maze (spatial memory) and HPA axis activity (altered HPA function). Responsiveness to a physical stressor in terms of HPA activity was increased in male offspring exposed prenatally to DEX. Despite this increased HPA axis reactivity, we observed no alteration of the assessed behaviours in offspring exposed prenatally to DEX. We observed impairment in spatial memory in offspring reared by DEX exposed dams, independently of prenatal treatment. This study does not support the hypothesis that prenatal DEX exposure leads to depression-like symptoms in rats, despite the observed sex-specific programming effect on HPA axis. It does however emphasise the importance of rearing environment on adult cognitive performances.  相似文献   

17.
Abstract: Triazolobenzodiazepines are in clinical use as hypnotics and anxiolytics. We analyzed in vivo receptor binding and brain concentrations of alprazolam, triazolam, and estazolam. Drug concentrations measured in the cerebral cortex 1 h after administration were directly proportional to dose for all three compounds. In vivo receptor binding, as defined by the specific uptake of [3H]Ro 15–1788, decreased with increasing doses of estazolam and triazolam, a finding indicating dose-related increases in receptor occupancy due to these compounds. Triazolam was substantially more potent, with an IC50 value of 16 ng/g, compared with 117 ng/g for estazolam. At higher doses of alprazolam (>0.2 mg/kg), receptor binding by [3H]Ro 15–1788 likewise decreased with increasing dose of the former drug. However, at lower doses of alprazolam (0.02–0.05 mg/kg), which resulted in cortex concentrations of 2–7 ng/g, receptor binding was increased above control values in cortex, hypothalamus, and hippocampus but not in several other brain regions. Binding returned to control values at doses of ≤0.01 mg/kg. Similar results were obtained in time course studies. At 8 and 10 h after a dose of 1 mg/kg i.p., corresponding to cortex concentrations of 2.7–7 ng/g, receptor binding was increased compared with controls. Similarly, at 1, 2, and 3 h after a single dose of 0.05 mg/kg, corresponding to cortex concentrations of 3.7–5.8 ng/g, receptor binding was also increased. The apparent affinity of benzodiazepine receptors for clonazepam in mice receiving alprazolam (0.05 mg/kg) was unchanged from that in untreated control mice, an observation suggesting that low doses of alprazolam increased receptor number. The brain concentration vs. receptor occupancy relationships for triazolam and estazolam resemble those for other benzodiaze-pines, but alprazolam appears to be anomalous in that low brain concentrations increase benzodiazepine receptor number.  相似文献   

18.
The effects of reserpine on the in vivo binding of 3H-Ro 15-1788, (Ro 15-1788: ethyl 8-fluoro-5,6-dihydro-5-methyl-6-oxo-4H-imidazo[1,5a] [1,4]benzodiazepine-3-carboxylate) a selective benzodiazepine antagonist, in the mouse brain were investigated. The biodistributions of tracer amounts of 3H-Ro 15-1788 in mice were significantly altered by pretreatment with reserpine (2.5 or 5.0 mg/kg, 24 h before the tracer administration). The time courses of radioactivity in the brain and the blood following i.v. injection of 3H-Ro 15-1788 with carrier Ro 15-1788 were not changed by pretreatment with reserpine, which suggested that the specific binding process might be altered by reserpine. The degree of alteration in the in vivo binding of 3H-Ro 15-1788 seemed to be dependent upon the dose of reserpine and the duration after the treatment of reserpine. The maximum changes in the biodistribution of 3H-Ro 15-1788 were observed at 1 day after injection of reserpine. The body temperature and the brain monoamine contents (dopamine, norepinephrine and 5-hydroxytryptamine) in mice were measured as indicators of pharmacological effects of reserpine, and good relationships to the degree of changes in the biodistribution of 3H-Ro 15-1788 and either the body temperature or brain monoamine contents, were observed. Furthermore, the changes in the biodistribution of 3H-Ro 15-1788 in the reserpinized mice were significantly suppressed by antidepressant imipramine treatment. These results suggest that it would be possible to detect the in vivo drug interaction with brain benzodiazepine receptors in the living human brain using 11C-Ro 15-1788 and positron emission tomography (PET).  相似文献   

19.
The effect of peripheral benzodiazepine receptor (PBR) ligands on free radical production was investigated in primary cultures of rat brain astrocytes and neurons as well as in BV-2 microglial cell lines using the fluorescent dye dichlorofluorescein-diacetate. Free radical production was measured at 2, 30, 60 and 120 min of treatment with the PBR ligands 1-(2-chlorophenyl-N-methylpropyl)-3-isoquinolinecarboxamide (PK11195), 7-chloro-5-(4-chlorophenyl)-1,3-dihydro-1-methyl-2H-1,4-benzodiazepin-2-one (Ro5-4864) and protoporphyrin IX (PpIX) (all at 10 nm). In astrocytes, all ligands showed a significant increase in free radical production at 2 min. The increase was short-lived with PK11195, whereas with Ro5-4864 it persisted for at least 2 h. PpIX caused an increase at 2 and 30 min, but not at 2 h. Similar results were observed in microglial cells. In neurons, PK11195 and PpIX showed an increase in free radical production only at 2 min; Ro5-4864 had no effect. The central-type benzodiazepine receptor ligand, clonazepam, was ineffective in eliciting free radical production in all cell types. As the PBR may be a component of the mitochondrial permeability transition (MPT) pore, and free radical production may occur following induction of the MPT, we further investigated whether cyclosporin A (CsA), an inhibitor of the MPT, could prevent free radical formation by PBR ligands. CsA (1 micro m) completely blocked free radical production following treatment with PK11195 and Ro5-4864 in all cell types. CsA was also effective in blocking free radical production in astrocytes following PpIX treatment, but it failed to do so in neurons and microglia. Our results indicate that exposure of neural cells to PBR ligands generates free radicals, and that the MPT may be involved in this process.  相似文献   

20.
Twenty male Sprague-Dawley rats were trained to discriminate 3.0 mg/kg delta-9-tetrahydrocannabinol (THC) from its vehicle. Following acquisition of this discrimination animals were tested for generalization to 3.0 mg/kg diazepam. Thirteen animals showed a generalization from THC to diazepam, whereas the remaining seven animals did not. The generalization curve for diazepam was dose-dependent from 0.1 to 10.0 mg/kg in the first group; the latter group showed no generalization from THC at any dose of diazepam in this range. No differences were found between these groups in the generalization curve for THC. The benzodiazepine antagonist Ro 15-1788 (2.0 mg/kg) antagonized the generalization to diazepam in the group that discriminated diazepam as THC. In contrast, Ro 15-1788 increased THC lever responding of 10 mg/kg diazepam in the group which did not generalize from THC. Ro 15-1788 did not alter the discriminability of THC in either group. THC also showed partial generalization to pentobarbital (1 to 10 mg/kg). The generalization was again complete in one subgroup and absent in another, but there was only a 43 percent overlap between the subgroups found with testing for generalization to diazepam. The percent THC lever responding with 3.0 mg/kg pentobarbital was increased by Ro 15-1788 in the group which generalized to diazepam, but not the other group. These data suggest that the discriminative stimulus properties of THC may have some commonality with the effects of diazepam in a subpopulation of rats trained to discriminate THC. These THC-like effects of diazepam are probably mediated by benzodiazepine receptors since they are antagonized by a specific benzodiazepine receptor antagonist.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号