首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
R. Viola  H. V. Davies  A. R. Chudeck 《Planta》1991,183(2):202-208
Tissue slices from developing potato tubers (Solanum tuberosum L.) and developing cotyledons of faba bean (Vicia faba L.) were incubated with specifically labelled [13C]glucose and [13C]ribose. Enriched[13C]glucose released from starch granules was analysed by nuclear magnetic resonance (NMR). Spectral analyses were also performed on sucrose purified by high-performance liquid chromatography. In both tissues a low degree of randomisation (< 11 % in potato and < 14% in Vicia) was observed between carbon positions 1 and 6 in glucose released from starch when material was incubated with [13C]glucose labelled in positions 6 and 1, respectively. Similarly, with [2-13C]glucose a low degree of randomisation was observed in position 5. These findings indicate that extensive transport of three-carbon compounds across the amyloplast membrane does not occur in storage organs of either species. This is in agreement with previously published data which indicates that sixcarbon compounds are transported into the plastids during active starch synthesis. When [1-13C]ribose was used as a substrate, 13C-NMR spectra of starch indicated the operation of a classical pentose-phosphate pathway. However, with [2-13C]glucose there was no preferential enrichment in either carbon positions 1 or 3 relative to 4 or 6 of sucrose and starch (glucose). This provides evidence that entry of glucose in this pathway may be restricted in vivo. In both faba bean and potato the distribution of isotope between glucosyl and fructosyl moieties of sucrose approximated 50%. The degree of randomisation within glucosyl and fructosyl moieties ranged between 11 and 19.5%, indicating extensive recycling of triose phosphates.Abbreviation NMR nuclear magnetic resonance We are grateful to Dr. George Ratcliffe for his critical reading of the text and Dr. Bernard Goodman for helpful suggestions on the NMR measurements. The research was funded by a European Economic Community research grant, which the authors duly acknowledge.  相似文献   

2.
Fluxes of carbohydrate metabolism in ripening bananas   总被引:1,自引:0,他引:1  
The major fluxes of carbohydrate metabolism were estimated during starch breakdown by ripening bananas (Musa cavendishii Lamb ex Paxton). Hands of bananas, untreated with ethylene, were allowed to ripen in the dark at 21° C. Production of CO2 and the contents of starch, sucrose, glucose and fructose of intact fruit were determined for a period of 10 d that included the climacteric. The detailed distribution of label was determined after supplying the following to cores of pulp from climacteric fruit: [U-14C]-, [1-14C]-, [3,4-14C]-and [6-14C]glucose, [U-14C]glycerol, 14CO2. The data obtained were used to estimate the following fluxes, values given as mol hexose · (g FW)–1 · h–1 in parenthesis: starch to hexose monophosphates (5.9) and vice versa (0.4); hexose monophosphates to sucrose (7.7); sucrose to hexose (4.7); hexose to hexose monophosphate (3.8); glycolysis (0.5–1.6); triose phosphate to hexose monophosphates (0.14); oxidative pentose-phosphate pathway (0.48); CO2 fixation in the dark (0.005). These estimates are related to our understanding of carbohydrate metabolism during ripening.We both thank Mr Richard Trethewey for his constructive criticism: S.A.H. thanks the Managers of the Broodbank Fund for a fellowship.  相似文献   

3.
The aim of this work was to discover how leucoplasts from suspension cultures of soybean (Glycine max L.) oxidize hexose monophosphates. Leucoplasts were isolated from protoplast lysates on a continuous gradient of Nycodenz with a yield of 28% and an intactness of 80%. Incubation of the leucoplasts with 14C-labelled substrates led to 14CO2 production, that was dependent upon leucoplast intactness, from [U-14C]glucose 6-phosphate, [U-14C]glucose 1-phosphate, [U-14C] fructose 6-phosphate and [U-14C]glucose+ATP, but not from [U-14C]fructose-1,6-bisphosphate or [U-14C]triose phosphate. The yield from [U-14C]glucose 6-phosphate was at least four times greater than that from any of the other substrates. When [1-14C]-, [2-14C]-, [3,4-14C]-, and [6-14C]glucose 6-phosphate were supplied to leucoplasts significant 14CO2 production that was dependent upon leucoplast intactness was found only for [1-14C]glucose 6-phosphate. It is argued that soybean cell leucoplasts oxidize glucose 6-phosphate via the oxidative pentose phosphate pathway with very little recycling, and that in these plastids glycolysis to acetyl CoA is negligible.S.A.C. thanks the Science and Engineering Research Council for a research studentship.  相似文献   

4.
Steven A Hill  Tom ap Rees 《Planta》1995,197(2):313-323
The aim of this work was to determine the effects of hypoxia on the major fluxes of carbohydrate metabolism in climacteric fruit of banana (Musa cavendishii Lamb ex Paxton). Hands of bananas, untreated with ethylene, were allowed to ripen in air at 21°C in the dark. When the climacteric began, fruit were transferred to 15 or 10% oxygen and were analysed once the climacteric peak had been reached 8–12 h later. The rates of starch breakdown, sucrose, glucose and fructose accumulation, and CO2 production were determined, as were the contents of hexose monophosphates, adenylates and pyruvate. In addition, the detailed distribution of label was determined after supplying [U-14C]-, [1-14C]-, [3,4-14C]- and [6-14C]glucose, and [U-14C]glycerol to cores of tissue under hypoxia. The data were used to estimate the major fluxes of carbohydrate metabolism. There was a reduction in the rate of respiration. The ATP/ADP ratio was unaffected but there was a significant increase in the content of AMP. In 15% oxygen only minor changes in fluxes were observed. In 10% oxygen starch breakdown was reduced and starch synthesis was not detected. The rate of sucrose synthesis decreased, as did the rate of re-entry of hexose sugars into the hexose monophosphate pool. There was a large increase in both the glycolytic flux and in the flux from triose phosphates to hexose monophosphates. It is argued that the increase in these fluxes is due to activation of pyrophosphate: fructose-6-phosphate 1-phosphotransferase, and that this enzyme has an important role in hypoxia. The results are discussed in relation to our understanding of the control of carbohydrate metabolism in hypoxia.Abbreviations Glc6P glucose-6-phosphate - Glc1P glucose-1-phosphate - Fru6P fructose-6-phosphate - PPi inorganic pyro-phosphate We thank Geest Foods Group, Great Dunmow, Essex, UK for giving us the bananas. S.A.H. thanks the managers of the Brood bank Fund for a fellowship.  相似文献   

5.
We have used 13C-labeled sugars and nuclear magnetic resonance (NMR) spectrometry to study the metabolic pathway of starch biosynthesis in developing wheat grain (Triticum aestivum cv Mardler). Our aim was to examine the extent of redistribution of 13C between carbons atoms 1 and 6 of [1-13C] or [6-13C]glucose (or fructose) incorporated into starch, and hence provide evidence for or against the involvement of triose phosphates in the metabolic pathway. Starch synthesis in the endosperm tissue was studied in two experimental systems. First, the 13C sugars were supplied to isolated endosperm tissue incubated in vitro, and second the 13C sugars were supplied in vivo to the intact plant. The 13C starch produced by the endosperm tissue of the grain was isolated and enzymically degraded to glucose using amyloglucosidase, and the distribution of 13C in all glucosyl carbons was quantified by 13C-NMR spectrometry. In all of the experiments, irrespective of the incubation time or incubation conditions, there was a similar pattern of partial (between 15 and 20%) redistribution of label between carbons 1 and 6 of glucose recovered from starch. There was no detectable increase over background 13C incidence in carbons 2 to 5. Within each experiment, the same pattern of partial redistribution of label was found in the glucosyl and fructosyl moieties of sucrose extracted from the tissue. Since it is unlikely that sucrose is present in the amyloplast, we suggest that the observed redistribution of label occurred in the cytosolic compartment of the endosperm cells and that both sucrose and starch are synthesized from a common pool of intermediates, such as hexose phosphate. We suggest that redistribution of label occurs via a cytosolic pathway cycle involving conversion of hexose phosphate to triose phosphate, interconversion of triose phosphate by triose phosphate isomerase, and resynthesis of hexose phosphate in the cytosol. A further round of triose phosphate interconversion in the amyloplast could not be detected. These data seriously weaken the argument for the selective uptake of triose phosphates by the amyloplast as part of the pathway of starch biosynthesis from sucrose in plant storage tissues. Instead, we suggest that a hexose phosphate such as glucose 1-phosphate, glucose 6-phosphate, or fructose 6-phosphate is the most likely candidate for entry into the amyloplast. A pathway of starch biosynthesis is presented, which is consistent with our data and with the current information on the intracellular distribution of enzymes in plant storage tissues.  相似文献   

6.
7.
The metabolism of wild-type Arabidopsis thaliana L. and its mutant TC265 were compared in order to reveal the role of the chloroplast glucose transporter. Plants were grown in a 12-h photoperiod. From 20 to 40 days after germination, starch per gram fresh weight of shoot in the mutant was four times that in the wild type. The extent of this difference did not alter during this period. Stereological analysis showed that the chloroplasts in the mutant were larger than those in the wild type; the thylakoids appeared to be distorted by the high starch content. [U-14C]Glucose and [U-14C]glycerol were supplied, separately, to excised leaves in the dark. [U-14C]Glucose was a good precursor of sucrose in the wild type and mutant; [U-14C]glycerol was a poor precursor of sucrose in both. The distribution of 14C in the wild type was used to calculate that the net flux was from hexose monophosphates to triose phosphates, not vice versa. During the first 4 h of the night the sugar content (75% sucrose, 20% glucose) of the leaves of the mutant dropped sharply, and at all times during the night it was less than that of the wild-type leaves. This drop in sugar coincided with a decrease in the rate of respiration. The growth rate of the mutant was less than that of the wild type. Addition of sucrose restored the rate of respiration at night and increased the rate of growth. It is argued that a major function of the glucose transporter in Arabidopsis chloroplasts is export of the products of starch breakdown that are destined for sucrose synthesis at night.We thank Professor C.R. Somerville for his generous gift of seed of the Arabidopsis mutant TC265. We are also grateful to Mr B. Chapman for assistance with the preparation of the sections for electron microscopy. R.N.T. thanks the Science and Engineering Research Council for a studentship.  相似文献   

8.
Experiments were carried out to investigate the contribution of ADP-glucose pyrophosphorylase and the plastid phosphoglucosemutase to the control of starch synthesis. Mutants ofArabidopsis thaliana (L.) Heyhn. were constructed with 50% and 7% of the wild-type adenosine 5′-diphosphoglucose pyrophosphorylase (ADPGlc-PPase), or 50% and null plastid phosphoglucomutase (PGM). The changes in the steady-state rates of sucrose synthesis, starch synthesis and CO2 fixation were measured in saturating CO2 in low (75 μmol·m−2·s−1) and high (600 μmol·m−2·s−1) irradiance. In low irradiance, a 50% decrease of PGM had no significant effect on fluxes, while a 50% and 93% decrease of ADPGlc-PPase led to a 23% and 74% inhibition of starch synthesis. Decreased ADPGlc-PPase led to an increase of hexose phosphates, triose phosphates and fructose-1,6-bisphosphate. Fixation of CO2 was not inhibited because the inhibition of starch synthesis was matched by a stimulation of sucrose synthesis. In high irradiance, a 50% decrease of PGM led to a 20% inhibition of starch synthesis. A 50% and 93% decrease of ADPGlc-PPase led to a 39% and 90% inhibition of starch synthesis. Sucrose synthesis was also inhibited, and the rate of photosynthesis was decreased. Decreased ADPGlc-PPase led to an increase of hexose phosphates but triose phosphates and fructose-1,6-bisphosphate did not increase. These results are used to estimate flux-control coefficients for these enzymes for starch synthesis. Firstly, the flux to starch is only controlled by ADPGlc-PPase in low irradiance, but control is redistributed to other enzymes in the pathway when a rapid flux is imposed, e.g. in high irradiance and CO2. Secondly, reducing the rate of starch synthesis by decreasing the activity of enzymes in this pathway does not always lead to a compensating increase in the rate of sucrose synthesis. Thirdly, decreasing the activity of an enzyme by a factor of two compared to the remainder of the pathway often leads to it exerting very considerable control. Fourthly, each enzyme starts to exert considerable control when only a fraction of its Vmax activity is being utilised in vivo, for example the maximum flux at ADPGlc-PPase never exceeded 20% of the Vmax activity. The summation theory is also applied to check whether additional major control sites are required. In low irradiance, the efficiency of light harvesting will exert considerable control over the rate of starch synthesis.  相似文献   

9.
A comparative study of metabolite levels in plant leaf material in the dark   总被引:6,自引:0,他引:6  
Metabolite levels have been compared in the dark and during photosynthesis in leaves and protoplasts from spinach, pea, wheat and barley. In protoplasts the subcellular distribution was also studied. The levels of triose phosphates and sugar bisphosphates were high in the light and low in the dark. The hexose phosphates and 3-phosphoglycerate levels in the dark were very variable depending on the plant material. In most conditions, hexose phosphates and triose phosphates were mainly in the extrachloroplast compartment, while 3-phosphoglycerate and the sugar bisphosphates were mainly in the chloroplast compartment. Leaves always had a very low triose phosphate: 3-phosphoglycerate ratio in the dark, but in protoplasts this ratio was higher. Detailed studies with spinach showed that metabolite levels were very dependent on the availability of carbohydrate in the leaf, particularly starch. Starch mobilisation is not controlled just by the availability of inorganic phosphate and accumulation of phosphorylated intermediates. Hydrolysis of starch may provide precursors for sucrose synthesis while phosphorolysis leads to provision of substrates for respiration. Starch breakdown generates high enough levels of hexose phosphate to support substantial rates of sucrose synthesis in the dark. Respiration is not greatly increased when metabolite levels are high during starch mobilisation. Higher levels of metabolites shorten the length of the induction phase of photosynthesis.Abbreviations Chl chlorophyll - DHAP dihydroxyacetone phosphate - Fru2,6bisP fructose-2,6-bisphosphate - NMR nuclear magnetic resonance - PGA 3-phosphoglyceric acid - Pi inorganic phosphate - RuBP ribulose-1,5-bisphosphate - UDPGlc uridine-5-diphosphate glucose  相似文献   

10.
Starch granules with associated metabolites were isolated from immature Zea mays L. endosperm by a nonaqueous procedure using glycerol and 3-chloro-1,2-propanediol. The soluble extract of the granule preparation contained varying amounts of neutral sugars, inorganic phosphate, hexose and triose phosphates, organic acids, adenosine and uridine nucleotides, sugar nucleotides, and amino acids. Based on the metabolites present and on information about translocators in chloroplast membranes, which function in transferring metabolites from the chloroplast stroma into the cytoplasm, it is suggested that sucrose is degraded in the cytoplasm, via glycolysis, to triose phosphates which cross the amyloplast membrane by means of a phosphate translocator. It is further postulated that hexose phosphates and sugars are produced from the triose phosphates in the amyloplast stroma by gluconeogenesis with starch being formed from glucose 1-phosphate via pyrophosphorylase and starch synthase enzymes. The glucose 1-phosphate to inorganic phosphate ratio in the granule preparation was such that starch synthesis by phosphorylase is highly unlikely in maize endosperm.  相似文献   

11.
The aim of this work was to investigate the mechanism of formation of triose phosphates and 3-phosphoglycerate during photosynthetic induction in leaves of Zea mays. Simultaneous measurements of gas exchange, chlorophyll a fluorescence and metabolite contents of maize leaves were made. Leaves illuminated in the absence of CO2 showed a build-up of triose phosphates during the first 2 min of illumination which was comparable to the build-up observed in the presence of CO2. Isolated mesophyll protoplasts, which lack the Calvin cycle, also showed a build-up of triose phosphates upon illumination. Leaves contained amounts of phosphoglycerate mutase and enolase adequate to account for the formation of triose phosphates and 3-phosphoglycerate from intermediates of the C4 cycle and their precursors.  相似文献   

12.
Production of an amylase-degrading raw starch by Gibberella pulicaris   总被引:1,自引:0,他引:1  
An endophytic fungus, Gibberella pulicaris, produced an amylase which degraded raw starches from cereals and other crops including raw potato, sago, tapioca, corn, wheat and rice starch. In each case, glucose was the main product. Among the raw starches used, raw potato starch gave the highest enzyme activity (85 units mg–1 protein) and raw wheat starch the lowest (49 units mg–1 protein). The highest amylase production (260 units mg–1 protein) was achieved when the concentration of raw potato starch was increased to 60 g l–1. Optimum hydrolysis was at 40°C and pH 5.5.  相似文献   

13.
Roberto Viola 《Planta》1996,198(2):186-196
Metabolism of radiolabelled hexoses by discs excised from developing potato (Solanum tuberosum L.) tubers was been investigated in the presence of acid invertase to prevent accumulation of labelled sucrose in the bathing medium (Viola, 1996, Planta 198: 179–185). When the discs were incubated with either [U-14C]glucose or [U-14C]fructose without unlabelled hexoses, the unidirectional rate of sucrose synthesis was insignificant compared with that of sucrose breakdown. The inclusion of unlabelled fructose in the medium induced a dramatic increase in the unidirectional rate of sucroses synthesis in the tuber discs. Indeed, the decline in the sucrose content observed when discs were incubated without exogenous sugars could be completely prevented by including 300 mM fructose in the bathing medium. On the other hand, the inclusion of unlabelled glucose in the medium did not significantly affect the relative incorporation of [U-14C]glucose to starch, sucrose or glycolytic products. Substantial differences in the intramolecular distribution of 13C enrichment in the hexosyl moieties of sucrose were observed when the discs were incubated with either [2-13C]fructose or [2-13C]glucose. The pattern of 13C enrichment distribution in sucrose suggested that incoming glucose was converted into sucrose via the sucrose-phosphate synthase pathway whilst fructose was incorporated directly into sucrose via sucrose synthase. Quantitative estimations of metabolic fluxes in vivo in the discs were also provided. The apparent maximal rate of glucose phosphorylation was close to the extractable maximum catalytic activity of glucokinase. On the other hand, the apparent maximal rate of fructose phosphorylation was much lower than the maximum catalytic activity of fructokinase, suggesting that the activity of the enzyme (unlike that of glucokinase) was regulated in vivo. Although in the discs incubated with or without fructose the rates of starch synthesis or glycolysis were similar, the relative partitioning of metabolic intermediates into sucrose was much higher in discs incubated with fructose (0.6% and 32.6%, respectively). It is hypothesised that the equilibrium of the reaction catalysed by sucrose synthase in vivo is affected in discs incubated with fructose as a result of the accumulation of the sugar in the tissue. This results in the onset of sucrose cycling. Incubation with glucose enhanced all metabolic fluxes. In particular, the net rate of starch synthesis increased from 2.0 mol · hexose · g FW–1 · h–1 in the absence of exogenous glucose to 3.7 mol · hexose · g FW–1 · h–1 in the presence of 300 mM glucose. These data are taken as an indication that the regulation of fructokinase in vivo may represent a limiting factor in the utilisation of sucrose for biosynthetic processes in developing potato tubers.Abbreviations ADPGlc adenosine 5-diphosphoglucose - Glc6P glucose-6-phosphate - hexose-P hexose phosphate - NMR nuclear magnetic resonance - UDPGlc uridine 5-diphosphoglucose Many thanks to L. Sommerville for skillfull assistance and to J. Crawford and J. Liu for useful discussions on flux analysis. The research was funded by the Scottish Office Agriculture and Fisheries Department.  相似文献   

14.
15.
The short-term changes in metabolism that occurred after adding glucose or sucrose to freshly cut discs from growing potato (Solanum tuberosum L.) tubers were investigated. (i) When glucose was supplied, there was a marked increase in glycolytic metabolites, and respiration was stimulated. When sucrose was supplied, amounts of glycolytic metabolites including hexose phosphates and 3-phosphoglycerate (3PGA) were similar to or lower than in control discs incubated without sugars, and respiration did not rise initially above that in control discs. This different response to sucrose and glucose was found across the concentration range 5–200 mM. A larger proportion of the metabolised 14C was converted to starch when [14C] sucrose was supplied than when [14C] glucose was supplied. The different effect on metabolite levels, respiration and starch synthesis was largest after 20–30 min, and decreased in longer incubations. (ii) When 5 or 25 mM sucrose was added in the presence of [14C] glucose, it led to a decrease in hexose phosphates and 3PGA, and a small increase in the rate of starch synthesis compared to discs incubated with glucose in the absence of sucrose. These differences were seen in a 30-min pulse and a 2-h pulse. Whereas ADP-glucose levels after adding sucrose resembled those in control discs, glucose led to a decrease in ADP-glucose. This decrease did not occur when 5 or 25 mM sucrose was added with the glucose. (iii) To check the relevance of these experiments for intact tubers, water or 100 mM mannitol, sucrose or glucose were supplied through the stolon to intact tubers for 24 h. A 0.2 mM solution of [14C] glucose was then introduced into the tubers, and its metabolism investigated during the next 30 min. Labelling of starch was increased after preincubation with sucrose, and significantly inhibited after preincubation with glucose. (iv) It is concluded that glucose and sucrose have different effects on tuber metabolism. Whereas glucose leads to a preferential stimulation of respiration, sucrose preferentially stimulates starch synthesis via a novel mechanism that allows stimulation of ADP-glucose pyrophosphorylase even though the levels of hexose phosphates and the allosteric activator 3PGA decrease. Received: 9 October 1997 / Accepted: 3 February 1998  相似文献   

16.
Glycerol induced a limitation on photosynthetic carbon assimilation by phosphate when supplied to leaves of barley (Hordeum vulgare L.) and spinach (Spinacia oleracea L.). This limitation by phosphate was evidenced by (i) reversibility of the inhibition of photosynthesis by glycerol by feeding orthophosphate (ii) a decrease in light-saturated rates of photosynthesis and saturation at a lower irradiance, (iii) the promotion of oscillations in photosynthetic CO2 assimilation and in chlorophyll fluorescence, (iv) decreases in the pools of hexose monophosphates and triose phosphates and increases in the ratio of glycerate-3-phosphate to triose phosphate, (v) decreased photochemical quenching of chlorophyll fluorescence, and increased non-photochemical quenching, specifically of the component which relaxed rapidly, indicating that thylakoid energisation had increased. In barley there was a massive accumulation of glycerol-3-phosphate and an increase in the period of the oscillations, but in spinach the accumulation of glycerol-3-phosphate was comparatively slight. The mechanism(s) by which glycerol feeding affects photosynthetic carbon assimilation are discussed in the light of these results.Abbreviations Chl chlorophyll - C i intercellular concentration of CO2 - P phosphate - PGA glycerate-3-phosphate - Pi orthophosphate - triose-P sum of glyceraldehyde-3-phosphate and dihydroxyacetone phosphate  相似文献   

17.
Fernie AR  Roscher A  Ratcliffe RG  Kruger NJ 《Planta》2001,212(2):250-263
The aim of this work was to establish the influence of fructose 2,6-bisphosphate (Fru-2,6-P2) on non-photosynthetic carbohydrate metabolism in plants. Heterotrophic callus lines exhibiting elevated levels of Fru-2,6-P2 were generated from transgenic tobacco (Nicotiana tabacum L.) plants expressing a modified rat liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. Lines containing increased amounts of Fru-2,6-P2 had lower levels of hexose phosphates and higher levels of 3-phosphoglycerate than the untransformed control cultures. There was also a greater redistribution of label into the C6 position of sucrose and fructose, following incubation with [1-13C]glucose, in the lines possessing the highest amounts of Fru-2,6-P2, indicating a greater re-synthesis of hexose phosphates from triose phosphates in these lines. Despite these changes, there were no marked differences between lines in the metabolism of 14C-substrates, the rate of oxygen uptake, carbohydrate accumulation or nucleotide pool sizes. These data provide direct evidence that physiologically relevant changes in the level of Fru-2,6-P2 can affect pyrophosphate: fructose-6-phosphate 1-phosphotransferase (PFP) activity in vivo, and are consistent with PFP operating in a net glycolytic direction in the heterotrophic culture. However, the results also show that activating PFP has little direct effect on heterotrophic carbohydrate metabolism beyond increasing the rate of cycling between hexose phosphates and triose phosphates. Received: 29 March 2000 / Accepted: 13 June 2000  相似文献   

18.
Rapid recycling of triose phosphates in oak stem tissue   总被引:10,自引:3,他引:7  
We report the carbon-13 and oxygen-18 isotope ratios in cellulose from the early and late wood of pedunculate oak (Quercus robur L.). The δ13 C value of the early wood correlates best with that of the late wood of the previous year. The δ18O value of the early wood correlates best with that of the late wood of the same year. We suggest that a biochemical explanation of these data is that there is a rapid cycle between hexose monophosphates and triose phosphates in oak stem tissue during cellulose synthesis. Evidence in support of this explanation is provided by the intramolecular distribution of 14C in labelled fructose extracted from cores of wood that had been supplied with [1?14C]- and [6-14C]glucose.  相似文献   

19.
Cells were grown in batch culture on a mixture of 50 mM glucose and fructose as the carbon source; either the glucose or the fructose was [1-13C]-labelled. In order to investigate the uptake and conversion of glucose and fructose during long-term labelling experiments in cell suspensions of Daucus carota L., samples were taken every 2 d during a 2 week culture period and sucrose and starch were assayed by means of HPLC and 13C-nuclear magnetic resonance. The fructose moieties of sucrose had a lower labelling percentage than the glucose moieties. Oxidative pentose phosphate pathway activity in the cytosol is suggested to be responsible for this loss of label of especially C-1 carbons. A combination of oxidative pentose phosphate pathway activity, a relatively high activity of pathway to sucrose synthesis and a slow equilibration between glucose-6-phosphate and fructose-6-phosphate could explain these results. Starch contained glucose units with a much lower labelling percentage than glucose moieties of sucrose: it was concluded that a second, plastid-localized, oxidative pentose phosphate pathway was responsible for removal of C-1 carbons of the glucosyl units used for synthesis of starch. Redistribution of label from [1-13C]-hexoses to [6-13C]-hexoses also occurred: 18-45% of the label was found at the C-6 carbons. This is a consequence of cycling between hexose phosphates and those phosphates in the cytosol catalysed by PFP. The results indicate that independent (oxidative pentose phosphate pathway mediated) sugar converting cycles exist in the cytosol and plastid.Key words: Daucus carotaL., cell suspensions, carbon-13 nuclear magnetic resonance, 13C-NMR, carbohydrate cycling, oxidative pentose phosphate pathway, plastid.   相似文献   

20.
The rates of incorporation of various metabolites into starch by isolated amyloplasts from developing endosperm of spring wheat (Triticum aestivum L. cv. Axona) were examined. Of the metabolites tested that were likely to be present in the cytosol at concentrations sufficient to sustain starch synthesis, only glucose 1-phosphate (Glc1P) supported physiologically relevant rates of starch synthesis. Incorporation of Glc1P into starch was both dependent on the presence of ATP and intact organelles. The rate of incorporation of hexose into starch became saturated at a Glc1P concentration of less than 1 mol·m-3 in the presence of 1 mol·m-3 ATP. Starch synthesis from 5 mol · m-3 ADP-glucose supplied to the organelles occurred at rates 15-fold higher than from similar concentrations of Glc1P, but it is argued that this is probably of little physiological relevance. The net incorporation of hexose units into starch from GlclP was inhibited 50% by 100 mmol.m-3 carboxyatractyloside. Carbohydrate oxidation in the amyloplast was stimulated by the addition of 2-oxoglutarate and glutamine, and in such circumstances incorporation of14C-labelled metabolites into starch was reduced. Glucose 6-phosphate proved to be a better substrate for oxidative pathways than Glc1P. Our results suggest that Glc1P is the primary substrate for starch synthesis in developing wheat endosperm, and that ATP required for starch synthesis is imported via an adenylate translocator.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号