首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Activation of the platelet-derived growth factor receptor-beta (PDGFR-beta) leads to tyrosine phosphorylation of the cytoplasmic domain of LRP and alters its association with adaptor and signaling proteins, such as Shc. The mechanism of the PDGF-induced LRP tyrosine phosphorylation is not well understood, especially since PDGF not only activates PDGF receptor but also binds directly to LRP. To gain insight into this mechanism, we used a chimeric receptor in which the ligand binding domain of the PDGFR-beta was replaced with that from the macrophage colony-stimulating factor (M-CSF) receptor, a highly related receptor tyrosine kinase of the same subfamily, but with different ligand specificity. Activation of the chimeric receptor upon the addition of M-CSF readily mediated the tyrosine phosphorylation of LRP. Since M-CSF is not recognized by LRP, these results indicated that growth factor binding to LRP is not necessary for this phosphorylation event. Using a panel of cytoplasmic domain mutants of the chimeric M-CSF/PDGFR-beta, we confirmed that the kinase domain of PDGFR-beta is absolutely required for LRP tyrosine phosphorylation but that PDGFR-beta-mediated activation of phosphatidylinositol 3-kinase, RasGAP, SHP-2, phospholipase C-gamma, and Src are not necessary for LRP tyrosine phosphorylation. To identify the cellular compartment where LRP and the PDGFR-beta may interact, we employed immunofluorescence and immunogold electron microscopy. In WI-38 fibroblasts, these two receptors co-localized in coated pits and endosomal compartments following PDGF stimulation. Further, phosphorylated forms of the PDGFR-beta co-immunoprecipitated with LRP following PDGF treatment. Together, these studies revealed close association between activated PDGFR-beta and LRP, suggesting that LRP functions as a co-receptor capable of modulating the signal transduction pathways initiated by the PDGF receptor from endosomes.  相似文献   

2.
The platelet-derived growth factor (PDGF) alpha- and beta-receptors both mediate a mitogenic response, but only the beta-receptor mediates circular actin reorganization and chemotaxis. The tyrosine kinase domains of the receptors contain noncatalytic inserts of about 100 residues. In order to determine the role of these domains in the differential signaling of the two receptors, we constructed chimeric PDGF receptors and expressed the constructs in porcine aortic endothelial cells. The chimeric receptors were similar to the wild-type receptors in their ability to induce mitogenicity in response to ligand. Examination of receptor-associated substrates by in vitro kinase assays revealed that phosphoproteins of 72 and 110 kilodaltons were associated with the kinase insert of the alpha-receptor, whereas a phosphoprotein of 130 kilodaltons was associated with the kinase insert of the beta-receptor. Actin reorganization in the form of circular membrane ruffling was seen after ligand stimulation of the beta-receptor and the alpha-receptor containing the beta-receptor kinase insert but not after stimulation of the alpha-receptor or the beta-receptor containing the alpha-receptor kinase insert. These data indicate that the PDGF beta-receptor kinase insert has an essential function in the signal transduction pathway leading to circular membrane ruffling.  相似文献   

3.
Fibroblast growth factor (FGF) receptor (FGFR) gene family consists of at least four receptor tyrosine kinases that transduce signals important in a variety of developmental and physiological processes related to cell growth and differentiation. Here we have characterized the binding of different FGFs to FGFR-4. Our results establish an FGF binding profile for FGFR-4 with aFGF having the highest affinity, followed by K-FGF/hst-1 and bFGF. In addition, FGF-6 was found to bind to FGFR-4 in ligand competition experiments. Interestingly, the FGFR-4 gene was found to encode only the prototype receptor in a region where both FGFR-1 and FGFR-2 show alternative splicing leading to differences in their ligand binding specificities and to secreted forms of these receptors. Ligands binding to FGFR-4 induced receptor autophosphorylation and phosphorylation of a set of cellular polypeptides, which differed from those phosphorylated in FGFR-1-expressing cells. Specifically, the FGFR-1-expressing cells showed a considerably more extensive tyrosine phosphorylation of PLC-gamma than the FGFR-4-expressing cells. Structural and functional specificity within the FGFR family exemplified by FGFR-4 may help to explain how FGFs perform their diverse functions.  相似文献   

4.
Fibroblast growth factor (FGF) receptors (FGFRs) are structurally related receptor protein tyrosine kinases encoded by four distinct genes. Activation of FGFR-1, -2, and -3 by FGFs induces mitogenic responses in various cell types, but the mitogenic potential of FGFR-4 has not been previously explored. We have compared the properties of BaF3 murine lymphoid cells and L6 rat myoblast cells engineered to express FGFR-1 or FGFR-4. Acidic FGF binds with high affinity to and elicits tyrosine phosphorylation of FGFR-1 or FGFR-4 receptors displayed on BaF3 cells, but only FGFR-1 activation leads to cell survival and growth. FGFR-4 activation also fails to elicit detectable signals characteristic of the FGFR-1 response: tyrosine phosphorylation of SHC and extracellular signal-related kinase (ERK) proteins and induction of fos and tis11 RNA expression. The only detected response to FGFR-4 activation was weak phosphorylation of phospholipase C gamma. A chimeric receptor containing the extracellular domain of FGFR-4 and the intracellular domain of FGFR-1 confers FGF-dependent growth upon transfected BaF3 cells, demonstrating that the intracellular domains of the receptors dictate their functional capacity. Activation of FGFR-1 in transfected L6 myoblasts induced far stronger phosphorylation of phospholipase C gamma, SHC, and ERK proteins than could activation of FGFR-4 in L6 cells, and only FGFR-1 activation induced tyrosine phosphorylation of a characteristic 80-kD protein. Hence, the signaling and biological responses elicited by different FGF receptors substantially differ.  相似文献   

5.
Ligand-induced dimerization and transphosphorylation are thought to be important events by which receptor tyrosine kinases generate cellular signals. We have investigated the ability of signalling-defective, truncated fibroblast growth factor (FGF) receptors (FGFR-1 and FGFR-2) to block the FGF response in cells that express both types of endogenous FGF receptors. When these dominant negative receptors are expressed in NIH 3T3 cells transformed by the secreted FGF-4, the transformed properties of the cells can be reverted to various degrees, with better reversion phenotype correlating with higher levels of truncated receptor expression. Furthermore, truncated FGFR-2 is significantly more efficient at producing reversion than FGFR-1, indicating that FGF-4 preferentially utilizes the FGFR-2 signalling pathway. NIH 3T3 clones expressing these truncated receptors are more resistant to FGF-induced mitogenesis and also exhibit reduced tyrosine phosphorylation upon treatment with FGF. The block in FGF-signalling, however, can be overcome by the addition of excess growth factor. The truncated receptors have binding affinities that are four- to eightfold lower than those of wild-type receptors, as measured by Scatchard analysis. We also observed a partial specificity in the responses of truncated-receptor-expressing clones to FGF-2 or FGF-4. Our results suggest that the block to signal transduction produced by kinase-negative FGF receptors is achieved through a combination of dominant negative effects and competition for growth factor binding with functional receptors.  相似文献   

6.
Acetylcholine muscarinic m2 receptors (m2R) couple to heterotrimeric Gi proteins and activate the Ras/Raf/mitogen-activated protein kinase pathway and phosphatidylinositol 3-kinase in Rat 1a cells. In contrast to the m2R, stimulation of the acetylcholine muscarinic m1 receptor (m1R) does not activate the Ras/Raf/mitogen-activated protein kinase regulatory pathway in Rat 1a cells but rather causes a pronounced inhibition of epidermal growth factor and platelet-derived growth factor receptor activation of Raf. In Rat 1a cells, m1R stimulation of phospholipase C beta and the marked rise in intracellular calcium stimulated cyclic AMP (cAMP) synthesis, resulting in the activation of protein kinase A. Stimulation of protein kinase A inhibited Raf activation in response to growth factors. Platelet-derived growth factor receptor stimulation of phosphatidylinositol 3-kinase activity was not affected by either m1R stimulation or protein kinase A activation in response to forskolin-stimulated cAMP synthesis. GTP loading of Ras in response to growth factors was unaffected by protein kinase A activation but was partially inhibited by carbachol stimulation of the m1R. Therefore, protein kinase A action at the Ras/Raf activation interface selectively inhibited only one branch of the signal transduction network initiated by tyrosine kinases. Specific adenylyl cyclases responding to different signals, including calcium, with enhanced cAMP synthesis will regulate Raf activation in response to Ras.GTP. Taken together, the data indicate that G protein-coupled receptors can positively and negatively regulate the responsiveness of tyrosine kinase-stimulated mitogenic response pathways.  相似文献   

7.
Tyrosine phosphorylation is a mechanism of signal transduction shared by many growth factor receptors and oncogene products. Phosphotyrosine phosphatases (PTPases) potentially modulate or counter-regulate these signaling pathways. To test this hypothesis, the transmembrane PTPase CD45 (leukocyte common antigen) was expressed in the murine cell line C127. Hormone-dependent autophosphorylation of the platelet-derived growth factor (PDGF) and insulin-like growth factor-1 (IGF-1) receptors was markedly reduced in cells expressing the transmembrane PTPase. Tyrosine phosphorylation of other PDGF-dependent phosphoproteins (160, 140, and 55 kDa) and IGF-1-dependent phosphoproteins (145 kDa) was similarly decreased. Interestingly, the pattern of growth factor-independent tyrosine phosphorylations was comparable in cells expressing the PTPase and control cells. This suggests a selectivity or accessibility of the PTPase limited to a subset of cellular phosphotyrosyl proteins. The maximum mitogenic response to PDGF and IGF-1 in cells expressing the PTPase was decreased by 67 and 71%, respectively. These results demonstrate that a transmembrane PTPase can both affect the tyrosine phosphorylation state of growth factor receptors and modulate proximal and distal cellular responses to the growth factors.  相似文献   

8.
9.
Phospholipase C-gamma 1 (PLC gamma 1) plays an important role in the signal transduction pathway by producing second messengers. However, the activation mechanism of PLC gamma 1 and the role of the phosphatidylinositol pathway for interleukin 2 (IL-2) production in T lymphocytes remain to be determined. To analyze the functional role of this pathway in T cells, we expressed an epidermal growth factor receptor (EGF) or platelet-derived growth factor (PDGF) receptor (EGF-R or PDGF-R), both of which are known to directly activate PLC gamma 1 in fibroblasts, into a murine T-cell hybridoma. Both receptors were expressed on the cell surface and caused tyrosine phosphorylation of multiple substrates, including the receptor itself, upon ligand binding. While EGF stimulation did not either cause phosphorylation of PLC gamma 1 or induce Ca2+ mobilization in the EGF-R transfectant in this system, PDGF treatment induced tyrosine phosphorylation of PLC gamma 1 and Ca2+ mobilization in the PDGF-R transfectant. Stimulation through PDGF-R enhanced IL-2 production upon antigen stimulation of the transfectants, although PDGF treatment alone did not induce IL-2 production. These results suggest that activation of the phosphatidylinositol pathway affects the downstream pathway to IL-2 production but is not sufficient to produce IL-2 and that cooperation with signals from tyrosine kinase cascades is required for IL-2 production.  相似文献   

10.
Cultured NIH-3T3 cells devoid of endogenous epidermal growth factor (EGF) receptors were transfected with cDNA expression constructs encoding either normal human EGF receptor or a receptor mutated in vitro at Lys-721, a residue that is thought to function as part of the ATP-binding site of the kinase domain. Unlike the wild-type EGF-receptor expressed in these cells, which exhibited EGF-dependent protein tyrosine kinase activity, the mutant receptor lacked protein tyrosine kinase activity and was unable to undergo autophosphorylation and to phosphorylate exogenous substrates. Despite this deficiency, the mutant receptor was normally expressed on the cell surface, and it exhibited both high- and low-affinity binding sites. The addition of EGF to cells expressing wild-type receptors caused the stimulation of various responses, including enhanced expression of proto-oncogenes c-fos and c-myc, morphological changes, and stimulation of DNA synthesis. However, in cells expressing mutant receptors, EGF was unable to stimulate these responses, suggesting that the tyrosine kinase activity is essential for EGF receptor signal transduction.  相似文献   

11.
Fibroblast growth factor receptors (FGFR) are widely expressed in many tissues and cell types, and the temporal expression of these receptors and their ligands play important roles in the control of development. There are four FGFR family members, FGFR-1-4, and understanding the ability of these receptors to transduce signals is central to understanding how they function in controlling differentiation and development. We have utilized signal transduction by FGF-1 in PC12 cells to compare the ability of FGFR-1 and FGFR-3 to elicit the neuronal phenotype. In PC12 cells FGFR-1 is much more potent in the induction of neurite outgrowth than FGFR-3. This correlated with the ability of FGFR-1 to induce robust and sustained activation of the Ras-dependent mitogen-activated protein kinase pathways. In contrast, FGFR-3 could not induce strong sustained Ras-dependent signals. In this study, we analyzed the ability of FGFR-3 to induce the expression of sodium channels, peripherin, and Thy-1 in PC12 cells because all three of these proteins are known to be induced via Ras-independent pathways. We determined that FGFR-3 was capable of inducing several Ras-independent gene expression pathways important to the neuronal phenotype to a level equivalent of that induced by FGFR-1. Thus, FGFR-3 elicits phenotypic changes primarily though activation of Ras-independent pathways in the absence of robust Ras-dependent signals.  相似文献   

12.
UCVA-1 cells, derived from human pancreas adenocarcinoma, have a high number of epidermal growth factor (EGF) receptors (1.0 x 10(6) per cell) but their growth is not inhibited by EGF, unlike other EGF receptor-hyperproducing tumour cells. In UCVA-1 cells EGF activates neither the phosphatidylinositol turnover nor protein kinase C. EGF, however, enhances the phosphorylation of EGF receptors at specific tyrosine residues, indicating that the EGF receptor kinase is active and subject to autophosphorylation. Downmodulation of EGF receptors by 12-O-tetradecanoylphorbol 13-acetate (TPA) is also observed. Using an anti-phosphotyrosine antibody several phosphoproteins, including EGF receptors, were immunoprecipitated from UCVA-1 cell lysates, whereas more than 20 phosphoproteins were detected in other EGF receptor-hyperproducing tumour cells (NA), indicating that tyrosine-phosphorylation of endogenous substrates by EGF receptor kinase is significantly reduced in UCVA-1 cells. Thus, non-responsiveness of UCVA-1 cells to EGF is correlated with the reduced tyrosine phosphorylation.  相似文献   

13.
The mitogen-activated protein kinase (MAP kinase) signalling cascade activated by fibroblast growth factors (FGF1 and FGF2) was analysed in a model system, Xenopus oocytes, expressing fibroblast growth factor receptors (FGFR1 and FGFR4). Stimulation of FGFR1 by FGF1 or FGF2 and FGFR4 by FGF1 induced a sustained phosphorylation of extracellular signal-regulated protein kinase 2 (ERK2) and meiosis reinitiation. In contrast, FGFR4 stimulation by FGF2 induced an early transient activation of ERK2 and no meiosis reinitiation. FGFR4 transduction cascades were differently activated by FGF1 and FGF2. Early phosphorylation of ERK2 was blocked by the dominant negative form of growth factor-bound protein 2 (Grb2) and Ras, for FGF1-FGFR4 and FGF2-FGFR4. The phosphatidylinositol 3-kinase (PI3 kinase) inhibitors wortmannin and LY294002 only prevented the early ERK2 phosphorylation triggered by FGF2-FGFR4 but not by FGF1-FGFR4. ERK2 phosphorylation triggered by FGFR4 depended on the Grb2/Ras pathway and also involved PI3 kinase in a time-dependent manner.  相似文献   

14.
S Lev  D Givol    Y Yarden 《The EMBO journal》1991,10(3):647-654
The kit protooncogene encodes a transmembrane tyrosine kinase related to the receptors for the platelet derived growth factor (PDGF-R) and the macrophage growth factor (CSF1-R), and was very recently shown to bind a stem cell factor. To compare signal transduction by the kit kinase with signaling by homologous receptors we constructed a chimeric protein composed of the extracellular domain of the epidermal growth factor receptor (EGF-R) and the transmembrane and cytoplasmic domains of kit. We have previously shown that the chimeric receptor transmits potent mitogenic and transforming signals in response to the heterologous ligand. Here we demonstrate that upon ligand binding, the ligand-receptor complex undergoes endocytosis and degradation and induces short- and long-term cellular effects. Examination of the signal transduction pathway revealed that the activated kit kinase strongly associates with phosphatidylinositol 3'-kinase activity and a phosphoprotein of 85 kd. In addition, the ligand-stimulated kit kinase is coupled to modifications of phospholipase C gamma and the Raf1 protein kinase. However, it does not lead to a significant change in the production of inositol phosphate. Comparison of our results with the known signaling pathways of PDGF-R and CSF1-R suggests that each receptor is coupled to a specific combination of signal transducers.  相似文献   

15.
Stimulation of fibroblast growth factor receptor-1 (FGFR-1) expressed on endothelial cells leads to cellular migration and proliferation. We have examined the role of the Src homology (SH) 2/SH3 domain-containing adaptor protein Crk in these processes. Transient tyrosine phosphorylation of Crk in fibroblast growth factor-2-stimulated endothelial cells was dependent on the juxtamembrane tyrosine residue 463 in FGFR-1, and a Crk SH2 domain precipitated FGFR-1 via phosphorylated Tyr-463, indicating direct complex formation between Crk and FGFR-1. Furthermore, Crk SH2 and SH3 domains formed ligand-independent complexes with Shc, C3G, and the Crk-associated substrate (Cas). Tyrosine phosphorylation of C3G and Cas increased as a consequence of growth factor treatment. We examined the role of Crk in FGFR-1-mediated cellular responses by use of cells expressing chimeric platelet-derived growth factor receptor-alpha/FGFR-1 (alphaR/FR) wild type and mutant Y463F receptors. The kinase activity of alphaR/FR Y463F was intact, but both Crk and the adaptor FRS-2 were no longer tyrosine-phosphorylated in the mutant cells. Both wild type and mutant receptor cells migrated efficiently, whereas cells expressing the mutant alphaR/FR Y463F failed to proliferate and Erk2 and Jun kinase activities were suppressed in these cells. In wild type alphaR/FR cells transiently expressing an SH2 domain mutant of Crk, Erk and Jun kinase activities as well as DNA synthesis were attenuated. Our data indicate that Crk participates in signaling complexes downstream of FGFR-1, which propagate mitogenic signals.  相似文献   

16.
A novel variant of the fibroblast growth factor receptor type 1 (FGFR-1) was identified in human placental RNA. In this receptor (FGFR-1L) portions of the second and third immunoglobulin-like (Ig-like) domains are deleted. To determine whether FGFR-1L was functional, full-length variant (pSV/FGFR-1L) and wild-type (pSV/FGFR-1) receptors were stably transfected into rat L6 myoblasts cells. Transfected L6 clones expressed respective proteins and bound (125)I-labeled FGF-2 with K(d) values of 99 pm (FGFR-1) and 26 pm (FGFR-1L). FGF-1 and FGF-2 competed efficiently with (125)I-FGF-2 for binding to FGFR-1 and FGFR-1L, whereas FGF-4 was less efficient. FGF-1, FGF-2, and FGF-4 enhanced mitogen-activated protein kinase (MAPK) activity, increased steady-state c-fos mRNA levels, and stimulated proliferation through either receptor, whereas KGF was without effect. FGFR-1 expressing clones exhibited ligand-induced tyrosine phosphorylation of fibroblast growth factor receptor substrate 2 (FRS2), a 90-kDa adaptor protein that links FGFR-1 activation to the MAPK cascade. In contrast, tyrosine phosphorylation of FRS2 was not evident with FGFR-1L. In addition, phospholipase C-gamma was not tyrosine phosphorylated via activated FGFR-1L. These findings indicate that FGFR-1L binds FGF-1 and FGF-2 with high affinity and is capable of mitogenic signaling, but may activate MAPK to occur via non-classical signaling intermediates.  相似文献   

17.
Platelet-derived growth factor (PDGF) has been directly implicated in developmental and physiological processes, as well as in human cancer, fibrotic diseases and arteriosclerosis. The PDGF family currently consists of at least three gene products, PDGF-A, PDGF-B and PDGF-C, which selectively signal through two PDGF receptors (PDGFRs) to regulate diverse cellular functions. After two decades of searching, PDGF-A and B were the only ligands identified for PDGFRs. Recently, however, database mining has resulted in the discovery of a third member of the PDGF family, PDGF-C, a functional analogue of PDGF-A that requires proteolytic activation. PDGF-A and PDGF-C selectively activate PDGFR-alpha, whereas PDGF-B activates both PDGFR-alpha and PDGFR-beta. Here we identify and characterize a new member of the PDGF family, PDGF D, which also requires proteolytic activation. Recombinant, purified PDGF-D induces DNA synthesis and growth in cells expressing PDGFRs. In cells expressing individual PDGFRs, PDGF-D binds to and activates PDGFR-beta but not PDGFR-alpha. However, in cells expressing both PDGFRs, PDGF-D activates both receptors. This indicates that PDGFR-alpha activation may result from PDGFR-alpha/beta heterodimerization.  相似文献   

18.
To determine the function of the E5 open reading frame (ORF) of the human papillomaviruses (HPVs), rodent fibroblast cell lines were transfected with the E5 ORF of HPV type 6 (HPV-6) and HPV-16 expressed from an exogenous promoter. Transfected fibroblasts were transformed to colony formation in soft agar, and the transformation frequency was increased by epidermal growth factor (EGF) but not by platelet-derived growth factor. In a transitory assay, the E5 ORFs from both HPV-6 and HPV-16 were mitogenic in primary human foreskin epithelial cells (keratinocytes) and acted synergistically with EGF. Investigation of keratinocytes expressing HPV-16 E5 showed that the number of endogenous EGF receptors (EGFRs) per cell was increased two- to fivefold. Immunofluorescence microscopy of HPV-16 E5-expressing keratinocytes indicated that there was an apparent delay in the internalization and degradation of EGFRs compared with controls. Kinetic studies with [125I]EGF showed that the ligand underwent normal internalization and degradation in both HPV-16 E5-expressing and control keratinocytes, but in E5-expressing cells, a greater number of receptors recycled back to the cell surface within 1 to 6 h of ligand binding. Finally, ligand-stimulated phosphorylation of the EGFR on tyrosine, an indication of receptor kinase activity, was of greater magnitude in the HPV-16 E5-expressing keratinocytes than in control cells, although the basal level of receptor phosphorylation was similar.  相似文献   

19.
Two chimeric receptors, ER1 and ER2, were constructed. ER1 contains the extracellular and transmembrane (TM) domains derived from epidermal growth factor receptor and the cytoplasmic domain from c-Ros; ER2 is identical to ER1 except that its TM domain is derived from c-Ros. Both chimeras can be activated by epidermal growth factor and are capable of activating or phosphorylating an array of cellular signaling proteins. Both chimeras promote colony formation in soft agar with about equal efficiency. Surprisingly, ER1 inhibits while ER2 stimulates cell growth on monolayer culture. Cell cycle analysis revealed that all phases, in particular the S and G2/M phases, of the cell cycle in ER1 cells were elongated whereas G1 phase of ER2 cells was shortened threefold. Comparison of signaling pathways mediated by the two chimeras revealed several differences. Several early signaling proteins are activated or phosphorylated to a higher extent in ER1 than in ER2 cells in response to epidermal growth factor. ER1 is less efficiently internalized and remains tyrosine phosphorylated for a longer time than ER2. However, phosphorylation of the 66-kDa She protein, activation of mitogen activated protein kinase, and induction of c-fos and c-jun occur either to a lesser extent or for a shorter time in ER1 cells. Cellular protein phosphorylation patterns are also different in ER1 and ER2 cells. In particular, a 190-kDa Shc-associated protein is tyrosine phosphorylated in ER2 but not in ER1 cells. Our results indicate that the TM domains have a profound effect on the signal transduction and biological activity of those chimeric receptors. The results also imply that sustained stimulation of ER1 due to its retarded internalization apparently triggers an inhibitory response that dominantly counteracts the receptor-mediated mitogenic signals. These two chimeras, expressed at similar levels in the same cell type but having opposite effects on cell growth, provide an ideal system to study the mechanism by which a protein tyrosine kinase inhibits cell growth.  相似文献   

20.
Alterations in ErbB2 or fibroblast growth factor receptor-4 (FGFR-4) expression and activity occur in a significant fraction of breast cancers. Because signaling molecules and pathways cooperate to drive cancer progression, simultaneous targeting of multiple pathways is an appealing therapeutic strategy. With this in mind, we examined breast tumor cells for their sensitivity to the ErbB2 and FGFR inhibitors, PKI166 and PD173074, respectively. Simultaneous blocking of ErbB2 and FGFR-4 in MDA-MB-453 tumor cells had a stronger anti-proliferative effect than treatment with individual inhibitors. Examination of cell cycle regulators revealed a novel translation-mediated mechanism whereby ErbB2 and FGFR-4 cooperate to regulate cyclin D1 levels. Our results showed that FGFR-4 and ErbB2 via the MAPK and the phosphatidylinositol 3-kinase/protein kinase B pathways, respectively, both contribute to the maintenance of constitutive activity of the mammalian target of rapamycin translational pathway. Dual inhibition of these receptors strongly blocked S6 kinase 1 (S6K1) activity and cyclin D1 translation, as attested by a decrease in cyclin D1 mRNA association with polysomes. Ectopic expression of active protein kinase B or active S6K1 abrogated the dual inhibitor-mediated down-regulation of cyclin D1 expression, demonstrating the importance of these FGFR-4/ErbB2 signaling targets in regulating cyclin D1 translation. S6K1 has the central role in this process, since small interfering RNA-targeted S6K1 depletion led to a decrease in cellular S6K1 activity and, as a consequence, repression of cyclin D1 expression. Thus, we propose a novel mechanism for controlling cyclin D1 expression downstream of combined activity of ErbB2 and FGFR-4 that involves S6K1-mediated translation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号