首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 803 毫秒
1.
The male recombination factor 23.5MRF, isolated ten years ago from a natural Greek population of Drosophila melanogaster, has been shown to induce hybrid dysgenesis when crossed to some M strains, in a fashion slightly different from that of most P strains. Furthermore, it was recently shown that 23.5MRF can also induce GD sterility when crossed to specific P strain females (e.g., Harwich, pi 2 and T-007). In these experiments, the P strains mentioned behaved like M strains in that they did not induce sterility in the reciprocal crosses involving 23.5MRF. We extended the analysis to show that 23.5MRF does not destabilize snW(M) and that a derivative with fewer full-length P elements behaves like an M strain toward the same P strains and still retains its dysgenic properties in the reciprocal crosses. We show that there is a strong correlation between the site of dysgenic chromosomal breakpoints induced by 23.5MRF and the localization of hobo elements on the second chromosome, and also that hobo elements are found associated with several 23.5MRF induced mutations. These results suggest that hobo elements are responsible for the aberrant dysgenic properties of this strain, and that they may express their dysgenic properties independent of the presence of P elements.  相似文献   

2.
The transposable element hobo has been introduced into the previously empty Drosophila melanogaster strain Hikone so that its dynamics can be followed and it can be compared with the P element. Five transformed lines were followed over 58 generations. The results were highly dependent on the culture temperature, the spread of hobo element being more efficient at 25 degrees C. The multiplication of hobo sequences resulted in a change in the features of these lines in the hobo system of hybrid dysgenesis. The number of hobo elements remained low (two to seven copies) and the insertions always corresponded to complete sequences. Our findings suggest that, despite their genetic similarities, P and hobo elements differ in many aspects, such as mobility and regulation mechanisms.   相似文献   

3.
We present results demonstrating that the hobo family of transposable elements can promote high rates of chromosomal instability. Using strains with a hobo element inserted within the decapentaplegic gene complex (DPP-C), we have recovered numerous DPP-C mutations involving chromosomal rearrangements and deletions with one endpoint in the vicinity of the pre-existing hobo element. This hypermutability occurred in the germ lines of hybrid progeny from crosses involving strains containing hobo elements to strains lacking them. In some crosses, the offspring had rudimentary gonads, reminiscent of GD sterility. The germline hypermutability and infertility are similar to those produced by P-element-mediated hybrid dysgenesis. Given the many genetic and molecular similarities of the P and hobo systems, we propose that a system analogous to P-M hybrid dysgenesis has been activated in the hobo+ X hobo- crosses.  相似文献   

4.
The hobo transposable element of Drosophila melanogaster is known to induce a hybrid dysgenesis syndrome. Moreover it displays a polymorphism of a microsatellite in its coding region: TPE repeats. In European populations, surveys of the distribution of hobo elements with regard to TPE repeats revealed that the 5TPE element is distributed along a frequency gradient, and it is even more frequent than the 3TPE element in Western populations. This suggests that the invasive ability of the hobo elements could be related to the number of TPE repeats they contain. To test this hypothesis we monitored the evolution of 16 lines derived from five initial independent transgenic lines bearing the 3TPE element and/or the 5TPE element. Four lines bearing 5TPE elements and four bearing 3TPE elements were used as a noncompetitive genetic background to compare the evolution of the 5TPE element to that of the 3TPE element. Eight lines bearing both elements provided a competitive genetic context to study potential interactions between these two elements. We studied genetic and molecular aspects of the first 20 generations. At the molecular level, we showed that the 5TPE element is able to spread within the genome at least as efficiently as the 3TPE element. Surprisingly, at the genetic level we found that the 5TPE element is less active than the 3TPE element, and moreover may be able to regulate the activity of the 3TPE element. Our findings suggest that the invasive potential of the 5TPE element could be due not only to its intrinsic transposition capacity but also to a regulatory potential.  相似文献   

5.
The distribution of mobile genetic element hobo was examined in Drosophila melanogaster lines HA (high male mating activity) and LA (low male mating activity) before and after their isogenization using Southern blot hybridization. The probe containing a full-size hobo copy was shown to produce polymorphic multilocus hybridization with chromosomal DNA. The polymorphism was line-specific. A comparison of hybridization patterns in isogenic and original lines showed that isogenization in dysgenic crosses resulted in the appearance of additional hobo localization sites in LA but not in HA. The hobo destabilization in the LA genome correlated with genetic instability and the ability to induce H-E hybrid dysgenesis. The results obtained are discussed in relation to the possible role of hobo in inducing genetic variability in lines with low male mating activity, which may counteract deleterious consequences of inbreeding and selection in the negative direction.  相似文献   

6.
We have characterized molecularly several derivatives of the TE-like element Dp(2:2)GYL of Drosophila melanogaster. This highly unstable mutation occurred in a dysgenic cross involving the 23.5 MRF chromosome, and represents an inverted insertional duplication of approximately 130 polytene bands of the paternal 2L, at 50AB of the right arm of the maternal 2R. The instability of this mutation is characterized by deletion of some of duplicated material, by the induction of rearrangements in its vicinity and by the transposition of parts of the original element. We have found that the mobile element hobo is present at , or very near, the breakpoints of all GYL derivatives analysed, demonstrating that hobo is not only active in dysgenic crosses, but also that it can promote genetic instability reminiscent of transposable elements (TE).  相似文献   

7.
We have isolated and characterized several members of the hobo transposable element family from Korean populations of Drosophila melanogaster. All of the Korean lines tested appeared to have 3.0 kb hobo elements and a high copy number of smaller derivatives of the element. To determine whether a 3.0 kb hobo element of these populations is consistent with the role of an autonomous hobo element, we cloned and sequenced this hobo element. Based on the result of the entire DNA sequence, a cloned 3.0 kb element called HKN96, it was found to be the same as a fully-functional 2959 bp HFL1-type sequence. Each small element appeared to have arisen from the HFL1 element by a different internal deletion. A specific 1.7 kb Kh hobo element, which is the most abundant in the Korean lines tested, seems to have originated from the HFL1 hobo element by an internal deletion of 1253 bp by the removal of nucleotides between positions 939 and 2191. The sequences of the Th1 and Th2 elements appeared to be identical to that of the HFL1 with the exception of internal deletions of 1442 bp and 1455 bp removing nucleotides 940-2381 and 923-2377, respectively. Based on the number of TPE repeats, all of the members of the hobo element family in Korean lines tested have three perfect S repeats. The widespread presence of identical copies of the Kh deletion derivative suggests that it might have a role in the regulation of hobo-induced hybrid dysgenesis.  相似文献   

8.
The latitudinal cline in P-M gonadal dysgenesis potential in eastern Australia has been shown to comprise three regions which are, from north to south respectively, P, Q, and M, with the P-to-Q and Q-to-M transitions occurring over relatively short distances. The P element complements of 30 lines from different regions of the cline were determined by molecular techniques. The total amount of P element-hybridizing DNA was high in all lines, and it did not correlate in any obvious way with the P-M phenotypes of individual lines. The number of potentially full-sized P elements per genome was high in lines from the P regions, but variable or low among lines from the Q and M regions, and thus declined overall from north to south. A particular P element deletion-derivative, the KP element, occurred in all the tested lines. The number of KP elements was low in lines from the P region, much higher in lines from the Q region, and highest among lines from the M region, thus forming a cline reciprocal to that of the full-sized P elements. Another transposable element, hobo, which has been described as causing dysgenic traits similar to those of P-M hybrid dysgenesis, was shown to be present in all lines and to vary among them in number, but not in any latitudinal pattern. The P-M cline in gonadal dysgenesis potential can be inferred to be based on underlying clinal patterns of genomic P element complements. P activity of a line was positively correlated with the number of full-sized P elements in the line, and negatively correlated with the number of KP elements. Among Q and M lines, regulatory ability was not correlated with numbers of KP elements.  相似文献   

9.
Summary P strains of Drosophila melanogaster are characterized by the presence of both full-length and deletion derivatives of the transposable element P in their genome, and by their ability to induce the syndrome of hybrid dysgenesis among the progeny of certain intra-strain crosses, when introduced through the male parents. In contrast, strains belonging to the M' class, and which were also found to bear P element-homologous sequences, lack this ability and this has been attributed to the presence in the genome of most of these strains of a distinct class of deletion derivatives termed KP, which can suppress the action of functional P factors. Here we demonstrate that KP elements are present, next to full-length ones, in the genome of at least three strains which induce P-M-like dysgenic symptoms, including GD sterility. KP elements form the majority of the P-homologous sequences in the strains MR-h12, 23.5/CyL 4 and the latter's derivative 23.5 */Cy. While the first one is a genuine P strain and the second one depicts a strong P cytotype, the third is a genuine M' strain. The hybrid dysgenesis induced by the two 23.5 MRF strains seems to be due, not primarily to the P elements, but to the action of hobo elements.  相似文献   

10.
In Drosophila melanogaster, the hobo transposable element is responsible for a hybrid dysgenesis syndrome. It appears in the germline of progenies from crosses between females devoid of hobo elements (E) and males bearing active hobo elements (H). In the HE system, permissivity is the ability of females to permit hobo activity in their progeny when they have been crossed with H males. Permissivity displays both intra- and inter-strain variability and decreases with the age of the females. Such characteristics are reminiscent of those for the reactivity in the IR system. The reactivity is the ability of R females (devoid of I factors) to permit activity of the I LINE retrotransposon in the F1 females resulting from crosses with I males (bearing I factors). Here we investigated permissivity properties in the HE system related to reactivity in the IR system. Previously it had been shown that reactivity increases with the number of Su(var)3-9 genes, which increases chromatin compaction near heterochromatin. Using the same lines, we show that permissivity increases with the number of Su(var)3-9 genes. To investigate the impact of chromatin compaction on permissivity we have tested the polymorphism of position-effect variegation (PEV) on the white(mottled4) locus in RE strains. Our results suggest a model of regulation in which permissivity could depend on the chromatin state and on the hobo vestigial sequences.  相似文献   

11.
The hobo family of transposable elements, one of three transposable-element families that cause hybrid dysgenesis in Drosophila melanogaster, appears to be present in all members of the D. melanogaster species complex: D. melanogaster, D. simulans, D. mauritiana, and D. sechellia. Some hobo-hybridizing sequences are also found in the other members of the melanogaster subgroup and in many members of the related montium subgroup. Surveys of older isofemale lines of D. melanogaster suggest that complete hobo elements were absent prior to 50 years ago and that hobo has recently been introduced into the species by horizontal transfer. To test the horizontal transfer hypothesis, the 2.6-kb XhoI fragments of hobo elements from D. melanogaster, D. simulans, and D. mauritiana were cloned and sequenced. The DNA sequences reveal an extremely low level of divergence and support the conclusion that the active hobo element has been horizontally transferred into or among these species in the recent past.  相似文献   

12.
13.
Inbred lines derived from a strain called Sexi were analyzed for their abilities to repress P element-mediated gonadal dysgenesis. One line had high repression ability, four had intermediate ability and two had very low ability. The four intermediate lines also exhibited considerable within-line variation for this trait; furthermore, in at least two cases, this variation could not be attributed to recurring P element movement. Repression of gonadal dysgenesis in the hybrid offspring of all seven lines was due primarily to a maternal effect; there was no evidence for repression arising de novo in the hybrids themselves. In one of the lines, repression ability was inherited maternally, indicating the involvement of cytoplasmic factors. In three other lines, repression ability appeared to be determined by partially dominant or additive chromosomal factors; however, there was also evidence for a maternal effect that reduced the expression of these factors in at least two of the lines. In another line, repression ability seemed to be due to recessive chromosomal factors. All seven lines possessed numerous copies of a particular P element, called KP, which has been hypothesized to produce a polypeptide repressor of gonadal dysgenesis. This hypothesis, however, does not explain why the inbred Sexi lines varied so much in their repression abilities. It is suggested that some of this variation may be due to differences in the chromosomal position of the KP elements, or that other nonautonomous P elements are involved in the repression of hybrid dysgenesis in these lines.  相似文献   

14.
The transposable element hobo can be mobilized to induce a variety of genetic abnormalities within the germ-line of Drosophila melanogaster. Strains containing hobos have 3.0 kb elements and numerous smaller derivatives of the element. By analogy with other transposable element systems, it is likely that only the 3.0 kb elements are capable of inducing hobo mobilization. Here, we report that a cloned 3.0 kb hobo, called HFL1, is able to mediate germ-line transformation and therefore is an autonomous (fully-functional) transposable element. Germ-line transformation was observed when HFL1 and a marked hobo element were co-injected into recipient embryos devoid of endogenous hobos. Integration did not occur in the absence of the 3.0 kb element. A single copy of the marked hobo transposon inserted at each site, and the target sites were widely distributed throughout the genome. Integration occurred at (or very near) the termini of hobo, without internal rearrangement of the hobo or marker gene sequences. The hobo transformation system will allow us to determine the structural and regulatory features of hobo responsible for its mobilization and will provide novel approaches for the molecular and genetic manipulation of the Drosophila genome.  相似文献   

15.
Genomic patterns of occurrence of the transposable element hobo are polymorphic in the sibling species Drosophila melanogaster and D. simulans. Most tested strains of both species have apparently complete (3.0 kb) and smaller hobo elements (H lines), but in both species some strains completely lack such canonical hobo elements (E lines). The occurrence of H and E lines in D. simulans as well as in D. melanogaster implies that an hypothesis of recent introduction in the latter species is inadequate to explain the phylogenetic occurrence of hobo. Particular internally deleted elements, the approximately 1.5 kb Th1 and Th2 elements, are abundant in many lines of D. melanogaster, and an analogous 1.1 kb internally deleted element, h del sim, is abundant in most lines of D. simulans. Besides the canonical hobo sequences, both species (and their sibling species D. sechellia and D. mauritiana) have many hobo-hybridizing sequences per genome that do not appear to be closely related to the canonical hobo sequence.  相似文献   

16.
K. G. Golic 《Genetics》1990,125(1):51-76
Segregation distortion in Drosophila melanogaster is the result of an interaction between the genetic elements Sd, a Rsp sensitive to Sd, and an array of modifiers, that results in the death of sperm carrying Rsp. A stock (designated M-5; cn bw) has been constructed which has the property of inducing the partial loss of sensitivity from previously sensitive cn bw chromosomes, the partial loss of distorting ability from SD chromosomes, and a concomitant acquisition of modifiers on the X chromosome and possibly also on the autosomes. By several criteria the changes exhibited under the influence of M-5; cn bw are characteristic of the transposable-element systems which produce hybrid dysgenesis. In the first place, the magnitude of these effects depends on the nature of the crosses performed. The analogy is further strengthened by the observation that the changes induced by M-5; cn bw share other stigmata of Drosophila transposable-element systems, including high sterility among the progeny of outcrosses, and the production of chromosomal rearrangements. The possible relationship of this system to the P, I and hobo transposable element systems is discussed, as well as its bearing on aspects of the Segregation Distorter phenomenon which have yet to be explained.  相似文献   

17.
P element enhancer trapping has become an indispensable tool in the analysis of the Drosophila melanogaster genome. However, there is great variation in the mutability of loci by these elements such that some loci are relatively refractory to insertion. We have developed the hobo transposable element for use in enhancer trapping and we describe the results of a hobo enhancer trap screen. In addition, we present evidence that a hobo enhancer trap element has a pattern of insertion into the genome that is different from the distribution of P elements in the available database. Hence, hobo insertion may facilitate access to genes resistant to P element insertion.  相似文献   

18.
The structure of hobo transposable elements and their insertion sites   总被引:26,自引:5,他引:21       下载免费PDF全文
The hobo transposable elements of Drosophila form a family of 3.0-kb elements and their deletion derivatives. Their distribution is consistent with the model that 3.0-kb elements are functionally complete but that smaller hobos are defective and require complete elements in trans for transposition. The sequence of one 3.0-kb element is presented; it has several interesting features, including a 1.9-kb open reading frame downstream from potential TATA and CAT sequences. Comparison of 11 independent insertion sites shows that in every case the hobo element has integrated at and duplicated either the sequence NNNNNNAC or CTTTNNNN. There is evidence that an eight nucleotide sequence internal to hobo that matches both of these sequences has been used as an insertion site for a second hobo element, as the first step in the creation of an internal deletion derivative. Structural similarities between hobo and the eukaryotic transposable elements P, Ac, 1723, and Tam3, found in widely divergent host organisms, suggest that they all transpose by a common mechanism.  相似文献   

19.
Several laboratory surveys have shown that transposable elements (TEs) can cause chromosomal breaks and lead to inversions, as in dysgenic crosses involving P-elements. However, it is not presently clear what causes inversions in natural populations of Drosophila. The only direct molecular studies must be taken as evidence against the involvement of mobile elements. Here, in Drosophila lines transformed with the hobo transposable element, and followed for 100 generations, we show the appearance of five different inversions with hobo inserts at breakpoints. Almost all breakpoints occurred in hobo insertion sites detected in previous generations. Therefore, it can be assumed that such elements are responsible for restructuring genomes in natural populations.  相似文献   

20.
We analyzed the integration specificity of the hobo transposable element of Drosophila melanogaster. Our results indicate that hobo is similar to other transposable elements in that it can integrate into a large number of sites, but that some sites are preferred over others, with a few sites acting as integration hot spots. A comparison of DNA sequences from 112 hobo integration sites identified a consensus sequence of NTNNNNAC, but this consensus was insufficient to account for the observed integration specificity. To begin to define the parameters affecting hobo integration preferences, we analyzed sequences flanking a donor hobo element, as well as sequences flanking a hobo integration hot spot for their relative influence on hobo integration specificity. We demonstrate experimentally that sequences flanking a hobo donor element do not influence subsequent integration site preference, whereas, sequences contained within 31 base pairs flanking an integration hot spot have a significant effect on the frequency of integration into that site. However, sequence analysis of the DNA flanking several hot spots failed to identify any common sequence motif shared by these sites. This lack of primary sequence information suggests that higher order DNA structural characteristics of the DNA and/or chromatin may influence integration site selection by the hobo element. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号