首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
5 alpha-Cholest-8(14)-en-3 beta-yl-15-one oleate (15-ketosteryl oleate), the oleate ester of a compound with the capacity to lower serum cholesterol, was effectively hydrolyzed by partially purified porcine pancreatic cholesterol esterase with an apparent Km of 0.28 +/- 0.01 mM and a Vmax of 0.62 +/- 0.01 mumol/min per mg protein compared to an apparent Km of 0.19 +/- 0.02 mM and a Vmax of 0.37 +/- 0.02 mumol/min per mg protein for cholesteryl oleate. The 15-ketosteryl oleate was also hydrolyzed by highly purified rat pancreatic cholesterol esterase with an apparent Km of 0.20 +/- 0.01 mM and a Vmax of 86.7 +/- 3.0 mumol/min per mg protein compared to an apparent Km of 0.43 +/- 0.01 mM and a Vmax of 119.8 +/- 2.6 mumol/min per mg protein for cholesteryl oleate. 15-Ketosteryl oleate is, therefore, a good substrate for pancreatic cholesterol esterase from either source. The 15-ketosterol is a weak competitive inhibitor of partially purified porcine pancreatic cholesterol esterase when cholesteryl oleate is the substrate.  相似文献   

2.
Bile salt-stimulated cholesterol esterase is synthesized in the pancreatic acinar cells and is released into the intestinal lumen where it catalyzes cholesterol absorption. In the current study, Caco-2 cells were used as an in vitro model to study the interaction between the pancreatic cholesterol esterase with intestinal cells. Results showed that addition of increasing concentrations of cholesterol esterase in the incubation medium increased the uptake of micellar cholesteryl oleate by Caco-2 cells. The cholesterol esterase also increased the cellular uptake of the nonhydrolyzable cholesteryl linoleoyl ether. However, maximum uptake of the cholesteryl ether analog was 50% of that for cholesteryl oleate. The initial interaction of cholesterol esterase with Caco-2 cells was mediated by binding of the protein to a low affinity and high capacity binding site on the cell surface. Cholesterol esterase bound to the cell surface could be internalized via a monensin-sensitive mechanism. The cholesterol esterase taken up by the cells had a short residence time and was either degraded or was rapidly re-secreted from the cells. Chloroquine had no effect on the degradation or re-secretion of cholesterol esterase by Caco-2 cells, indicating that lysosomes were not involved with these processes. The cholesterol esterase taken up by the cells was not available to mediate further cholesterol uptake. These results indicated that the bile salt-stimulated cholesterol esterase secreted from pancreas could facilitate intestinal lipid absorption only transiently. The data suggest that the regulation of cholesterol esterase synthesis and secretion by the pancreas may be important for regulation of cholesterol absorption.  相似文献   

3.
The activities of pancreatic cholesterol esterase from calf and cow pancreas were examined in detail. A 1300-fold enhancement of enzymatic activity was found after maturation, even though cholesterol esterase activity levels in other organs did not change from the juvenile to the adult species. Radioimmunoassays also showed that the calf pancreas contained at least 100-fold less cholesterol esterase protein. Decreased amounts of protein were not due to enhanced proteolysis, since cytosol from cow pancreas degrades exogenously added cholesterol esterase faster than that from calf pancreas. Rather, enhancement of pancreatic cholesterol esterase activity associated with bovine maturation was the result of specific, increased synthesis of a 72-kDa enzyme. This labile 72-kDa cholesterol esterase species was purified to homogeneity by a two-step process in 75% yield and is the major form of bovine pancreatic cholesterol esterase (99%). A much less abundant 67-kDa species, accounting for less than 1% of total pancreatic cholesterol esterase activity, was also purified to homogeneity in a similar two-step process. These results demonstrate that a specific form of pancreatic cholesterol esterase is induced during maturation, and they bear importantly on understanding juvenile cholesterol metabolism as related to dietary absorption of this sterol.  相似文献   

4.
A full-length cDNA complementary to the rat pancreatic cholesterol esterase mRNA was isolated by screening a rat pancreatic cDNA expression library in lambda gt11 vector with antibodies against the porcine pancreatic cholesterol esterase. The isolated cholesterol esterase cDNA is 2050 bp in length and contains an open reading frame coding for a protein of 612 amino acids. A 20-amino acid hydrophobic leader sequence is predicted, based on the position of the first ATG initiation codon upstream from the sequenced amino terminus of the isolated cholesterol esterase. The cholesterol esterase cDNA was subcloned into a mammalian expression vector, pSVL, for transfection studies. Expression of the cDNA in COS cells resulted in the production of bile salt-stimulated cholesterol esterase. Comparison of the cholesterol esterase cDNA sequence with other proteins revealed that the pancreatic cholesterol esterase is identical to rat pancreatic lysophospholipase. The primary structure of cholesterol esterase displayed no significant homology with other lipases, although the putative lipid interfacial recognition site of G-X-S-X-G is present in the cholesterol esterase sequence. However, the cholesterol esterase sequence revealed a 63-amino-acid domain which is highly homologous to the active site domain of other serine esterases. These data suggest that cholesterol esterase may be a member of the serine esterase supergene family. Analysis of the cholesterol esterase structure also revealed a repetitive sequence enriched with Pro, Asp, Glu, Ser, and Thr residues at the C-terminal end of the protein. This sequence is reminiscent of the PEST-rich sequences in short-lived proteins, suggesting that cholesterol esterase may have a short half-life in vivo. Northern blot hybridization showed that the bile salt-stimulated cholesterol esterase mRNA is present in liver suggesting that this protein may also be synthesized by liver cells.  相似文献   

5.
The histidine residue essential for the catalytic activity of pancreatic cholesterol esterase (carboxylester lipase) has been identified in this study using sequence comparison and site-specific mutagenesis techniques. In the first approach, comparison of the primary structure of rat pancreatic cholesterol esterase with that of acetylcholinesterase and cholinesterase revealed two conserved histidine residues located at positions 420 and 435. The sequence in the region around histidine 420 is quite different between the three enzymes. However, histidine 435 is located in a 22-amino acid domain that is 47% homologous with other serine esterases. Based on this sequence homology, it was hypothesized that histidine 435 is the histidine residue essential for catalytic activity of cholesterol esterase. The role of His435 in the catalytic activity of pancreatic cholesterol esterase was then studied by the site-specific mutagenesis technique. Substitution of the histidine in position 435 with glutamine, arginine, alanine, serine, or aspartic acid abolished the ability of cholesterol esterase to hydrolyze p-nitrophenyl butyrate and cholesterol [14C]oleate. In contrast, mutagenesis of the histidine residue at position 420 to glutamine had no effect on cholesterol esterase enzyme activity. The results of this study strongly suggested that histidine 435 may be a component of the catalytic triad of pancreatic cholesterol esterase.  相似文献   

6.
A neutral cholesterol esterase has been purified to homogeneity from the cytosolic fraction of rat liver. The 105,000 x g supernatant fraction of rat liver was applied to a DEAE-cellulose column to isolate a partially purified fraction of hepatic cholesterol esterase. Immunoblot analysis of the partially purified liver fraction with the anti-porcine pancreatic cholesterol esterase IgG demonstrated a single band with a molecular weight of 67,000. The hepatic protein was then isolated by immunoaffinity chromatography technique using a column constructed with antibodies prepared against the pancreatic cholesterol esterase. Characterization of the hepatic cholesterol esterase revealed that the hepatic enzyme shared antigenic epitopes with the pancreatic cholesterol esterase and was similarly activated by addition of bile salt such as taurocholate. Moreover, amino-terminal sequencing analysis of the hepatic cholesterol esterase showed an identical sequence with the pancreatic enzyme. Taken together, these results showed that the cholesterol esterases in the liver and the pancreas are very similar and possibly identical proteins.  相似文献   

7.
Previously, it was demonstrated that pancreatic cholesterol esterase is selectively inhibited by 6-chloro-2-pyrones with cyclic aliphatic substituents in the 3-position. Inhibition is reversible and is competitive with substrate. Pancreatic cholesterol esterase is a potential target for treatment of hypercholesterolemia. In the present study, yeast cholesterol esterase from Candida cylindracea (also called C. rugosa CRL3) was compared to porcine pancreatic cholesterol esterase for inhibition by a series of 3-alkyl- or 5-alkyl-6-chloro-2-pyrones. In addition, CRL3 was compared with the related yeast lipase CRL1. Inhibition of CRL3 by substituted 6-chloro-2-pyrones was competitive with binding of the substrate p-nitrophenyl butyrate. Inhibition constants ranged from 0.2 microM to >90 microM. Small changes in the alkyl group had profound effects on binding. The pattern of inhibition of CRL3 is quite distinct from that observed with porcine cholesterol esterase. Molecular modeling studies suggest that the orientation of binding of these inhibitors at the active site of CRL3 can vary but that the pyrone ring consistently occupies a position close to the active site serine. CRL1 is highly homologous to CRL3. Nevertheless, patterns of inhibition of CRL1 by substituted 6-chloro-2-pyrones differ markedly from patterns observed with CRL3. The substituted 6-chloro-2-pyrones are slowly hydrolyzed in the presence of CRL1 and are pseudosubstrates of CRL3, but are simple reversible inhibitors of pancreatic cholesterol esterase  相似文献   

8.
Chemical modification and site-specific mutagenesis approaches were used in this study to identify the active site serine residue of pancreatic cholesterol esterase. In the first approach, purified porcine pancreatic cholesterol esterase was covalently modified by incubation with [3H]diisopropylfluorophosphate (DFP). The radiolabeled cholesterol esterase was digested with CNBr, and the peptides were separated by high performance liquid chromatography. A single 3H-containing peptide was obtained for sequence determination. The results revealed the binding of DFP to a serine residue within the serine esterase homologous domain of the protein. Furthermore, the DFP-labeled serine was shown to correspond to serine residue 194 of rat cholesterol esterase (Kissel, J. A., Fontaine, R. N., Turck, C. W., Brockman, H. L., and Hui, D. Y. (1989) Biochim. Biophys. Acta 1006, 227-236). The codon for serine 194 in rat cholesterol esterase cDNA was then mutagenized to ACT or GCT to yield mutagenized cholesterol esterase with either threonine or alanine, instead of serine, at position 194. Expression of the mutagenized cDNA in COS-1 cells demonstrated that substitution of serine 194 with threonine or alanine abolished enzyme activity in hydrolyzing the water-soluble substrate, p-nitrophenyl butyrate, and the lipid substrates cholesteryl [14C]oleate and [14C] lysophosphatidylcholine. These studies definitively identified serine 194 in the catalytic site of pancreatic cholesterol esterase.  相似文献   

9.
Acyl coenzyme A:cholesterol acyl transferase and/or cholesterol esterase may regulate the esterification and absorption of exogenous cholesterol. To assess this, mucosal acyl coenzyme A:cholesterol acyl transferase activity was inhibited selectively with three different drugs [Sandoz #58-035, inhibitor 1; Lederle inhibitor 2 and inhibitor 3] and the effect upon the absorption of a [4-14C]cholesterol meal was studied in the lymph fistula rat. Compared to control rats, ACAT activity measured in mucosal homogenates from the drug-treated rats was reduced 80-90%, 40%, and 30%, respectively, during the predicted time-frame for maximum mucosal esterification of cholesterol (i.e., after cholesterol is fed and before it appears in lymph). In contrast, [14C]cholesterol absorption in the drug-treated animals was unchanged from controls [5.7 +/- 1.2 (inhibitor 1) vs. 5.4 +/- 1.6 mumol/6 hr (control); 6.1 +/- 2.1 (inhibitor 2) and 5.2 +/- 1.5 (inhibitor 3) vs. 4.1 +/- 1.3 mumol/6 hr (control)]. Of the absorbed [14C]cholesterol, approximately 75% was esterified in all groups. Cholesterol esterase activity measured in the drug-treated rats was unchanged compared to controls nor did the drugs inhibit this enzyme in vitro. Under the conditions of this study, drugs causing substantial inhibition of acyl coenzyme A:cholesterol acyl transferase activity had no effect on the absorption of exogenous cholesterol.  相似文献   

10.
Pancreatic cholesterol esterase is one of the enzymes that plays a pivotal role in cholesterol absorption. Differences in the genotype of this enzyme could affect the susceptibility of individuals to dyslipidemia and/or cardiovascular disease. We undertook this study to investigate if any correlation exists between restriction fragment length polymorphism in the human pancreatic cholesterol esterase gene and serum lipid levels. DNA from 96 healthy adults was restricted with Stu I, Southern blotted, and probed with cDNA of human pancreatic cholesterol esterase. Results revealed six distinct patterns which were classified as A, B, C, D, E, and F which had a population frequency of 1%, 34.5%, 49%, 12.5%, 1% and 2% respectively. Correlation of the distribution of lipid and lipoprotein levels by pattern and sex revealed a significant interaction between pattern type and HDL (p=0.03) in the most common group (group C) for males. Male patients of pattern C tended to have a lower LDL cholesterol than non-pattern C males (p=0.07); in addition, 80% of all males in the study population with LDL cholesterol under 100 mg/dl were found in pattern C. Thus, the most common Stu I RFLP genotype is associated with a favorable lipid phenotype. This report shows an association between the human pancreatic cholesterol esterase genotype and serum lipid levels. Further analysis of a larger study group with Stu I and alternative polymorphic restriction enzymes is warranted, to confirm this biologically plausible result.  相似文献   

11.
A Leydig cell culture system has been used to study the in vitro modulation by luteinizing hormone (LH) of steroidogenesis in Leydig cells isolated from mice and immature rats. Mouse Leydig cells precultured for 24 h in the presence of increasing concentrations of LH (1 ng-1 microgram/ml) showed a dose-dependent decrease of the maximal LH-stimulated testosterone production. After pretreatment with 1 microgram LH/ml, maximal LH-stimulated testosterone production. After production in the presence of excess 20 alpha-hydroxycholesterol (a cholesterol side-chain cleavage substrate) were reduced to approx. 50% of control values. The possible site of action of LH is probably prior to pregnenolone, because testosterone production in the presence of excess pregnenolone was not affected by the LH pretreatment. Immature rat Leydig cells showed no decrease of maximal steroid production after 24 h culture in the presence of 1 microgram LH/ml. These results indicate that the regulation of the cholesterol side-chain cleavage activity during long-term LH action is different in mouse and rat Leydig cells. The properties of the cholesterol side-chain cleavage enzyme in mouse and rat Leydig cells were further investigated with different hydroxylated cholesterol derivatives as substrates. Steroid production by mouse Leydig cells in the presence of (22R)-22 hydroxycholesterol was similar as in the presence of LH. In contrast, steroidogenesis in rat Leydig cells in the presence of (22R)-22 hydroxycholesterol was at least 10-fold higher than in the presence of LH. It is concluded that the cholesterol side-chain cleaving enzyme in the mouse Leydig cell operates at its maximal capacity during short-term LH stimulation and can be inhibited after long-term LH action, whereas in the rat Leydig cell only a fraction of the potential activity is used during short-term LH stimulation, which is not affected during long-term LH action.  相似文献   

12.
13.
A simple and highly specific method for estimating the cholesterol esterase activity is suggested. Cholesterol esterase (EC 3.1.1.13) is incubated with the emulsified substrate, cholesteryl-o-coumarate, at pH 6.6 to yield o-coumaric (trans-2-hydroxycinnamic) acid detected fluorimetrically (lambda exc 363 nm, lambda em 494 nm) at pH 10.4. The fluorescence associated with the unhydrolyzed substrate is negligible. Cholesteryl-o-coumarate is not hydrolyzed by pancreatic lipase, trypsin, or chymotrypsin under the above conditions. About 1 microgram of pancreatic cholesterol esterase can be determined upon 15 min incubation. The substrate was synthesized by condensation of o-acetoxy-trans-cinnamic acid with cholesterol using the di-tert-butyl pyrocarbonate--pyridine--4-dimethylaminopyridine system.  相似文献   

14.
Testicular macrophages secrete 25-hydroxycholesterol, which can be converted to testosterone by neighboring Leydig cells. The purposes of the present studies were to determine the mode of production of this oxysterol and its long-term effects on Leydig cells. Because oxysterols are produced both enzymatically and by auto-oxidation, we first determined if testicular macrophages possess cholesterol 25-hydroxylase mRNA and/or if macrophage-secreted products oxidize cholesterol extracellularly. Rat testicular macrophages had 25-hydroxylase mRNA and converted 14C-cholesterol to 14C-25-hydroxycholesterol; however, radiolabeled cholesterol was not converted to 25-hydroxycholesterol when incubated with medium previously exposed to testicular macrophages. Exposure of Leydig cells to 10 microg/ml of 25-hydroxycholesterol, a dose within the range known to result in high basal production of testosterone when tested from 1 to 6 h, completely abolished LH responsiveness after 2 days of treatment. Because 25-hydroxycholesterol is toxic to many cell types at 1-5 microg/ml, we also studied its influence on Leydig cells during 4 days in culture using a wide range of doses. Leydig cells were highly resistant to the cytotoxic effects of 25-hydroxycholesterol, with no cells dying at 10 microg/ml and only 50% of cells affected at 100 microg/ml after 2 days of treatment. Similar conditions resulted in 100% death of a control lymphocyte cell line. These results demonstrate that 1) testicular macrophages have mRNA for cholesterol 25-hydroxylase and can convert cholesterol into 25-hydroxycholesterol, 2) macrophage-conditioned medium is not capable of auto-oxidation of cholesterol, 3) Leydig cells are highly resistant to the cytotoxic influences of 25-hydroxycholesterol, and 4) long-term treatment with high doses of 25-hydroxycholesterol results in loss of LH responsiveness. These results support the concept that testicular macrophages enzymatically produce 25-hydroxycholesterol that not only is metabolized to testosterone by Leydig cells when present at putative physiological levels but also may exert inhibitory influences on Leydig cells when present for extended periods at very high concentrations that may occur under pathological conditions.  相似文献   

15.
In 20 healthy patients the cholesterol esterase activity in duodenal content was examined. The cholesterol ether of o-coumaric acid was used as a substrate. Increase of the cholesterol esterase activity was noted after stimulation of pancreozymin and secretin. The cholesterol esterase concentration in duodenal content changes in more wide range than the index of the output. The cholesterol esterase output is the most significant informative index. There is not any cholesterol esterase activity in bile, gastric juice and saliva. The results obtained have shown that the main part of the estimated cholesterol esterase activity has a pancreatic base. The investigation of the cholesterol esterase activity in duodenal content may be used in the study of the exocrine function of pancreas.  相似文献   

16.
p-Nitrophenyl and cholesteryl-N-alkyl carbamates are good inhibitors of porcine pancreatic cholesterol esterase-catalyzed hydrolysis of p-nitrophenyl butyrate. p-Nitrophenyl-N-butyl and N-octyl carbamates (compounds 1 and 2, respectively) are potent active site-directed irreversible inhibitors of this enzyme. The inhibition of cholesterol esterase by compound 1 or 2 shows saturation kinetics with increasing inhibitor concentration. The activity of cholesterol esterase in the presence of compound 1 or 2 can be protected by the competitive inhibitor, phenylboronic acid. First-order decreases in cholesterol esterase activity effected by compound 1 or 2 are also observed in the presence of taurocholate/phosphatidylcholine micelles. Dilution of the inhibited enzyme results in a gradual return of activity, the rate of which is increased in the presence of the nucleophile hydroxylamine. Hence, inhibition of cholesterol esterase-catalyzed hydrolysis of p-nitrophenyl butyrate by compound 1 or 2 in the aqueous or micellar phase occurs via a carbamyl-cholesterol esterase mechanism. The turnover of the butyl carbamylenzyme is increased in the presence of micelles, which indicates that the micelles have a direct effect on the catalytic activity of the enzyme. However, this effect is dependent on the structure of the substrate as the turnover of the octyl carbamylenzyme is unaffected in the presence of micelles. A comparison of the second-order rate constants for the inhibition of cholesterol esterase by compound 1 or 2 indicates that the octyl derivative is the more potent inhibitor. Cholesteryl-N-alkyl carbamates do not carbamylate cholesterol esterase but instead act as reversible inhibitors. This is due to the stability of cholesteryl carbamates relative to p-nitrophenyl carbamates.  相似文献   

17.
Rat pancreas cholesterol esterase has been immunologically compared with rat intestinal cholesterol esterase. Monospecific precipitating antisera against purified rat pancreas cholesterol esterase were produced in rabbits. Immune IgG, isolated from the antisera, crossreacted with the cholesterol esterase of intestine in the immunodiffusion assay with a pattern of complete identity. Titration of the pancreatic and intestinal enzyme with immune IgG revealed a maximum precipitation (99 and 98%) and maximum inhibition of enzyme activity (66 and 65%) when the ratio of enzyme activity (units) to immune IgG (mg) was 4.1 and 4.0, respectively. The immunological identity demonstrated in these studies lend support to the concept that intestinal cholesterol esterase is derived from the pancreatic enzyme. In additional studies, the immune IgG was employed in the immunodiffusion assay to test for cross-reaction with cholesterol esterases prepared from rat aorta, adrenal, and liver and with cholesterol esterases prepared from the pancreas of rabbit, dog, cow, and guinea pig. There was no evidence of cross-reaction in any case. Further, cholesterol esterase prepared from the pancreas of rabbit, dog, and cow retained full enzymatic activity when titrated with immune IgG.  相似文献   

18.
The location of cholesterol esterase in rabbit intestine was re-evaluated. In three different experiments that were designed to eliminate contaminating mucus and pancreatic enzymes from the lumen of the small intestine, it was observed that the activities of cholesterol esterase and amylase in intestinal cytosol and whole homogenate decreased in parallel fashion. After the mucus was carefully wiped from the intestinal mucosa prior to the preparation of cytosol, amylase and cholesterol esterase activities decreased sevenfold. The recovery of the total activity of both enzymes in the cytosol was approximately 15%. When the lumen of the small intestine was filled with phosphate buffer and incubated at 37 degrees C for 20 min, cholesterol esterase and amylase activities in the cytosol prepared from this segment were further decreased. Moreover, the activities of amylase and cholesterol esterase were completely recovered from the lumen. Amylase and cholesterol esterase activities in the cytosol were eliminated if dithiothreitol was used as a mucolytic agent to prepare intestinal mucosa for the isolation of intestinal cells. In whole homogenates prepared from these intestinal segments, approximately 10-15% of the total cholesterol esterase activity remained. This activity, which could not be accounted for by pancreatic contamination, was associated with intestinal nuclei and cellular debris. Progesterone, ethinyl estradiol, and 25-hydroxycholesterol regulated microsomal acyl CoA:cholesterol acyltransferase activity and caused similar directional changes in the rate of cholesteryl ester synthesis in isolated intestinal cells. These same sterols, however, failed to affect cytosolic cholesterol esterase activity in vitro.  相似文献   

19.
An esterase hydrolyzing Tween 80 (polyoxyethylene sorbitan monooleate) was purified from sonicated cell lysates of Mycobacterium smegmatis ATCC 14468 by DEAE-cellulose, Sephadex G-150, phenyl Sepharose, and diethyl-(2-hydroxypropyl) aminoethyl column chromatography and by subsequent preparative polyacrylamide gel electrophoresis. The molecular weight was estimated to be 36,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 41,000 by gel filtration on a Sephadex G-150 column. The esterase contained a single polypeptide. The esterase was stable to heat treatment at 100 degrees C and to a wide range of pH. The temperature and pH optima for the hydrolysis of Tween 80 were 50 degrees C and 8.3, respectively. The esterase had a narrow substrate specificity; it exhibited a high activity only on compounds having both polyoxyethylene and fatty acyl moieties, such as Tweens. Monoacylglyceride was hydrolyzed more slowly by this esterase and this enzyme exhibited a nonspecific esterase activity on p-nitrophenyl acyl esters, especially those having short chain acyl moieties. The Km and Vmax were 19.2 mM and 1,670 mumol/min per mg of protein for Tween 20, 6.6 mM and 278 mumol/min per mg of protein for Tween 80, and 0.25 mM and 196 mumol/min per mg of protein for p-nitrophenyl acetate, respectively. Observations of the effects of various chemical modifications on the activity of the esterase indicated that tyrosine, histidine, arginine, and methionine (with tryptophan) residues may be active amino acids which play important roles in the expression of Tween 80-hydrolyzing activity of the enzyme.  相似文献   

20.
Mouse Leydig cells were obtained by dispersion of testes of adult animals (aged 6-15 months) with a neutral protease from B. polymxa (dispase; EC 3.4.24.4). The crude Leydig cell suspension was purified by centrifugation on a discontinuous Percoll gradient using a special centrifugation procedure similar to elutriation. The crude cell suspension obtained from 50 testes could be processed in one run. The combination of these two methods yielded 320000 +/- 53000 Leydig cells/testis (n = 554 testes). The purity of the Leydig cell fraction was greater than or equal to 95% (nucleated cells) based on morphological and histochemical (staining for naphthyl esterase) identification. The purified Leydig cells showed an excellent ultrastructural appearance. More than 98% excluded trypan blue. In the presence of NADPH, testosterone biosynthesis was increased only 1.15 +/- 0.1-fold yielding a "quality factor" of 34.8. Maximal hCG doses induced 10(6) purified Leydig cells to produce 5 nmol testosterone/hr. (40-fold stimulation in comparison to basal values). The Leydig cells showed 43100 +/- 2500 LH/hCG receptors and an association constant of Ka = 1.95 x 10(9) M-1. Due to the reproducibility of the method, to the yield as well as to the morphological and functional state of the purified Leydig cells at least 25% of laboratory animals could be saved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号