共查询到20条相似文献,搜索用时 9 毫秒
1.
Nuclear factor of activated T cells (NFAT) plays a key role in T cell activation. The activation of NFAT involves calcium- and calcineurin-dependent dephosphorylation and nuclear translocation from the cytoplasm, a process that is opposed by protein kinases. We show here that the peptidyl prolyl cis-trans isomerase Pin1 interacts specifically with the phosphorylated form of NFAT. The NFAT-Pin1 interaction is mediated through the WW domain of Pin1 and the serine-proline-rich domains of NFAT. Furthermore, binding of Pin1 to NFAT inhibits the calcineurin-mediated dephosphorylation of NFAT in vitro, and overexpression of Pin1 in T cells inhibits calcium-dependent activation of NFAT in vivo. These results suggest a possible role for Pin1 in the regulation of NFAT in T cells. 相似文献
2.
3.
4.
APOBEC3G is promiscuous with respect to its antiretroviral effect, requiring that it be packaged into diverse retrovirus particles. Here, we show that most virally encoded human immunodeficiency virus type 1 particle components are dispensable for APOPEC3G incorporation. However, replacement of the nucleocapsid (NC) Gag domain with a leucine zipper abolished APOBEC3G incorporation. Moreover, coprecipitation analysis showed that APOBEC3G-Gag interaction requires NC and nonspecific RNA. These observations suggest that APOBEC3G exploits an essential property of retroviruses, namely, RNA packaging, to infiltrate particles. Because it is, therefore, difficult to evolve specific sequences that confer escape from APOBEC3G, these findings may explain why lentiviruses evolved an activity that induces its destruction. 相似文献
5.
6.
7.
Proteins containing phosphorylated Ser/Thr-Pro motifs play key roles in numerous regulatory processes in the cell. The peptidyl prolyl cis/trans isomerase Pin1 specifically catalyzes the conformational transition of phosphorylated Ser/Thr-Pro motifs. Here we report the direct analysis of the thermodynamic properties of the interaction of the PPIase Pin1 with its substrate-analogue inhibitor Ac-Phe-D-Thr(PO3H2)-Pip-Nal-Gln-NH2 specifically targeted to the PPIase active site based on the combination of isothermal titration calorimetry and studies on inhibition of enzymatic activity of wt Pin1 and active site variants. Determination of the thermodynamic parameters revealed an enthalpically and entropically favored interaction characterized by binding enthalpy deltaH(ITC) of -6.3 +/- 0.1 kcal mol(-1) and a TdeltaS(ITC) of 4.1 +/- 0.1 kcal mol(-1). The resulting dissociation constant KD for binding of the peptidic inhibitor with 1.8 x 10(-8) M resembles the dissociation constant of a Pin1 substrate in the transition state, suggesting a transition state analogue conformation of the bound inhibitor. The strongly decreased affinity of Pin1 for ligand at increasing ionic strength implicates that the potential of bidentate binding of a substrate protein by the PPIase and the WW domain of Pin1 may be required to deploy improved efficiency and specificity of Pin1 under conditions of physiological ionic strength. 相似文献
8.
Human immunodeficiency virus type 1 Vif inhibits packaging and antiviral activity of a degradation-resistant APOBEC3G variant 总被引:4,自引:2,他引:4 下载免费PDF全文
Opi S Kao S Goila-Gaur R Khan MA Miyagi E Takeuchi H Strebel K 《Journal of virology》2007,81(15):8236-8246
Human immunodeficiency virus type 1 (HIV-1) Vif counteracts the antiviral activity of the human cytidine deaminase APOBEC3G (APO3G) by inhibiting its incorporation into virions. This has been attributed to the Vif-induced degradation of APO3G by cytoplasmic proteasomes. We recently demonstrated that although APO3G has a natural tendency to form RNA-dependent homo-multimers, multimerization was not essential for encapsidation into HIV-1 virions or antiviral activity. We now demonstrate that a multimerization-defective APO3G variant (APO3G C97A) is able to assemble into RNase-sensitive high-molecular-mass (HMM) complexes, suggesting that homo-multimerization of APO3G and assembly into HMM complexes are unrelated RNA-dependent processes. Interestingly, APO3G C97A was highly resistant to Vif-induced degradation even though the two proteins were found to interact in coimmunoprecipitation experiments and exhibited partial colocalization in transfected HeLa cells. Surprisingly, encapsidation and antiviral activity of APO3G C97A were both inhibited by Vif despite resistance to degradation. These results demonstrate that targeting of APO3G to proteasome degradation and interference with viral encapsidation are distinct functional properties of Vif. 相似文献
9.
10.
Dourlen P Ando K Hamdane M Begard S Buée L Galas MC 《Biochimica et biophysica acta》2007,1773(9):1428-1437
The peptidyl prolyl cis-trans isomerase Pin1 and the Inhibitor of Apoptosis Protein (IAP) Survivin are two major proteins involved in cancer. They both modulate apoptosis, mitosis, centrosome duplication and neuronal development but until now no functional relationship has been reported between these two proteins. We tested Pin1-induced regulation of Survivin in neuroblastoma cells. Pin1 overexpression in SY5Y neuroblastoma cells decreased Survivin levels. Immunocytochemical studies indicated that they partially co-localized in interphase and mitotic cells. Co-immunoprecipitation further demonstrates the existence of a Pin1/Survivin complex. Pin1-induced effect on Survivin was confirmed in COS cells. RT-PCR and mutagenesis experiments suggested that this Pin1-induced decrease of Survivin occurred at the protein level. Survivin downregulation depended on the binding ability of Pin1 but was not related to the single Thr-Pro site, suggesting an indirect relationship into a protein complex. Finally, this functional regulation of Survivin by Pin1 is reciprocal since Pin1 silencing led to an increase in Survivin levels. The characterization of this functional relationship between Pin1 and Survivin might help to better understand mitosis control and cancer mechanisms. 相似文献
11.
Identification of amino acid residues in APOBEC3G required for regulation by human immunodeficiency virus type 1 Vif and Virion encapsidation 下载免费PDF全文
The human immunodeficiency virus type-1 (HIV-1) accessory protein Vif serves to neutralize the human antiviral proteins apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like 3G (APOBEC3G [A3G]) and A3F. As such, the therapeutic blockade of Vif function represents a logical objective for rational drug design. To facilitate such endeavors, we have employed molecular genetics to define features of A3G that are required for its interaction with Vif. Using alanine-scanning mutations and multiple different substitutions at key residues, we confirm the central role played by the aspartic acid at position 128 and identify proline 129 and aspartic acid 130 as important contributory residues. The overall negative charge of this 3-amino-acid motif appears critical for recognition by Vif, as single lysine substitutions are particularly deleterious and a double alanine substitution at positions 128 and 130 is far more inhibitory than single-residue mutations at either position. Our analyses also reveal that the immediately adjacent 4 amino acids, residues 124 to 127, are important for the packaging of A3G into HIV-1 particles. Most important are tyrosine 124 and tryptophan 127, and mutations at these positions can ablate virion incorporation, as well as the capacity to inhibit virus infection. Thus, while pharmacologic agents that target the acidic motif at residues 128 to 130 have the potential to rescue A3G expression by occluding recognition by Vif, care will have to be taken not to perturb the contributions of the neighboring 124-to-127 region to packaging if such agents are to have therapeutic benefit by promoting A3G incorporation into progeny virions. 相似文献
12.
APOBEC3B and APOBEC3C are potent inhibitors of simian immunodeficiency virus replication 总被引:15,自引:0,他引:15
Yu Q Chen D König R Mariani R Unutmaz D Landau NR 《The Journal of biological chemistry》2004,279(51):53379-53386
13.
14.
Enzymatically active APOBEC3G is required for efficient inhibition of human immunodeficiency virus type 1 总被引:4,自引:4,他引:4
Miyagi E Opi S Takeuchi H Khan M Goila-Gaur R Kao S Strebel K 《Journal of virology》2007,81(24):13346-13353
APOBEC3G (APO3G) is a cellular cytidine deaminase with potent antiviral activity. Initial studies of the function of APO3G demonstrated extensive mutation of the viral genome, suggesting a model in which APO3G's antiviral activity is due to hypermutation of the viral genome. Recent studies, however, found that deaminase-defective APO3G mutants transiently expressed in virus-producing cells exhibited significant antiviral activity, suggesting that the antiviral activity of APO3G could be dissociated from its deaminase activity. To directly compare the antiviral activities of wild-type (wt) and deaminase-defective APO3G, we used two approaches: (i) we titrated wt and deaminase-defective APO3G in transient-transfection studies to achieve similar levels of virus-associated APO3G and (ii) we constructed stable cell lines and selected clones expressing comparable amounts of wt and deaminase-defective APO3G. Viruses produced under these conditions were tested for viral infectivity. The results from the two approaches were consistent and suggested that the antiviral activity of deaminase-defective APO3G was significantly lower than that of wt APO3G. We conclude that efficient inhibition of vif-defective human immunodeficiency virus type 1 requires catalytically active APO3G. 相似文献
15.
Functional central polypurine tract provides downstream protection of the human immunodeficiency virus type 1 genome from editing by APOBEC3G and APOBEC3B 下载免费PDF全文
Wurtzer S Goubard A Mammano F Saragosti S Lecossier D Hance AJ Clavel F 《Journal of virology》2006,80(7):3679-3683
Lentiviruses utilize two polypurine tracts for initiation of plus-strand viral DNA synthesis. We have examined to what extent human immunodeficiency virus type 1 plus-strand initiation at the central polypurine tract (cPPT) could protect the viral genome from DNA editing by APOBEC3G and APOBEC3B. The presence of a functional cPPT, but not of a mutated cPPT, extensively reduced editing by both APOBEC3G and APOBEC3B of sequences downstream, but not upstream, of the cPPT, with significant protection observed as far as 400 bp downstream. Thus, in addition to other potential functions, the cPPT could help protect lentiviruses from editing by cytidine deaminases of the APOBEC family. 相似文献
16.
Identification of two distinct human immunodeficiency virus type 1 Vif determinants critical for interactions with human APOBEC3G and APOBEC3F 总被引:4,自引:5,他引:4 下载免费PDF全文
Human cytidine deaminases APOBEC3G (A3G) and APOBEC3F (A3F) inhibit replication of Vif-deficient human immunodeficiency virus type 1 (HIV-1). HIV-1 Vif overcomes these host restriction factors by binding to them and inducing their proteasomal degradation. The Vif-A3G and Vif-A3F interactions are attractive targets for antiviral drug development because inhibiting the interactions could allow the host defense mechanism to control HIV-1 replication. It was recently reported that the Vif amino acids D(14)RMR(17) are important for functional interaction and degradation of the previously identified Vif-resistant mutant of A3G (D128K-A3G). However, the Vif determinants important for functional interaction with A3G and A3F have not been fully characterized. To identify these determinants, we performed an extensive mutational analysis of HIV-1 Vif. Our analysis revealed two distinct Vif determinants, amino acids Y(40)RHHY(44) and D(14)RMR(17), which are essential for binding to A3G and A3F, respectively. Interestingly, mutation of the A3G-binding region increased Vif's ability to suppress A3F. Vif binding to D128K-A3G was also dependent on the Y(40)RHHY(44) region but not the D(14)RMR(17) region. Consistent with previous observations, subsequent neutralization of the D128K-A3G antiviral activity required substitution of Vif determinant D(14)RMR(17) with SEMQ, similar to the SERQ amino acids in simian immunodeficiency virus SIV(AGM) Vif, which is capable of neutralizing D128K-A3G. These studies are the first to clearly identify two distinct regions of Vif that are critical for independent interactions with A3G and A3F. Pharmacological interference with the Vif-A3G or Vif-A3F interactions could result in potent inhibition of HIV-1 replication by the APOBEC3 proteins. 相似文献
17.
Human immunodeficiency virus type 1 cDNAs produced in the presence of APOBEC3G exhibit defects in plus-strand DNA transfer and integration 总被引:12,自引:10,他引:2 下载免费PDF全文
Mbisa JL Barr R Thomas JA Vandegraaff N Dorweiler IJ Svarovskaia ES Brown WL Mansky LM Gorelick RJ Harris RS Engelman A Pathak VK 《Journal of virology》2007,81(13):7099-7110
Encapsidation of host restriction factor APOBEC3G (A3G) into vif-deficient human immunodeficiency virus type 1 (HIV-1) blocks virus replication at least partly by C-to-U deamination of viral minus-strand DNA, resulting in G-to-A hypermutation. A3G may also inhibit HIV-1 replication by reducing viral DNA synthesis and inducing viral DNA degradation. To gain further insight into the mechanisms of viral inhibition, we examined the metabolism of A3G-exposed viral DNA. We observed that an overall 35-fold decrease in viral infectivity was accompanied by a five- to sevenfold reduction in viral DNA synthesis. Wild-type A3G induced an additional fivefold decrease in the amount of viral DNA that was integrated into the host cell genome and similarly reduced the efficiency with which HIV-1 preintegration complexes (PICs) integrated into a target DNA in vitro. The A3G C-terminal catalytic domain was required for both of these antiviral activities. Southern blotting analysis of PICs showed that A3G reduced the efficiency and specificity of primer tRNA processing and removal, resulting in viral DNA ends that are inefficient substrates for integration and plus-strand DNA transfer. However, the decrease in plus-strand DNA transfer did not account for all of the observed decrease in viral DNA synthesis associated with A3G. These novel observations suggest that HIV-1 cDNA produced in the presence of A3G exhibits defects in primer tRNA processing, plus-strand DNA transfer, and integration. 相似文献
18.
Identification of an APOBEC3G binding site in human immunodeficiency virus type 1 Vif and inhibitors of Vif-APOBEC3G binding 总被引:1,自引:1,他引:1 下载免费PDF全文
Mehle A Wilson H Zhang C Brazier AJ McPike M Pery E Gabuzda D 《Journal of virology》2007,81(23):13235-13241
The APOBEC3 cytidine deaminases are potent antiviral factors that restrict replication of human immunodeficiency virus type 1 (HIV-1). HIV-1 Vif binds APOBEC3G and APOBEC3F and targets these proteins for ubiquitination by forming an E3 ubiquitin ligase with cullin 5 and elongins B and C. The N-terminal region of Vif is required for APOBEC3G binding, but the binding site(s) is unknown. To identify the APOBEC3G binding site in Vif, we established a scalable binding assay in a format compatible with development of high-throughput screens. In vitro binding assays using recombinant proteins identified Vif peptides and monoclonal antibodies that inhibit Vif-APOBEC3G binding and suggested involvement of Vif residues 33 to 83 in APOBEC3G binding. Cell-based binding assays confirmed these results and demonstrated that residues 40 to 71 in the N terminus of Vif contain a nonlinear binding site for APOBEC3G. Mutation of the highly conserved residues His42/43 but not other charged residues in this region inhibited Vif-APOBEC3G binding, Vif-mediated degradation of APOBEC3G, and viral infectivity. In contrast, mutation of these residues had no significant effect on Vif binding and degradation of APOBEC3F, suggesting a differential requirement for His42/43 in Vif binding to APOBEC3G and APOBEC3F. These results identify a nonlinear APOBEC3 binding site in the N terminus of Vif and demonstrate that peptides or antibodies directed against this region can inhibit Vif-APOBEC3G binding, validating the Vif-APOBEC3 interface as a potential drug target. 相似文献
19.
Differential requirement for conserved tryptophans in human immunodeficiency virus type 1 Vif for the selective suppression of APOBEC3G and APOBEC3F 总被引:1,自引:0,他引:1 下载免费PDF全文
APOBEC3G (A3G) and related cytidine deaminases, such as APOBEC3F (A3F), are potent inhibitors of retroviruses. Formation of infectious human immunodeficiency virus type 1 (HIV-1) requires suppression of multiple cytidine deaminases by Vif. Whether HIV-1 Vif recognizes various APOBEC3 proteins through a common mechanism is unclear. The domains in Vif that mediate APOBEC3 recognitions are also poorly defined. The N-terminal region of HIV-1 Vif is unusually rich in Trp residues, which are highly conserved. In the present study, we examined the role of these Trp residues in the suppression of APOBEC3 proteins by HIV-1 Vif. We found that most of the highly conserved Trp residues were required for efficient suppression of both A3G and A3F, but some of these residues were selectively required for the suppression of A3F but not A3G. Mutant Vif molecules in which Ala was substituted for Trp79 and, to a lesser extent, for Trp11 remained competent for A3G interaction and its suppression; however, they were defective for A3F interaction and therefore could not efficiently suppress the antiviral activity of A3F. Interestingly, while the HIV-1 Vif-mediated degradation of A3G was not affected by the different C-terminal tag peptides, that of A3F was significantly influenced by its C-terminal tags. These data indicate that the mechanisms by which HIV-1 Vif recognizes its target molecules, A3G and A3F, are not identical. The fact that several highly conserved residues in Vif are required for the suppression of A3F but not that of A3G suggests a critical role for A3F in the restriction of HIV-1 in vivo. 相似文献