首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Background information. DC (dendritic cells) continuously capture pathogens and process them into small peptides within the endolysosomal compartment, the MIIC (MHC class II‐containing compartment). In MIICs peptides are loaded on to MHC class II and rapidly redistributed to the cell surface. This redistribution is accompanied by profound changes of the MIICs into tubular structures. An emerging concept is that MIIC tubulation provides a means to transport MHC class II—peptide complexes to the cell surface, either directly or through vesicular intermediates. To obtain spatial information on the reorganization of the MIICs during DC maturation, we performed electron tomography on cryo‐immobilized and freeze‐substituted mouse DCs after stimulation with LPS (lipopolysaccharide). Results. In non‐stimulated DCs, MIICs are mostly spherical. After 3 h of LPS stimulation, individual MIICs transform into tubular structures. Three‐dimensional reconstruction showed that the MIICs frequently display fusion profiles and after 6 h of LPS stimulation, MIICs become more interconnected, thereby creating large MIIC reticula. Microtubules and microfilaments align these MIICs and reveal physical connections. In our tomograms we also identified a separate population of MIIC‐like intermediates, particularly at extended ends of MIIC tubules and in close proximity to the trans‐Golgi network. No fusion events were captured between reticular MIICs and the plasma membrane. Conclusions. Our results indicate that MIICs have the capacity to fuse together, whereby the cytoskeleton possibly provides a scaffold for the MIIC shape change and directionality. MIIC‐like intermediates may represent MHC class II carriers.  相似文献   

3.
Major histocompatibility complex (MHC) class II (MHCII) is constitutively expressed by immature dendritic cells (DC), but has a short half-life as a consequence of its transport to and degradation in lysosomes. For its transfer to lysosomes, MHCII is actively sorted to the intraluminal vesicles (ILV) of multivesicular bodies (MVB), a process driven by its ubiquitination. ILV have, besides their role as an intermediate compartment in lysosomal transfer, also been proposed to function as a site for MHCII antigen loading and temporal storage. In that scenario, DC would recruit antigen-loaded MHCII to the cell surface in response to a maturation stimulus by allowing ILV to fuse back with the MVB delimiting membrane. Other studies, however, explained the increase in cell surface expression during DC maturation by transient upregulation of MHCII synthesis and reduced sorting of newly synthesized MHCII to lysosomes. Here, we have characterized the relative contributions from the biosynthetic and endocytic pathways and found that the vast majority of antigen-loaded MHCII that is stably expressed at the plasma membrane by mature DC is synthesized after exposure to inflammatory stimuli. Pre-existing endosomal MHCII contributed only when it was not yet sorted to ILV at the moment of DC activation. Together with previous records, our current data are consistent with a model in which passage of MHCII through ILV is not required for antigen loading in maturing DC and in which sorting to ILV in immature DC provides a one-way ticket for lysosomal degradation.  相似文献   

4.
It has been demonstrated previously that mixed cell suspensions from the female reproductive tract consisting of human epithelial and stromal cells were capable of presenting foreign antigen to autologous T cells. There have been, however, no reported studies examining antigen presentation by isolated epithelial cells from the human female reproductive tract. It is now shown that freshly isolated epithelial cells from the uterine endometrium constitutively express MHC class II antigen and that class II was upregulated on cultured epithelium by interferon gamma (IFNγ). Using a highly purified preparation, it was demonstrated that these epithelial cells were able to process and present tetanus toxoid recall antigen driving autologous T cell proliferation. Cells isolated from the basolateral sub-epithelium stroma were also potent antigen presenting cells in this model system. Thus, isolated endometrial epithelial cells were able to directly process and present antigen to T cells and may be responsible for the transcytosis and delivery of antigen to professional antigen presenting cells found in the sub-epithelial stroma.  相似文献   

5.
6.
Many receptors for endocytosis recycle into and out of cells through early endosomes. We now find in dendritic cells that the DEC-205 multilectin receptor targets late endosomes or lysosomes rich in major histocompatibility complex class II (MHC II) products, whereas the homologous macrophage mannose receptor (MMR), as expected, is found in more peripheral endosomes. To analyze this finding, the cytosolic tails of DEC-205 and MMR were fused to the external domain of the CD16 Fcgamma receptor and studied in stable L cell transfectants. The two cytosolic domains each mediated rapid uptake of human immunoglobulin (Ig)G followed by recycling of intact CD16 to the cell surface. However, the DEC-205 tail recycled the CD16 through MHC II-positive late endosomal/lysosomal vacuoles and also mediated a 100-fold increase in antigen presentation. The mechanism of late endosomal targeting, which occurred in the absence of human IgG, involved two functional regions: a membrane-proximal region with a coated pit sequence for uptake, and a distal region with an EDE triad for the unusual deeper targeting. Therefore, the DEC-205 cytosolic domain mediates a new pathway of receptor-mediated endocytosis that entails efficient recycling through late endosomes and a greatly enhanced efficiency of antigen presentation to CD4(+) T cells.  相似文献   

7.
Before a class II molecule can be loaded with antigenic material and reach the surface to engage CD4+ T cells, its chaperone, the class II-associated invariant chain (Ii), is degraded in a stepwise fashion by proteases in endocytic compartments. We have dissected the role of cathepsin S (CatS) in the trafficking and maturation of class II molecules by combining the use of dendritic cells (DC) from CatS(-/-) mice with a new active site-directed probe for direct visualization of active CatS. Our data demonstrate that CatS is active along the entire endocytic route, and that cleavage of the lysosomal sorting signal of Ii by CatS can occur there in mature DC. Genetic disruption of CatS dramatically reduces the flow of class II molecules to the cell surface. In CatS(-/-) DC, the bulk of major histocompatibility complex (MHC) class II molecules is retained in late endocytic compartments, although paradoxically, surface expression of class II is largely unaffected. The greatly diminished but continuous flow of class II molecules to the cell surface, in conjunction with their long half-life, can account for the latter observation. We conclude that in DC, CatS is a major determinant in the regulation of intracellular trafficking of MHC class II molecules.  相似文献   

8.
9.
10.
Major histocompatibility complex (MHC) class II are expressed on most activated human lymphocytes. They direct antigen presentation events in dendritic cells and B cells (collectively called antigen presenting cells), but the role for MHC class II in human T cells is not well understood. To understand the role of surface MHC class II and to identify the molecules involved in signaling, we have defined the early activation sequence in T cells when MHC class II are engaged by a specific antibody. Specifically, we have characterized the involvement of phosphotyrosine kinases, phospholipase C (PLC), and Ca2+ mobilization. With the engagement by either whole anti-class II antibody or its Fab fragments, the enzymatic activity of p56lck and ZAP-70 increased, but there was no increase in p59fyn activity. In addition, the intracellular free Ca2+ increased, which was due to enhanced influx and not to the mobilization of intracytoplasmic Ca2+. These events did not require cross-linking because they were not significantly augmented by the addition of antispecies antibody. The coimmunoprecipitation of tyrosine phosphorylated PLC-γ1 with surface MHC class II suggested that PLC-γ1 could be recruited to MHC class II after engagement. These results show the complexities of the early signals transduced by the engagement of surface MHC class II on T cells. J. Cell. Biochem. 70:346–353, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

11.
Vaccinia virus (VV) infection is known to inhibit dendritic cells (DC) functions in vitro. Paradoxically, VV is also highly immunogenic and thus has been used as a vaccine. In the present study, we investigated the effects of an in vivo VV infection on DC function by focusing on early innate immunity. Our data indicated that DC are activated upon in vivo VV infection of mice. Splenic DC from VV-infected mice expressed elevated levels of MHC class I and co-stimulatory molecules on their cell surface and exhibited the enhanced potential to produce cytokines upon LPS stimulation. DC from VV-infected mice also expressed a high level of interferon-beta. However, a VV infection resulted in the down-regulation of MHC class II expression and the impairment of antigen presentation to CD4 T cells by DC. Thus, during the early stage of a VV infection, although DC are impaired in some of the critical antigen presentation functions, they can promote innate immune defenses against viral infection.  相似文献   

12.
Inflammation in peripheral tissues is usually associated with local acidosis. In the present study, we demonstrate that extracellular acidification enhances GM-CSF- and IFN-γ-induced expression of HLA-DR, CD80 and CD86 in human neutrophils (neutrophil transdifferentiation), and potentiates antigen-capturing capacities (both endocytosis and phagocytosis) of the transdifferentiated cells. Furthermore, in acidic conditions the transdifferentiated neutrophils have stronger antigen-presenting capacity, inducing more intense proliferation of autologous T lymphocytes in the presence of staphylococcal enterotoxin A. Thus, extracellular acidosis can represent a factor that promotes neutrophil transdifferentiation and potentiates the functional abilities of the transdifferentiated cells in inflammatory foci in vivo.  相似文献   

13.
Analysis of the crystal structure of human class II (HLA-DR1) molecules suggests that the heterodimer may be further ordered as a dimer of heterodimers (superdimer), leading to the hypothesis that T cell receptor dimerisation is a mechanism for initiating signaling events preceding T cell activation. The interface between pairs of molecules is stabilised by both salt bridges, polar and hydrophobic interactions. The residues that form the superdimer interface occur in three areas distinct from the antigen-binding groove. They can be defined as follows: region 1, - contacts in the helix of the 1 domain; region 2, - contacts near the 1/2 domain junction and region 3; - contacts in the 2/2 domains adjacent to the plasma membrane. To determine whether salt bridges and polar interactions formed within these regions are involved in the immune function of the murine MHC class II molecule, I-Ab, appropriate residues in both the and chain were identified and mutated to uncharged alanine. Cell lines transfected with different combinations of mutated and chains were generated and tested for MHC class II expression, peptide binding capabilities, and ability to present antigenic peptide to an OVA-specific T cell hybridoma. With the exception of two residues in region 2, the substitutions tested did not modulate MHC class II expression, or peptide binding function. When tested for ability to present peptide to an antigen-specific T cell hybridoma, with the exception of mutations in region 2, the substitutions did not appear to abrogate the ability of I-Ab to stimulate the T cells. These results suggest that mutation of residues in region 2 of the putative superdimer interface have a gross effect on the ability of I-Ab to be expressed on the cell surface. However, abrogation of salt bridges in region 1 and 3 do not influence I-Ab cell surface expression, peptide binding or ability to stimulate antigen-specific T cells.  相似文献   

14.
15.
Major histocompatibility complex (MHC) molecules serve as peptide receptors. These peptides are derived from processed cellular or extra-cellular antigens. The MHC gene complex encodes two major classes of molecules, MHC class I and class II, whose function is to present peptides to CD8+ (cytotoxic) and CD4+ (helper) T cells, respectively. The genes encoding both classes of MHC molecules seem to originate from a common ancestral gene. One of the hallmarks of the MHC is its extensive polymorphism which displays locus and allele-specific characteristics among the various MHC class I and class II genes. Because of its central role in immunosurveillance and in various disease states, the MHC is one of the best studied genetic systems. This review addresses several aspects of MHC class I and class II gene regulation in human and in particular, the contribution to the constitutive and cytokine-induced expression of MHC class I and II genes of MHC class-specific regulatory elements and regulatory elements which apparently are shared by the promoters of MHC class I and class II genes. Received: 12 January 1998  相似文献   

16.
In a combination of biochemical and immunoelectron-microscopical approaches we studied intracellular trafficking and localization of the endoplasmic-reticulum (ER)-formed complexes of murine MHC class II molecule I-Ab and an antigenic peptide E52–68 covalently linked to its -chain. The association with the peptide in the ER leads to sharp acceleration of the intracellular trafficking of the complexes to the plasma membrane. Within the cells, E52–68:I-Ab complexes accumulate in the multivesicular MHC class II compartment (MIIC), but not in denser multilaminar or intermediate type MIICs. The changes in the trafficking of ER-formed complexes result solely from the presence of the tethered peptide, since wild-type class II molecules traffic similarly in bare lymphocyte syndrome cells and in wild-type antigen-presenting cells.  相似文献   

17.
Several computational methods for the prediction of major histocompatibility complex (MHC) class II binding peptides embodying different strengths and weaknesses have been developed. To provide reliable prediction, it is important to design a system that enables the integration of outcomes from various predictors. The construction of a meta-predictor of this type based on a probabilistic approach is introduced in this paper. The design permits the easy incorporation of results obtained from any number of individual predictors. It is demonstrated that this integrated method outperforms six state-of-the-art individual predictors based on computational studies using MHC class II peptides from 13 HLA alleles and three mouse MHC alleles obtained from the Immune Epitope Database and Analysis Resource. It is concluded that this integrative approach provides a clearly enhanced reliability of prediction. Moreover, this computational framework can be directly extended to MHC class I binding predictions.  相似文献   

18.
The major histocompatibility complex (MHC) is an immunological gene-dense region of high diversity in mammalian species. Sus scrofa was domesticated by at least six independent events over Eurasia during the Holocene period. It has been hypothesized that the level and distribution of MHC variation in pig populations reflect genetic selection and environmental influences. In an effort to define the complexity of MHC polymorphisms and the role of selection in the generation of class II gene diversity (DQB, DRB1, and pseudogene ΨDRB3), DNA from globally distributed unrelated domestic pigs of European and Asian origins and a Suidae out-group was analyzed. The number of pseudogene alleles identified (ΨDRB3 33) was greater than those found in the expressed genes (DQB 20 and DRB1 23) but the level of observed heterozygosity (ΨDRB3 0.452, DQB 0.732, and DRB1 0.767) and sequence diversity (ΨDRB3 0.029, DQB 0.062, and DRB1 0.074) were significantly lower in the pseudogene, respectively. The substitution ratios reflected an excess of d N (DQB 1.476, DRB1 1.724, and ΨDRB3 0.508) and the persistence of expressed gene alleles suggesting the influence of balancing selection, while the pseudogene was undergoing purifying selection. The lack of a clear MHC phylogeographic tree, coupled with close genetic distances observed between the European and Asian populations (DQB 0.047 and DRB1 0.063) suggested that unlike observations using mtDNA, the MHC diversity lacks phylogeographic structure and appears to be globally uniform. Taken together, these results suggest that, despite regional differences in selective breeding and environments, no skewing of MHC diversity has occurred. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
20.
Genomic DNA isolated from 20 horses was digested with up to six restriction endonucleases and subjected to southern blot hybridization analysis using various human class II alpha- and beta-chain cDNA probes. A high degree of restriction fragment length polymorphism (RFLP) was found for the DQ alpha, DP beta, DQ beta and DR beta probes, about 20 polymorphic bands being detected for each. DR alpha showed 2-4 polymorphic bands, whereas no evidence for DP alpha-like genes was found. A number of correlations of RFLPs with individual alloantisera were apparent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号