首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Physiological recordings were made of the compound action potential from the round window and single neurons in the cochlear ganglion of normal adult chickens (Gallus domesticus). The compound action potential threshold to tone bursts decreased from approximately 42 dB at 0.25 kHz to 30 dB between 1 and 2 kHz and then increased to 51 dB at 4 kHz. Most of the cochlear ganglion cells had characteristic frequencies below 2 kHz and the thresholds of most neurons were roughly 30–35 dB lower than the compound action potential thresholds. At any given characteristic frequency, thresholds varied by as much as 60 dB and units with the highest thresholds tended to have the lowest spontaneous rates. Spontaneous discharge rates ranged from 0 to 200 spikes/s with a mean rate of 86 spikes/s. Interspike interval histograms of spontaneous activity often contained regular peaks with the time interval between peaks approximately equal to 1/(characteristic frequency). Tuning curves were sharply tuned and V-shaped with approximately equal slopes to the curves above and below characteristic frequency. Q10dB and Q30dB values for the tuning curves increased with characteristic frequency. Post stimulus time histograms showed sustained firing during the stimulus and were characterized by a slight-to-moderate peak at stimulus onset. Most units showed vigorous phase-locking to tones at characteristic frequency although the degree of phase-locking declined sharply with increasing characteristic frequency. Discharge rate-level functions at characteristic frequency had a mean dynamic range of 42 dB and a mean saturation firing rate of 327 spikes/s. In general, the firing patterns of cochlear ganglion neurons are similar in most respects to those reported in other avians, but differ in several important respects from those seen in mammals.Abbreviations CF characteristic frequency - CAP compound action potential  相似文献   

2.
In the present study three groups of cochlear ganglion neurons were detected which differed in respect to their tone-evoked and spontaneous activity: auditory units which showed an irregular spontaneous discharge, non-auditory neurones with regular activity and such with an irregular spontaneous discharge pattern. Electrically-elicited contractions of the middle-ear muscle influenced the tone-evoked and/or the spontaneous activity of the auditory and the non-auditory neurones with irregular spontaneous discharge but not, however, the regularly firing units. Similar results were obtained with imposed perilymph movements in the cochlea (evoked via the vestibular system. Fractions of all three groups of cochlear ganglion neurones were responsive to direct deformations of the membraneous lagena. Several (auditory and non-auditory) units with irregular discharge were excited during a basilar membrane displacement towards scala vestibuli whereas a basilar membrane motion towards scala tympani resulted in a decrease of the discharge rate. A few units showed a different reaction. The results provide evidence that the neurones with periodic spontaneous discharge innervate the lagena and that this sense organ has no auditory significance in birds. The peripheral origin of the 'non-auditory' neurones with irregular spontaneous activity remains undecided and might be the macula lagenae or the apical portion of the basilar papilla.  相似文献   

3.
Summary Gap-detection thresholds were determined for single units in the cochlear ganglion and in auditory nerve fibres of the starling from responses to two broad-band noise bursts separated by a temporal gap of between 0.4 and 204.8 ms. All 35 units showed a threshold within the range of gap sizes tested. The median minimum-detectable gap was 12.8 ms with the minimum being 1.6 ms. A multiple regression analysis revealed that the size of the minimum-detectable gap was not significantly correlated with the neuron's CF, with its sharpness of tuning as given by its bandwidth 10 dB above threshold, or with its Q10dB value. Only the level of stimulation above the neuron's threshold showed a significant negative correlation with the size of the minimum-detectable gap. These results are discussed with respect to theoretical considerations of limits posed on temporal resolution by the characteristics of peripheral filters. These findings are also discussed in the context of the coding of gaps at different levels of the starling's auditory system and in relation to psychoacoustic results in the starling on gap detection and time resolution described by temporal modulation transfer functions.  相似文献   

4.
Extracellular spikes were recorded from cell bodies of sympathetic preganglionic neurones in spinal segments T1-T3 of the cat. Each neurone was identified by its antidromic response to electrical stimulation of the sympathetic chain and was found in histological sections to lie within the intermediolateral nucleus. Physiological properties studied in detail included basal activity, spike configuration, and latency of antidromic activation. Also studied, in tests with paired stimuli, were the threshold interstimulus interval evoking two responses, as well as changes in amplitude and latency of the second spike which occurred at intervals near this threshold. Approximately 60% of the units studied were spontaneously active, the rest were silent. Spontaneous activity was characterized by a slow (mean = 3.1 +/- 2.6 (SD) spikes/s), irregular pattern of discharge. With approximately one-third of the cases there was a periodic pattern of discharge in phase with oscillations in blood pressure. This correlation of phasic activity suggests that many of the units studied were involved specifically in cardiovascular function. Silent and spontaneously active units could not be differentiated on the basis of latency of antidromic activation or threshold interstimulus interval; mean latency for the two groups was 7.2 +/- 4.9 ms, mean threshold interval was 6.4 +/- 4.7 ms. Thus, with the exception of basal activity, the physiological properties studied failed to indicate more than a single population of neurones. These results therefore suggest that the sympathetic preganglionic neurones in the intermediolateral nucleus subserving varied autonomic functions share overlapping physiological properties, and that functional differentiation of these neurones may be based on differences in synaptic inputs.  相似文献   

5.
Single units which discharged with regular spontaneous rhythms without intentional stimulation were observed in the ventral nerve cord by intracellular recording close to the sixth abdominal ganglion. These units were divided into two groups: group A units in which interspike intervals varied less than 10 msec.; group B units in which interspike intervals varied within a range of 10 to 30 msec. Group A units maintained "constant" interspike intervals and could not be discharged by sensory inputs, while the majority of group B units could be discharged by appropriate sensory nerve stimulation. Both group A and B units discharged to direct stimulation when the stimulating and recording electrodes were placed in the same ganglionic intersegment, and directly evoked single spikes reset the spontaneous rhythm. In group B units, presynaptic volleys reset the spontaneous rhythm of some units; but in others, synaptically evoked spikes were interpolated within the spontaneous rhythm without resetting. The phenomenon of enhancement could also be demonstrated in spontaneously active units as a result of repetitive stimulation. It is concluded that endogenous pacemaker activity is responsible for much of the regular spontaneous firing observed in crayfish central neurons, and that interaction of evoked responses with such pacemaker sites can produce a variety of effects dependent upon the anatomical relationships between pacemaker and synaptic regions.  相似文献   

6.
Statistical properties of spontaneous firing were studied in 79 single auditory units located in the dorsal medullar (cochlear) nucleus of unanaesthetized curarized marsh frogs (Rana ridibunda). The great majority of these units showed irregular spontaneous activity with mean rates in the range 1–30 spikes · s–1. In 53% of the cells the auto-renewal functions of the spontaneous activity monotonically rose to an asymptotic value, but 41% of the cells produced auto-renewal functions which showed a pronounced peak after a dead-time period. Five low-frequency auditory neurons revealed periodic firing in the absence of controlled stimuli. The preferred period did not correspond to the unit's best frequency but demonstrated a modest correlation with the best modulation frequency of the unit's response to amplitude-modulated tones and with the duration of the after-onset dip in peri-stimulus time histograms.Abbreviations AM amplitude modulation - ARF auto-renewal function - DMN dorsal medullar nucleus - PST peristimulus time - SA spontaneous activity - TID time interval distribution - RMG response modulation gain  相似文献   

7.
Infrasound sensitive neurones in the pigeon cochlear ganglion   总被引:1,自引:0,他引:1  
Summary The cochlear ganglion of the pigeon contains neurones sensitive to sound frequencies below 20 Hz (infrasound). They are characterized by a high spontaneous discharge rate (mean 115 imp/s). In contrast to ordinary auditory units, the mean discharge rate of these neurones is not increased by infrasound or sound stimuli, but modulated by these stimuli at levels comparable to the behavioural thresholds of pigeon reported by Kreithen and Quine (1979).  相似文献   

8.
A statistical analysis has been made of the interaction of the auditory cortex units in alert cats with chronically implanted electrodes. Three neurones with an amplitude ratio of 4:2:1 were singled out from the multineuronal activity. The dependence between the firing of two neurones was determined by the cross interval histograms. The relationships between 78 pairs of units were studied in 26 three units microsystems. About a third of the studied pairs functioned independently. The number of pairs with one-way and two-way connections was about equal (26 and 30 respectively). The neurones which generated spikes of high and medium amplitude, had the largest number of two-way connections. One-way connections were equally represented in all the three neurones, though with regard to direction they depended on the amplitude characteristics of the spikes. In neurones with large and medium spikes, output connections predominated, while in neurones with small spikes input connections predominated considerably. The connection could be of inhibitory, excitatory or mixed type. The inhibitory type of connections was the most frequent occurrence (57 out of 86). At prolonged recording (6 to 16 min) of spike activity, most of the functional connections persisted.  相似文献   

9.
Dopamine, a neurotransmitter released by the lateral olivocochlear efferents, has been shown tonically to inhibit the spontaneous and sound-evoked activity of auditory nerve fibres. This permanent inhibition probably requires the presence of an efficient transporter to remove dopamine from the synaptic cleft. Here, we report that the dopamine transporter is located in the lateral efferent fibres both below the inner hair cells and in the inner spiral bundle. Perilymphatic perfusion of the dopamine transporter inhibitors nomifensine and N-[1-(2-benzo[b]thiophenyl)cyclohexyl]piperidine into the cochlea reduced the spontaneous neural noise and the sound-evoked compound action potential of the auditory nerve in a dose-dependent manner, leading to both neural responses being completely abolished. We observed no significant change in cochlear responses generated by sensory hair cells (cochlear microphonic, summating potential, distortion products otoacoustic emissions) or in the endocochlear potential reflecting the functional state of the stria vascularis. This is consistent with a selective action of dopamine transporter inhibitors on auditory nerve activity. Capillary electrophoresis with laser-induced fluorescence (EC-LIF) measurements showed that nomifensine-induced inhibition of auditory nerve responses was due to increased extracellular dopamine levels in the cochlea. Altogether, these results show that the dopamine transporter is essential for maintaining the spontaneous activity of auditory nerve neurones and their responsiveness to sound stimulation.  相似文献   

10.
Spontaneous unit activity in the visual cortex and its changes during stimulation by continuous light or flashes were investigated in waking rabbits. The study of distributions of adjacent intervals showed that the neurons differ in the ratio of burst (fast, with intervals of up to 15–40 msec) and nonburst (slow) activity and in the character of changes from one type of activity to the other. Of the total number of spikes 63% were outside bursts; the ratio of their number to the number of spikes within bursts consisting of two or of three or more spikes was 27:3:1. The relative stability of the burst structure of spontaneous activity and the limited number of spikes in them (on average 2.4) were demonstrated. Bursts of three or more spikes (mean 3.6) were irregular, and in 79% of them a longer interval (18.6±2.4 msec) was observed before the shortest interval (7.9±0.9 msec). Bursts of spikes of most neurons during photic stimulation contain more spikes with shorter intervals; they also began more frequently with the shortest interval, possibly signifying an increase in the steepness and amplitude of the EPSPs lying at their basis. However, in 20% of neurons spontaneous bursts included more spikes and with shorter intervals than bursts evoked by flash stimulation.Research Institute of Psychiatry, Ministry of Health of the RSFSR, Moscow. Translated from Neirofiziologiya, Vol. 11, No. 4, pp. 311–320, July–August, 1979.  相似文献   

11.
Pteronotus parnellii uses the second harmonic (61-62 kHz) of the CF component in its orientation sounds for Doppler-shift compensation. The bat's inner ear is mechanically specialized for fine analysis of sounds at about 61-62 kHz. Because of this specialization, cochlear microphonics (CM) evoked by 61-62 kHz tone bursts exhibit prominent transients, slow increase and decrease in amplitude at the onset and cessation of these stimuli. CM-responses to 60-61 kHz tone bursts show a prominent input-output non-linearity and transients. Accordingly, a summated response of primary auditory neurones (N1) appears not only at the onset of the stimuli, but also at the cessation. N1-off is sharply tuned at 60-61 kHz, while N1-on is tuned at 63-64 kHz, which is 2 kHz higher than the best frequency of the auditory system because of the envelope-distortion originating from sharp mechanical tuning. Single peripheral neurones sensitive to 61-62 kHz sounds have an unusually sharp tuning curve and show phase-locked responses to beats of up to 3 kHz. Information about the frequencies of Doppler-shifted echoes is thus coded by a set of sharply tuned neurones and also discharges phase-locked to beats. Neurones with a best frequency between 55 and 64 kHz show not only tonic on-responses but also off-responses which are apparently related to the mechanical off-transient occuring in the inner ear and not to a rebound from neural inhibition.  相似文献   

12.
Bibikov NG  Dymov AB 《Biofizika》2007,52(6):1073-1086
The analysis of statistical characteristics of spontaneous activity (distribution of interpulse intervals, hazard function, autocorrelation function, autocorrelation function for a process with shifted intervals, interdependence between adjoining intervals) for 123 units located in the cochlear nucleus of the frog has been performed. In the majority of cells, this activity was distinct from the poissonic process, and in some cases firing periodicity was noticed. Besides, deviations of the spontaneous activity from the renewal process were usually observed. A reliable positive correlation of interpulse intervals was typical for the majority of the units, though in some cases a negative correlation of short adjoining intervals was revealed. The data indicate the occurrence of effects of memory in the activity of single units of the acoustical system.  相似文献   

13.
Hair cells in the basal, high frequency region (>1100 Hz) of the chicken cochlea were destroyed with kanamycin (400 mg/kg/d × 10 d) and allowed to regenerate. Afterwards, single unit recordings were made from cochlear ganglion neurons at various times post-treatment. During the first few weeks post-treatment, only neurons with low characteristic frequencies (<1100 Hz) responded to sound. Despite the fact that the low frequency region of the cochlea was not destroyed, neurons with low characteristic frequencies had elevated thresholds, abnormally broad U-shaped or W-shaped tuning curves and low spontaneous discharge rates. At 2 days post-treatment, the spontaneous discharge rates of some acoustically unresponsive units fluctuated in a rhythmical manner. As recovery time increased, thresholds decreased, tuning curves narrowed and developed a symmetrical V-shape, spontaneous rate increased and neurons with higher characteristic frequencies began to respond to sound. In addition, the proportion of interspike interval histograms with regularly spaced peaks increased. These improvements progressed along a low-to-high characteristic frequency gradient. By 10–20 weeks post-treatment, the thresholds and tuning curves of neurons with characteristic frequencies below 2000 Hz were within normal limits; however, the spontaneous discharge rates of the neurons were still significantly lower than those from normal animals.Abbreviations KM kanamycin - BrdU bromodeoxyuridine - CF characteristic frequency - CAP compound action potential - ISI interspike interval  相似文献   

14.
Taste systems of the petrosal ganglion of the rat glossopharyngeal nerve   总被引:1,自引:1,他引:0  
Single unit recordings were taken from sensory ganglion cellsin the petrosal ganglion (PG) of the glossopharyngeal nerveof the rat. These taste units were examined with respect tospontaneous and evoked discharge patterns and responsivenessto a wide variety of chemical compounds, most of natural occurrence.Spontaneous activity patterns, with few exceptions, tended tobe extremely irregular with both bursting (clusters of 2–3spikes) and grouping (large groups of spikes as in evoked discharges).Most interspike interval histograms of spontaneous activitywere multimodal, similar to rat geniculate ganglion (GG) units.Evoked discharges usually displayed grouping of spikes, andlong latencies of onset and persistence of discharge after rinsewere sometimes seen. Little response was shown to nucleotidesor salts. Units responsive to amino acids tended to show largedischarge to only one or two amino acids; and the most responsiveamino acid usually varied from cell to cell. Units responsiveto alkaloids only responded to a few alkaloids with atropineand quinine being the most stimulatory. Units responsive toacids only discharged to a few of the acids tested and oftenacids of low pH elicited no discharge. Saccharin activated unitsresponsive to both sugar and alkaloids. A few units highly responsiveto both sugar and alkaloids were seen. The units were placedinto four clusters on the basis of chemicals activating themand certain neurophysiological characteristics: PG salt units,PG acid units and, tentatively, amino acid (sugar) units andX (alkaloid and alkaloid plus) units. The PG salt units didnot show the exclusive sensitivity to sodium and lithium compoundsas did the GG salt units. The PG acid units could also be differentiatedfrom the GG acid units. The petrosal amino acid and X units,on the other hand, could not be differentiated from similarunits in the rat GG.  相似文献   

15.
Summary We have labelled single physiologically-characterized primary auditory neurones in the bobtail lizard and traced them to their innervation sites within the basilar papilla. The distribution of stained fibre terminals shows that low frequencies (up to a characteristic frequency, CF, of about 0.8 kHz) are processed in the smaller apical segment of the papilla and medium to high frequencies in the much longer basal segment. It is possible that the frequency ranges of these segments partly overlap in individual animals.The tonotopic organization of the basal segment is well described by an exponential relationship; the CF increases towards the basal end. Systematic, peripheral recordings from the auditory nerve very close to the papilla confirm this tonotopicity for the basal segment.The apical segment of the papilla shows an unusual tonotopic organization in that the CF appears to increase across the epithelium, from abneural to neural. A tonotopicity in this direction has not previously been demonstrated in vertebrates.All stained neurones branched within the basilar papilla to innervate, typically, between 4 and 14 hair cells. The branching patterns of fibres innervating in the apical and basal papillar segment, respectively, show characteristic differences. Apical fibres tend to innervate hair cells with the same morphological polarity and often branch extensively along the segment. Basal fibres, in contrast, typically innervate about equal numbers of hair cells of opposing polarity and are more restricted in their longitudinal branching.Abbreviation CF characteristic frequency  相似文献   

16.
Application of desglycine-argininvasopressin (DG-AVP) differently influenced different types of cells of snail isolated central nervous system. In neurosecretory cells an increase of spontaneous impulse activity took place and, as a rule, bursts of impulses appeared, most often of synaptic origin, excluding PPa1 neurones and one of the neurosecretory cells of the left parietal ganglion. The increase of the bursts activity in these cells was based on the increase of the amplitude of membrane potential waves. Under the influence of neurosecretory cells system activation, EPSPs frequency and amplitude in secondary-sensory neurones increased, which led to a greater probability of the action potentials appearance. At prolonged action the spontaneous EPSPs in these cells began to group in bursts. Excitability and membrane resistance of these cells remained unchanged. DG-AVP had no influence on primary-sensory neurones and motoneurones.  相似文献   

17.
Statistical characteristics of spontaneous activity (distribution of interspike intervals, hazard function, autocorrelation function, autocorrelation function for the process with mixed intervals, and interdependence between adjoining intervals) were analyzed for 123 neurons of the frog medullar dorsal nucleus (homolog of the mammalian cochlear nucleus). In the majority of cells, this activity was distinct from the Poisson process, and firing periodicity was noticed in some cases. In addition, deviations of the spontaneous activity from the renewal process were usually observed. Weak yet reliable positive interspike-interval correlation was typical of most neurons; however, a negative correlation between short adjoining intervals was recorded for some units. These data suggest the effects of memory in the activity of single neurons of the auditory system.  相似文献   

18.
Telocytes (TCs) are typically defined as cells with telopodes by their ultrastructural features. Their presence was reported in various organs, however little is known about their presence in human trigeminal ganglion. To address this issue, samples of trigeminal ganglia were tested by immunocytochemistry for CD34 and examined by transmission electron microscopy (TEM). We found that TCs are CD34 positive and form networks within the ganglion in close vicinity to microvessels and nerve fibers around the neuronal–glial units (NGUs). TEM examination confirmed the existence of spindle-shaped and bipolar TCs with one or two telopodes measuring between 15 to 53 μm. We propose that TCs are cells with stemness capacity which might contribute in regeneration and repair processes by: modulation of the stem cell activity or by acting as progenitors of other cells present in the normal tissue. In addition, further studies are needed to establish if they might influence the neuronal circuits.  相似文献   

19.
ABSTRACT. In female Gryllus campestris L., three functional types of ascending auditory intemeurones have been studied by recording from them extracellularly in the split cervical connectives using suction electrodes. Type 1 neurones are characterized by an optimal sensitivity to the carrier frequency of the species calling song (4–5 kHz). They copy the syllable and pause structure of the call at all intensities. The patterned spike discharge is observable at least 8 dB above absolute threshold. With suprathreshold stimulation, the neurones exhibit maximal responses (number of spikes/chirp) around the carrier frequency. The intensity response curves are approximately linear in the range of 40–90 dB SPL. The envelope of each syllable is reflected by a corresponding change in the firing rate, and syllable periods of 24ms and longer are resolved. This type can be considered as a neural correlate for phonotactic behaviour of the female where the syllable period has been found to be the most important temporal parameter. Type 2 neurones are most sensitive in the range of 4–6 and 11–13 kHz. They copy the syllable and pause structure of the species calling song at low and moderate intensities. However, the spikes invade the intersyllable pauses, when stimulated with the calling song at higher intensities (above 85 dB). This is particularly apparent at the onset of a chirp series. The slope of the intensity—response curve mimics that of type 1 units. The neurones cannot follow syllable periods shorter than 32 ms. Type 3 neurones differ from types 1 and 2 by a rather broad-band sensitivity in the range of 3–16 kHz, and in copying the chirp as a whole. Even at low stimulus intensities, the intersyllable pauses are filled with spikes, and information about the syllable—pause structure is lost. Stimulation with suprathreshold intensities gives rise to a rather uniform, broad-band response without distinctive peaks. The intensity—response curve is characterized by a higher absolute threshold, and by the reduction in the response magnitude starting above 70–80 dB. These units are not suitable for copying the calling song temporal structure in detail, but would indicate the chirping rhythm. Their strong response in the range of the species courtship song carrier frequency make them suitable to copy the courtship song.  相似文献   

20.
Recordings were made in the chick cochlear nucleus from neurons that are sensitive to very low frequency sound. The tuning, discharge rate response and phase-locking properties of these units are described in detail. The principal conclusions are: 1. Low frequency (LF) units respond to sound frequencies between 10-800 Hz. Best thresholds average 60 dB SPL, and are occasionally as low as 40 dB SPL. While behavioral thresholds in this frequency range are not available for the domestic chick, these values are in good agreement with the pigeon behavioral audiogram (Kreithen and Quine 1979). 2. About 60% of the unit population displays tuning curves resembling low-pass filter functions with corner frequencies between 50-250 Hz. The remaining units have broad band-pass tuning curves. Best frequencies range from 50-300 Hz. 3. Spontaneous discharge rate was analyzed quantitatively for LF units recorded from nucleus angularis. The distribution of spontaneous rates for LF units is similar to that seen from higher CF units (300-5000 Hz) found in the same nucleus. However, the spontaneous firing of LF units is considerably more regular than that of their higher CF counterparts. 4. Low frequency units with low spontaneous rates (SR's less than 40 spikes/s) show large driven rate increases and usually saturate by discharging once or twice per stimulus cycle. Higher SR units often show no driven rate increases. 5. All LF units show strong phase-locking at all excitatory stimulus frequencies. Vector strengths as high as 0.98 have been observed at moderate sound levels. 6. The preferred phase of discharge (relative to the sound stimulus) increases with stimulus frequency in a nearly linear manner. This is consistent with the LF units being stimulated by a traveling wave. The slope of these phase-frequency relationships provides an estimate of traveling wave delay. These delays average 7.2 ms, longer than those seen for higher CF auditory brainstem units. These observations suggest that the peripheral site of low frequency sensitivity is the very distal region of the basilar papilla, an area whose morphology differs significantly from the rest of the chick basilar papilla. 7. LF units are described whose response to sound is inhibitory at frequencies above 50 Hz.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号