首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mitochondrial protein synthesis was measured in line CHO cells after phases of the cell cycle were synchronized by isoleucine deprivation or mitotic selection. Maximum incorporation of [3H] leucine into mitochondrial polypeptides occurred within 2 hours after isoleucine was added to initiate G1 traverse. In cells synchronized in G1 by mitotic selection, the rate of mitochondrial protein synthesis was fairly constant throughout the cell cycle. SDS-polyacrylamide gel electrophoretic profiles of labeled mitochondrial polypeptides were similar in cells synchronized by either isoleucine deprivation or mitotic selection. Obvious changes in the distribution of polypeptides were not detected during various phases of the cell cycle. The increased rate of incorporation of [3H] leucine into mitochondrial polypeptides after reversal of G1-arrest may indicate that mitochondrial protein synthesis and possibly mitochondrial biogenesis are synchronized in CHO cells deprived of isoleucine.  相似文献   

2.
[3H]leucine-labeled proteins synthesized in BHK-21 cells infected with Semliki Forest virus were fractionated by polyacrylamide gel electrophoresis (PAGE). Cellular and virus-specific proteins were identified by difference analysis of the PAGE profiles. The specific activity of intracellular [3H]leucine was determined. Two alterations of protein synthesis, which develop with different time courses, were discerned. (i) In infected cultures an inhibition of overall protein synthesis to about 25% of the protein synthesis in mock-infected cultures develops between about 1 and 4 h postinfection (p.i.). (ii) The relative amount of virus-specific polypeptides versus cellular polypeptides increases after infection. About 80% of the proteins synthesized at 4 h p.i. are cellular proteins. Since significant amounts of nontranslocating ribosomes in polyribosomes were not detected up to 7 h p.i., the inhibition of protein synthesis is not caused by inactivation of about 75% of all polyribosomes but by a decreased protein synthetic activity of the majority of polyribosomes. Indirect evidence indicates that an inhibition of elongation and/or release of protein synthesis develops in infected cells, which is sufficient to account for the observed inhibition of protein synthesis. Inhibition of over-all protein synthesis developed when virus-specific RNA began to accumulate at the maximal rate. This relationship was observed during virus multiplication at 37, 30, and 25 C. A possible mechanism by which synthesis of virus-specific RNA in the cytoplasm could inhibit cellular protein synthesis is discussed. Indirect evidence and analysis of polyribosomal RNA show that the increased synthesis of virus-specific protein is brought about by a substitution of cellular by viral mRNA in the polyribosomes.  相似文献   

3.
The effects of retinoic acid (RA) on cell proliferation, activity of acid phosphatase, protein synthesis and methionine uptake were studied in transformed murine LPA cells. Early inhibition of protein synthesis was demonstrated under experimental conditions in which the rate of cell proliferation was diminished and non-specific effects of vitamin action could be excluded. Measurements of l-methionine uptake revealed a decrease to approximately one-half of that in control cultures after treatment with RA at the concentrations of 5 × 10?5 M and 10?5 M.  相似文献   

4.
《Insect Biochemistry》1990,20(1):37-50
Cellular (non-cuticular) polypeptides were isolated from mid-instar larval epidermis incubated in the presence or absence of 20-hydroxyecdysone (20HE) for 14–16 h in vitro. Polypeptides synthesized during the last few hours of incubation were labelled with [35S]methionine, separated in cell lysates by two-dimensional polyacrylamide gel electrophoresis and detected fluorographically. Cells incubated with hormone incorporated 28% more label into polypeptide. The synthesis of over 250 polypeptides was detected in total cell lysates. Of these, 54 showed an altered level of synthesis in response to 20HE treatment. The synthesis of most (33) was depressed. The relative synthetic rate of most “down-regulated” 20HE-sensitive polypeptides began to drop at 10−3 μg/ml whereas that of most “up-regulated” polypeptides increased only at concentrations above 10−1 μg/ml. An early response to 20HE, involving the de novo synthesis of a 43 kDa polypeptide, was first detectable after 2 h of exposure to hormone, and peaked after 4 h. The synthesis of this 43 kDa polypeptide was selectively enhanced by the addition of 10−2 μg/ml cycloheximide to medium containing 20HE. The long-term effect (12–16 h) of 20HE on polypeptide synthesis in subcellular fractions of the epidermis was also examined. Polypeptide synthesis found in the nuclear, mitochondrial-lysosomal, microsomal and soluble fractions changed in response to 20HE. It appears that 20HE influences epidermal behaviour predominantly through its ability to modulate the synthetic rate of many cellular polypeptides, rather than by turning off the synthesis of a few pre-existing ones and switching on that of a few new ones.  相似文献   

5.
A subnuclear fraction has been isolated from HeLa S3 nuclei after treatment with high salt buffer, deoxyribonuclease, and dithiothreitol. This fraction retains the approximate size and shape of nuclei and resembles the nuclear matrix recently isolated from rat liver nuclei. Ultrastructural and biochemical analyses indicate that this structure consists of nonmembranous elements as well as some membranous elements. Its chemical composition is 87% protein, 12% phospholipid, 1% DNA, and 0.1% RNA by weight. The protein constituents are resolved in SDS- polyacrylamide slab gels into 30-35 distinguishable bands in the apparent molecular weight range of 14,000 - 200,000 with major peptides at 14,000 - 18,000 and 45,000 - 75,000. Analysis of newly synthesized polypeptides by cylindrical gel electrophoresis reveals another cluster in the 90,000-130,000 molecular weight range. Infection with adenovirus results in an altered polypeptide profile. Additional polypeptides with apparent molecular weights of 21,000, 23,000, and 92,000 become major components by 22 h after infection. Concomitantly, some peptides in the 45,000-75,000 mol wt range become less prominent. In synchronized cells the relative staining capacity of the six bands in the 45,000-75,000 mol wt range changes during the cell cycle. Synthesis of at least some matrix polypeptides occures in all phases of the cell cycle, although there is decreased synthesis in late S/G2. In the absence of protein synthesis after cell division, at least some polypeptides in the 45,000- 75,000 mol wt range survive nuclear dispersal and subsequent reformation during mitosis. The possible significance of this subnuclear structure with regard to structure-function relationships within the nucleus during virus replication and during the life cycle of the cell is discussed.  相似文献   

6.
Acrylamide gel electrophoresis in the presence of sodium lauryl sulfate and autoradiography of dried gels were used to detect incorporation of [14C]acetate into specific polypeptides of developing cells. Twenty-four polypeptides showed changes in net rate of synthesis during light-induced aggregation and sorogenesis, and 15 bands changed during KCl-induced encystment. Most of the changes during aggregation were common to three strains of P. pallidum, but different from those exhibited by D. discoideum. They failed to occur if the cells were maintained in darkness, and the pattern of changes was altered by sublethal high temperature. A few changes were common to both aggregating and encysting cells, and to stalkforming cells induced by cyclic AMP. A pulse-chase experiment indicated that all detectable increases in net synthesis were caused by alterations in actual synthesis rather than in degradation. It is suggested that the observed changes in synthesis may be essential to the correlated pathways of cellular differentiation.  相似文献   

7.
Total and neosynthesized proteins of periwinkle cell suspensions (Catharanthus roseus) were first investigated in cells grown in a 2,4-D-containing medium. Analysis of total (silver-stained) proteins by two-dimensional gel electrophoresis revealed that the levels of seventeen polypeptides were altered during the growth cycle of the cells. Analysis of in vivo [35S]-methionine labeled polypeptides revealed differences in the synthesis of at least 35 polypeptides. Three polypeptides with molecular masses of 30, 35 and 39 kDa appeared to be specific markers of the early stationary phase. In a second sequence of experiments, cells were grown in a 2,4-D-free medium. Alterations in protein synthesis were observed: several polypeptides were expressed earlier in the 2,4-D-starved cells than in control cells; the synthesis of at least two specific polypeptides was increased in cells grown in 2,4-D-free medium, whereas the synthesis of three other polypeptides (molecular masses 33, 34 and 52.5 kDa) was switched on in these cells. As previous studies showed that 2,4-D depletion increased the alkaloid production in C. roseus cells, the present results may suggest that these polypeptides are implicated in the regulation of the alkaloid pathway.  相似文献   

8.
Sertoli cell cultures were prepared from the testes of 20-day-old rats. The proteins which were secreted by the cells into the culture medium were labeled with [3H]leucine or l-[3H]fucose. The proteins were concentrated by ultrafiltration and analysed by polyacrylamide slab gel electrophoresis (PAGE) in the presence of sodium dodecyl sulfate (SDS). Autofluorography of the gels at ?70 °C showed that the rat Sertoli cells synthesized and secreted at least 7 major polypeptides. The polypeptides had molecular weights ranging from 16 000 to 140 000 D. Proteins which were secreted from cultures of testicular fibroblasts and myoid cells had electrophoretic properties on SDS-PAGE which were different from Sertoli cell secreted proteins. Addition of FSH and testosterone to the Sertoli cell cultures increased the total synthesis and secretion of [3H]leucine-labeled proteins. No qualitative changes in the proteins as a result of hormone application could be detected. However, the synthesis of a polypeptide of molecular weight 48 000 was increased relative to the other secreted peptides if the cells were maintained in FSH and testosterone. The Sertoli cell secreted proteins were shown to be glycoproteins which can bind to ConA-Sepharose and can be labeled with [3H]fucose. Tunicamycin, a specific inhibitor of N-glycosylation, inhibited the secretion of [3H]proteins by 50% but had little effect on the intracellular protein synthesis.  相似文献   

9.
Treatment of mouse tissue-culture cells with nicotine concentrations of 1 mM or less had no significant effects on cell viability, morphology or protein synthesis, but higher concentrations resulted in both altered cell morphology (rounding and vacuolization) and alterations in [3H]leucine-labelled protein profiles on sodium dodecyl sulphate/polyacrylamide gels. The synthesis of a Mr-70 000 protein was increased more than 2-fold relative to that of other major cellular proteins in 3T3 and L929 cells treated with 5 mM-nicotine and in B16 cells treated with 10 mM-nicotine, and this protein appeared to be a soluble cytoplasmic polypeptide. The radiolabelling of several additional polypeptides (Mr 62 000 in 3T3 cells, and Mr 45 000 and 38 000 in B16 cells) was also stimulated by nicotine. The nicotine-enhanced Mr-70 000 protein was distinct, however, from a major cell stress/heat-shock protein whose synthesis was stimulated after incubation of cells at 43.5 degrees C for 20 min.  相似文献   

10.
Inoculation of the leafhopper cell line AC-20 with wound tumor virus resulted in a productive noncytopathic infection with no detectable alteration of cellular protein synthesis. Virus-specific polypeptide synthesis, detectable by 8 h postinoculation, increased in a linear fashion, reaching a peak (approximately 10 to 15% of total protein synthesis) by 48 h postinoculation. The rate of viral protein synthesis continued at this level for several days but declined, relative to cellular protein synthesis, as infected cells were passaged. By passage 10, the synthesis of viral polypeptides was reduced to a level approximately 5% of that observed at 48 h postinoculation. Viral protein synthesis was not stimulated by superinfection. Viral antigens and infectious virus persisted in the majority (greater than 90%) of cells in an infected culture even after more than 100 passages. The synthesis of wound tumor virus polypeptides in infected insect vector cells appears to be regulated in a coordinated and selective manner.  相似文献   

11.
The amphibian intestinal epithelium provides an excellent aid to study the developmental pattern of protein synthesis during cell life. The metamorphosing tissue demonstrates a kaleidoscope of cell degeneration, proliferation and differentiation. These events occur at specific period in a synchronized cell population. Two-dimensional gel electrophoresis, together with histological studies, has been used to examine the changes in the patterns of protein synthesis during intestinal epithelium substitution in metamorphosing Alytes obstetricians larvae. Of the approximately 280 polypeptides detected by this method, 24 show major changes in their patterns of synthesis. Five polypeptides are only synthesized during the larval period and are characteristic of the primary epithelium. Six polypeptides are characteristic of the secondary intestinal epithelium, as they are only detected in the newly-metamorphosed juvenile. Four polypeptides of Mr 81,000, 78,000, 42,000 (pI, 5.1 and 6.2) are characteristic of the epithelium crisis, as they are only detected during climax. They may represent molecular markers of growing stem cells. On the other hand, two polypeptides, of Mr 66,500 and 63,500, are not synthesized during this critical period, but are synthesized before and after metamorphosis. Seven polypeptides show changes in the relative rate of their synthesis during metamorphosis of the intestinal epithelium. Among them, the protein of Mr 105,000 which presents two isoelectric variants (pI 5.5 and 5.55) is immunologically related to villin. Expression of this protein has been studied using immunoblotting of cell extracts onto nitrocellulose and immunodetection in tissue sections. The protein is localized in the brush border of primary and secondary epithelium.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
[3H]leucine-labeled proteins synthesized in BHK-21 cells infected with Semliki Forest virus were fractionated by polyacrylamide gel electrophoresis (PAGE). Cellular and virus-specific proteins were identified by difference analysis of the PAGE profiles. The specific activity of intracellular [3H-A1leucine was determined. Two alterations of protein synthesis, which develop with different time courses, were discerned. (i) In infected cultures an inhibition of overall protein synthesis to about 25% of the protein synthesis in mock-infected cultures develops between about 1 and 4 h postinfection (p.i.). (ii) The relative amount of virus-specific polypeptides versus cellular polypeptides increases after infection. About 80% of the proteins synthesized at 4 h p.i. are cellular proteins. Since significant amounts of nontranslocating robosomes in polyribosomes were not detected up to 7 h p.i., the inhibition of protein synthesis is not caused by inactivation of about 75% of all polyribosomes but by a decreased protein synthetic activity of the majority of polyribosomes. Indirect evidence indicates that an inhibition of elongation and/or release of protein synthesis develops in infected cells, which is sufficient to account for the observed inhibition of protein synthesis. Inhibition of over-all protein synthesis developed when virus-specific RNA began to accumulate at the maximal rate. This relationship was observed during virus multiplication at 37, 30, and 25 C. A possible mechanism by which synthesis of virus-specific RNA in the cytoplasm could inhibit cellular protein synthesis is discussed. Indirect evidence and analysis of polyribosomal RNA show that the increased synthesis of virus-specific protein is brought about by a substitution of cellular by viral mRNA in the polyribosomes.  相似文献   

13.
The apoprotein of the major light harvesting pigment-protein complex from the diatom Phaeodactylum tricornutum (UTEX 646) is composed of two similar polypeptides of 17.5 and 18.0 kilodaltons (kD). The in vivo synthesis of these polypeptides is inhibited by the 80s protein synthesis inhibitor cycloheximide, but not by the 70s ribosome inhibitor chloramphenicol. When total poly(A)+ RNA was used in in vitro protein synthesis, a number of polypeptides were synthesized with a dominant product at 22 kD. When the polypeptides were immunoprecipitated with monospecific antibodies to the 17.5 and 18.0 polypeptides, a single protein zone of 22 kD was detected. Immunoprecipitation with preimmune serum failed to precipitate detectable levels of protein at any relative molecular weight (Mr). These findings indicate that the two apoprotein polypeptides of the diatom light harvesting pigment-protein are translated from polyadenylated message on cytoplasmic ribosomes as either a single or two (or more) similar Mr precursor proteins. These findings also suggest that this protein is encoded in the nucleus.

Photosynthetic light adaptation features of P. tricornutum UTEX 646 indicate that it responds to low light by increasing cell size and numbers of photosystem I and II reaction centers per cell, but does not change photosynthetic rate per cell or photosynthetic unit sizes significantly. When low light cells are exposed to higher photon flux densities, the in vivo incorporation of label into the apoprotein of the light harvesting complex decreases. In contrast, high light grown cells show rapid (<3 hour) increases in apoprotein synthesis when exposed to low light levels. This is the first demonstration of a specific role of photon flux density in regulating the synthesis of a major light harvesting pigment-protein during photosynthetic light adaptation.

  相似文献   

14.
Cyclic AMP levels in Ehrlich ascites tumor cells changed little after deprivation of cells of essential nutrients, serum, glucose and amino acids, deprival of each of which leads to marked inhibition of growth and protein synthesis. Cyclic AMP levels also changed little after the addition of these nutrients to deprived cells. Thus cyclic AMP is not likely to be the intracellular mediator for growth regulation by these three nutrients. Elevation of cyclic AMP levels for short periods by exposure of cells to choleratoxin or theophylline produced only slight changes in parameters of protein synthesis (polyribosome pattern and rate of [3H]leucine incorporation). An exposure for 1 day to dibutyryl cyclic AMP did not inhibit cell growth. However, prolonged exposure to dibutyryl cyclic AMP inhibited the multiplication of Ehrlich ascites cells both in suspension and in stationary cultures. No morphological effects were evident in the former; in the latter, cells attached firmly to the substratum and formed elongated cytoplasmic processes. Inhibition of cell multiplication by dibutyryl cyclic AMP was related to cell density and to serum concentration. Cells in dibutyryl cyclic AMP-containing media plated at low cell densities multiplied as rapidly as control cells. The final densities cells reached were determined by the serum concentration; in dibutyryl cyclic AMP-containing media these densities were about one-half those of respective control cells. Limitation of cell multiplication by dibutyryl cyclic AMP was reversed by the addition of serum, by resuspending cells at lower densities, or by resuspending cells in media without dibutyryl cyclic AMP. These findings suggested that dibutyryl cyclic AMP may affect the utilization of serum factors by cells. Dibutyryl cyclic AMP did not inactivate serum factors and did not change the rate at which cells depleted the growth medium of serum factors. Dibutyryl cyclic AMP may limit cell multiplication by increasing the cellular requirement for serum factors.  相似文献   

15.
《Insect Biochemistry》1990,20(1):51-64
The altered pattern of synthesis of putative calcium-binding proteins (pCaBPs) in the mid-instar epidermis following exposure to 20-hydroxyecdysone (20HE) in vitro was followed through the incorporation of [35S]methionine into newly synthesized polypeptides. pCaBPs were separated from other epidermal polypeptides by Ca2+-dependent hydrophobic interaction chromatography, followed by polyacrylamide gel electrophoresis and fluorography. The dominant effect of 20HE is to depress pCaBP synthesis. Of the 17 newly-synthesized pCaBPs consistently detected in total cell lysates, the synthesis of ten was depressed strongly and that of the remaining seven was unaltered by exposure to 20HE. Most newly-synthesized pCaBPs identified were found in the cytosolic fraction of the epidermis. One pCaBP was identified as Tenebrio calmodulin based on its altered electrophoretic mobility in the absence of calcium ions, its isoelectric focusing point, its binding to phenyl-Sepharose and phenothiazine and its binding to antibodies against purified mammalian calmodulin. The synthetic rate of this pCaBP was not affected by 20HE. The distribution of another pCaBP (32 kDa) shifted from the cytosolic to the microsomal fraction on adding Ca2+ (or reversed by adding EGTA) to the cell extract before fractionation. The synthesis of this protein was depressed by 20HE. These findings suggest that 20HE influences epidermal behaviour, at least in part, through its ability to modulate the synthetic rate of several pCaBPs.  相似文献   

16.
Hypertonic medium selectively suppressed the synthesis of most host cell polypeptides relative to the synthesis of simian virus 40 capsid polypeptides and a minority of cellular polypeptides, notably histones. Under optimal hypertonic conditions, the synthesis of the major capsid polypeptide (VP1) is enhanced about sevenfold relative to host polypeptide synthesis. Because of the small amounts of the other nonhistone capsid polypeptides (VP2) and VP3) present in cell lysates, it was difficult to quantitate the extent, if any, of their enhancement. The maintenance of the restricted pattern of protein synthesis caused by hypertonic medium was dependent on continual peptide chain initiations. The resistance of viral protein synthesis to hypertonic conditions provides a means of detecting relatively low levels of intracellular viral protein synthesis. Analysis of the specific activity of the acid-soluble [3H]lysine pool indicated that the rate of incorporation of [3H]lysine into protein was an overestimation of the actual rate of overall protein synthesis occurring in cells exposed to hypertonic as compared to isotonic conditions. Since it is likely that both cellular and viral protein synthesis draw lysine from a single pool, this change in pool specific activity does not affect the analysis of relative rates of protein synthesis at a given level of tonicity.  相似文献   

17.
The effect of retinoic acid (RA) on TGF-β mRNA expression and protein production in murine embryonic palate mesenchymal (MEPM) cells was examined by Northern blotting and TGF-β bioassay in association with TGF-β isoform-specific neutralizing antibodies. Heat or acid activation was used to distinguish between latent and active TGF-β protein released into the culture medium. RA had little or no effect on TGF-β1 mRNA expression and protein production. In contrast, RA increased TGF-β2 and β3 protein released into the culture medium, the protein being mostly in an inactive or latent form. The amount of active TGF-β released was increased relative to the total increase in TGF-β released, suggesting that RA treatment stimulated activation of latent TGF-β. RA also increased TGF-β2 mRNA expression; we have previously shown that RA upregulates TGF-β3 mRNA in these cells. RA and TGF-β individually inhibited 3H-thymidine incorporation into MEPM cell DNA, while, when administered simultaneously, they inhibited proliferative activity to a greater extent. Heat- or acid-activated conditioned medium (CM) from MEPM cells treated with RA was able to inhibit 3H-thymidine incorporation into MEPM cell DNA to an extent greater than seen with RA treatment alone. Coincubation of heat-activated CM from RA-treated MEPM cells with pan-specific or TGF-β2 or β3-specific neutralizing antibodies partially relieved the inhibitory effect on 3H-thymidine incorporation, suggesting that this proliferative response was due to RA-induced TGF-β. Simultaneous treatment with RA and TGF-β also stimulated gycosaminoglycan (GAG) synthesis to an extent greater than that seen with TGF-β treatment alone, this despite the ability of RA to inhibit GAG synthesis. These data demonstrate a role for RA and RA-induced TGF-β in the regulation of palate cell proliferation and GAG synthesis and suggest a role for TGF-β in retinoid-induced cleft palate. J. Cell. Physiol. 177:36–46, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

18.
The distribution and molecular weights of cellular proteins in soluble and membrane-associated locations were analyzed using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Coomassie blue staining of leaf (Digitaria sanguinalis L. Scop.) extracts and isolated cell extracts. Leaf polypeptides also were pulse-labeled, followed by isolation of the labeled leaf cell types and analysis of the newly synthesized polypeptides in each cell type by electrophoresis and fluorography.

Comparison of the electrophoretic patterns of crabgrass whole leaf polypeptides with isolated cell-type polypeptides indicated a difference in protein distribution patterns for the two cell types. The mesophyll cells exhibited a greater allocation of total cellular protein into membrane-associated proteins relative to soluble proteins. In contrast, the bundle sheath cells exhibited a higher percentage of total cellular protein in soluble proteins. Phosphoenolpyruvate carboxylase was the major soluble protein in the mesophyll cell and ribulose bisphosphate carboxylase was the major soluble protein in the bundle sheath cell. The majority of in vivo35S-pulse-labeled proteins synthesized by the two crabgrass cell types corresponded in molecular weight to the proteins present in the cell types which were detected by conventional staining techniques. The bundle sheath cell and mesophyll cell fluorograph profiles each had 15 major 35S-labeled proteins. The major incorporation of 35S by bundle sheath cells was into products which co-electrophoresed with the large and small subunits of ribulose bisphosphate carboxylase. In contrast, a major 35S-labeled product in mesophyll cell extracts co-electrophoresed with the subunit of phosphoenolpyruvate carboxylase. Both cell types exhibited equivalent in vivo labeling of a polypeptide with one- and two-dimensional electrophoretic behavior similar to the major apoprotein of the light-harvesting chlorophyll a/b protein. Results from the use of protein synthesis inhibitors during pulse-labeling experiments indicated intercellular differences in both organelle and cytoplasmic protein synthesis. A majority of the 35S incorporation by crabgrass mesophyll cell 70S ribosomes was associated with a pair of membrane-associated polypeptides of molecular weight 32,000 and 34,500; a comparison of fluorograph and stained gel profiles suggests these products resemble the precursor and mature forms of the maize chloroplast 32,000 dalton protein reported by Grebanier et al. (1978 J. Cell Biol. 28:734-746). In contrast, crabgrass bundle sheath cell organelle translation was directed predominantly into a product which co-electrophoresed with the large subunit of ribulose bisphosphate carboxylase.

  相似文献   

19.
The efficiency of replication of a cytoplasmic polyhedrosis virus isolated from a member of the order Lepidoptera, Euxoa scandens, was studied in eight different lepidopterean cell lines. Lymantria dispar cells, which were found to support viral replication, more efficiently, were used to follow the kinetics of appearance of viral-specific polypeptides by a 2-h pulse with [35S]methionine. Five polypeptides (ca. 120,000 molecular weight [120K], 105K, 66K, 46K, and 28K) were identified as components of the polyhedral inclusion bodies, and two polypeptides (112K and 39K) were assigned as viral-particle polypeptides. All these polypeptides were present after 24 h and were still being produced 96 h after infection. The rate of synthesis of the major polyhedral polypeptide (28K) increased in the time course of infection, whereas the background of cellular polypeptides seemed to be unaffected. An indirect immunoperoxidase technique, after sodium dodecyl sulfate-polyacrylamide gel electrophoresis was blotted to a nitrocellulose membrane, showed that traces of the major polyhedral polypeptide were found from 8 h postinfection.  相似文献   

20.
The soluble polypeptides from Cylindrotheca fusiformis were labelled with [35S]O42− and resolved by two-dimensional gel electrophoresis. More than 600 polypeptides were detected upon a 26-day exposure to X-ray film. Analysis of the labelling pattern during the cell cycle show that labelling of at least 208 polypeptides changes; the majority, however, remain unchanged. Most of the changes occur in the beginning of the cell cycle and typically involve increases; those occurring in the second half of the cycle typically involve decreases. Light or its absence affects apparent protein turnover and the labelling rates of several polypeptides. Polypeptide labelling during the cell cycle was used as a reference to analyse the effect of silicate deprivation on diatom metabolism. In the absence of silicate, protein turnover increases: however, the addition of silicate counteracts but does not fully reverse this change. Silicate starvation affects the program of synthesis for several polypeptides, but in general the program of polypeptide labelling continues up to the S phase of the cell cycle. Addition of silicate to silicate-starved cells causes the appearance of four hitherto undetected polypeptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号