首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary The scyphozoan polyp Cassiopea forms vegetative free swimming buds that metamorphose into sessile polyps. In sterile sea water metamorphosis does not take place. Buds keep swimming for weeks. Application of millimolar quantities of NH 4 + causes the buds to metamorphose within one day. The resulting animals bear hypostome and tentacles, however, only occasionally peduncle and foot. Almost all transform either completely into solitary polyp head or only the oral half of the bud developes into a head while the aboral half remains bud tissue which becomes constricted off. Under suited conditions this small bud is able to transform into a normal shaped polyp.  相似文献   

2.
Summary Hydrozoa replace used-up nematocytes (cnidocytes) by proliferation and differentiation from interstitial stem cells (i cells). Repeated pulsed exposure ofHydra to elevated levels of unprotonated ammonia leads to successive loss of the various types of nematocytes: first of the stenoteles, then of the isorhizas and finally of the desmonemes. The loss is due to deficits in supply; the number of nematoblasts and differentiating intermediates is reduced. In the hydroidHydractinia the main process leading to numerical reduction was observed in vivo: mature nematocytes as well as precursors emigrate from their place of origin into the gastrovascular channels where they are removed by phagocytosis. This is a regular means by which these animals down-regulate an induced surplus of nematocytes. With lower effectiveness, pulses of methylamine, trimethylamine and glutamine also induce elimination of the nematocyte lineages. In the long term the population of nerve cells, which are permanently but slowly renewed from interstitial neuroblasts, decreases, too. After 2 months of daily repeated treatment the density of the Arg-Phe-amide-positive nerve cells was reduced to 50% of its normal level. Thus, ammonia induces down-regulation of all interstitial cell lineages. The temporal sequence of the ammonia-induced loss reflects the diverse rates with which the various i cell descendants normally are renewed.  相似文献   

3.
Summary Whilst the significance of the phosphoinositide cycle in the activation of developmental events by extra-cellular signals is well established, the involvement of the phosphatidylcholine (PC) cycle is a matter just emerging. In the present study, the metabolism of phosphatidylcholine in early metamorphosis of Hydractinia echinata (Coelenterata; Hydrozoa) was investigated by incubation of planula larvae with 3H-choline, extraction of the metabolites and isolation of the metabolites by thin-layer chromatography (TLC). Phosphatidylcholine (PC), lysophosphatidylcholine (LPC), acetylcholine and glycerophosphocholine were the labelled metabolites. Induction of metamorphosis did not stimulate an increased incorporation of choline into PC. In larvae preincubated with 3H-choline to a steady state level of incorporation, a significant transient elevation of the radioactive label in LPC was observed 90 min after addition of metamorphosis stimulating agents. LPC probably derived from PC by the action of a phospholipase A2 (PLA2). LPCs from bovine and soybean origin as well as isolated larval LPC did not influence metamorphosis. PLA2 from bee venom promoted Cs+-induced metamorphosis but did not influence phorbol ester-induced metamorphosis. The data suggest that a PLA2 is activated during metamorphosis. This PLA2 activation does not occur in those putative receptor cells which receive the primary external inducing stimulus but in the many larval cells which resume proliferation or differentiation in response to a second, internally propagated signal. Offprint requests to: T. Leitz  相似文献   

4.
Abstract. A pulse-type application of tumor-promoting phorbol esters (e.g., 12-tetra-decanoyl-phorbol-13-acetate, TPA) initiates the metamorphosis of planula larvae into polyps. Phorbol esters replace or bypass a lipophilic inducer which, in the natural habitat, is produced by environmental bacteria of the genus Alteromonos . In regeneration assays, isolated gastric regions of adult polyps were induced by TPA to form heads at both ends and often in the middle, too. TPA increases the "positional value," as does an endogenous, extractable factor X. The morphogenetic effectiveness of various phorbol esters is correlated with their tumor-promoting potency. These findings show that signaltransducing systems responding to phorbol esters are present even in basic metazoan animals. However, protein kinase-C activity could not be detected, and 1 -oleoyl-2-acetyl-glycerol could not replace TPA. On the other hand, the biological activity of phorbol esters is promoted by reducing the Mg2+ and increasing the K+ concentration of the external medium, and is strongly amplified by lithium or cesium. Thus, the existence of a more elementary, presumably cation-mediated transducing system is suggested.  相似文献   

5.
The primitive nervous system in planula larvae of Hydractinia echinata (Cnidaria) has sensory neurons containing LWamide or RFamide neuropeptides. LWamides have been shown to induce metamorphosis of planula larvae into adult polyps. We report here that RFamides act antagonistically to LWamides. RFamides inhibit metamorphosis when applied to planula larvae during metamorphosis induction by treatment with LWamides (or other inducing agents such as CsCl ions, diacylglycerol and bacterial inducers). Our results show further that RFamides act downstream of LWamide release, presumably directly on target cells mediating metamorphosis. These observations support a model in which metamorphosis in H. echinata is regulated by sensory neurons secreting LWamides and RFamides in response to environmental cues.Edited by D. Tautz  相似文献   

6.
Summary Planula larvae of the marine hydroids Halocordyle disticha and Hydractinia echinata were treated with the catecholamines epinephrine, norepinephrine and dopamine, as well as with certain of their precursors and agonists. Norepinephrine, l-dopa, dopamine and the dopamine agonist ADTN at concentrations ranging from 0.1 to 0.001 mM induced metamorphosis within 24 h in Halocordyle disticha, with no observable morphogenetic abnormalities. Epinephrine, the adrenergic agonists phenylephrine, isoproterenol and methoxyamine, and the catecholamine precursors phenylalanine and tyrosine were found not to induce metamorphosis at the concentrations employed. None of the compounds was effective in inducing metamorphosis in Hydractinia echinata. A model is presented for neural control of metamorphosis in Halocordyle disticha  相似文献   

7.
A wealth of information has suggested the involvement of protein kinase C (PKC) in metamorphosis of Hydractinia echinata and in pattern formation of Hydra magnipapillata. We have identified a Ca2+- and phospholipid-dependent kinase activity in extracts of both species. The enzyme was characterized as being similar to mammalian PKC by ion exchange chromatography. Gel filtration experiments revealed a molecular weight of about 70 kD. In phosphorylation assays of endogenous Hydractinia proteins, a protein with a molecular weight of 22.5 kD was found to be phoshorylated upon addition of phosphatidylserine. Bacterial induction of metamorphosis of Hydractinia echinata caused an increase in endogenous diacylglycerol, the physiological activator of PKC, suggesting that the bacterial inducer acts by activating receptor-regulated phospholipid metabolism. Exogenous diacylglycerol leads to membrane translocation of PKC, indicative of an activation. On the basis of our results and those of Freeman and Ridgway (1990) a model for the biochemical events during metamorphosis is presented.  相似文献   

8.
Summary In most sessile marine invertebrates, metamorphosis is dependent on environmental cues. Here we report that heat stress is capable of inducing metamorphosis in the hydroid Hydractinia echinata. The onset of heat-induced metamorphosis is correlated with the appearance of heat-shock proteins. Larvae treated with the metamorphosis-inducing agents Cs+ or NH4 + also synthesize heat-shock proteins. In heat-shocked larvae, the internal NH4 +-concentration increases. This fits the hypothesis that methylation plays a central role in control of metamorphosis. In the tunicate Ciona intestinalis, a heat shock is able to induce metamorphosis too. Offprint requests to: M. Walther  相似文献   

9.
Summary Larvae of Hydractinia echinata, a colonial marine hydroid, can be triggered experimentally to undergo metamorphosis into polyps. The efficiency of induction is density-dependent: a high larval density allows fewer larvae to metamorphose than a low density. Culture medium of metamorphosing larvae was found to contain taurine as the major constituent of its inhibitory activity. The concentration of taurine in larvae is 90 mM which is much higher than that of other free amino acids. Taurine interferes effectively with the onset of metamorphosis if applied externally at a concentration equivalent to 1/1000 of the animal's overall internal concentration. Upon induction of metamorphosis the larva releases three quarters of its taurine into the medium. Taurine may have a function in control of onset of metamorphosis because, applied exogenously in micromolar quantities, it stabilizes the larval state, i.e. the larvae resist metamorphosis-inducing stimuli. The chemically related compounds 4-aminobutyric acid (GABA) and -alanine are much less effective. There exist other larval state stabilizing compounds in Hydractinia including homarine, trigonelline, betaine and methionine. These compounds are though to act by delivering methyl groups leading to the production of S-adenosylmethionine. Taurine is not able to supply methyl groups. Furthermore, in contrast to the four other compounds taurine does not interefere with the advance of metamorphosis when applied after induction, and of these five substances, only taurine is released upon induction of metamorphosis.  相似文献   

10.
Summary In the marine colonial hydroidHydractinia echinata metamorphosis from the larval to the adult (polyp) stage is induced by various agents, including CsCI and dioctanoylglycerol (diC8). Induction is prevented when the inhibitors of protein synthesis cycloheximide or ementine were applied simultaneously with the metamorphosis-inducing agents. With diC8 treatment, the inhibitors caused most animals to transform into mosaics consisting of larval and polyp body parts instead of normal shaped polyps. In contrast, treatment with cycloheximide or ementine just before or after incubation with the metamorphosis-inducing agents did not prevent larvae from metamorphosis. No substantial quantitative changes in protein synthesis occur during induction of metamorphosis, however, the protein pattern is changed upon induction. The most prominent new polypeptides (25 and 73 kD) were observed when CsCI was used to trigger metamorphosis. In addition, both in CsCl- and in diC8-treated larvae, the synthesis of a new 23 kD protein occurred, whilst synthesis of others ceased (41 and 44 kD).  相似文献   

11.
Summary Polyps of mature colonies of Hydractinia echinata obey the rule of distal transformation by regenerating heads but not stolons. However, this rule is not valid for young polyps as these regenerate stolons from proximal cut ends. Also, small cell aggregates and even small fragments excised from full-grown polyps are capable of stolon formation. Aggregates produced from dissociated cells undergo either distal or proximal transformation depending on their size, speed of head regeneration in the donor used for dissociation and the positional derivation of the cells. The latent capability of stolon formation is released under conditions that cause loss of morphogens and depletion of their sources. However, internal regulative processes can also lead to gradual proximal transformation: regenerating segments of polyps sometimes form heads at both ends and the distal pattern is duplicated. Subsequently, all sets of proximal structures, including stolons, are intercalated. In contrast to distal transformation, proximal transformation is a process the velocity of which declines with the age and size of the cell community.  相似文献   

12.
Regional differences in potential difference and short-circuit current between the body (dorsal) and the tail skin during metamorphosis of Rana catesbeiana tadpoles were investigated. In body skin, the potential difference and the short-circuit current across the skin develop in two successive steps. At stage XX, the potential difference and the short-circuit current across the body skins were amiloride-insensitive (1st step). At stage XXII, however, amiloride-sensitive potential difference and the short circuit current appeared (2nd step). By contrast, in tail skin the potential difference and the short-circuit current remained amiloride-insensitive (1st step) even at stage XXIII. Since the tail regresses after stage XXIII, the appearance of the second step could not be followed in vivo. To determine whether or not the second step can be induced in the tail, tail skin was cultured under conditions where the skin survives for a much longer period than it does in normally developing tadpoles. Such cultured tail skin generated the amiloride-sensitive potential difference and the short-circuit current and cultured body skin also generated them. Therefore, development of the 2nd step in the tail skin may be delayed in vivo. To characterize the differences between body and tail skin, skins were mutally grafted between body and tail at stage XIII–XV. The body skin grafted on the tail underwent both the 1st and 2nd steps by stage XXII, whereas the tail skin grafted on the body only showed the 1st step by the same stage. These results suggest that the regional specificity of the skin is already established before the prometamorphic stage.Abbreviations CMFS Ca2+- and Mg2+-free saline - CTS charcoal-treated serum - EDTA ethylene diamine tetra-acetate - I current - PD potential difference - R skin resistance - SCC short-circuit current  相似文献   

13.
Summary Planulae are simply structured larvae lacking an overt longitudinal organization. In the course of a rapid metamorphosis, however, they transform into polyps, which display striking structural patterns. Metamorphosis takes place only in response to external stimuli. Surgical removal and transplantation of larval parts reveal that external stimuli, including artificial inducers such as cesium ions, tumor promoters and diacylglycerol, act on the anterior quarter of the larva where sensory cells containing Arg-Phe-amide-like peptides are located. The external stimuli initiate the release of an internal signal, which is transmitted to the posterior end causing the successive transformation of larval into adult tissue. The transformation front moves from the anterior to the posterior quarter in 60 min. The internal signal can be released or bypassed by a transitory lowering of the Mg2+ content of the seawater. By using this procedure, or by administering an extract containing the putative internal signal substance, each isolated part of the larva can be induced to metamorphose separately. Provided there is no time for regeneration after cutting before metamorphosis is initiated, the most anterior fragment forms only stolons, the most posterior fragment forms only a head. The overt pattern of the polyp is, therefore, generated under the influence of a covert anterior-posterior prepattern of the larva.  相似文献   

14.
Hydroids, members of the most ancient eumetazoan phylum, the Cnidaria, harbor multipotent, migratory stem cells lodged in interstitial spaces of epithelial cells and are therefore referred to as interstitial cells or i-cells. According to traditional understanding, based on studies in Hydra, these i-cells give rise to several cell types such as stinging cells, nerve cells, and germ cells, but not to ectodermal and endodermal epithelial cells; these are considered to constitute separate cell lineages. We show here that, in Hydractinia, the developmental potential of these migratory stem cells is wider than previously anticipated. We eliminated the i-cells from subcloned wild-type animals and subsequently introduced i-cells from mutant clones and vice versa. The mutant donors and the wild-type recipients differed in their sex, growth pattern, and morphology. With time, the recipient underwent a complete conversion into the phenotype and genotype of the donor. Thus, under these experimental conditions the interstitial stem cells of Hydractinia exhibit totipotency.  相似文献   

15.
Summary Homogenate of coelenterate tissue interferes with metamorphosis in Hydractinia and pattern formation in both Hydractinia, and Hydra. From the extracts two fractions comprising low-molecular-weight compounds with strong metamorphosis-inhibiting activity were separated. One of these contains, as the active compound, homarine (N-methyl picolinic acid). Homarine concentrations down to 10–6 mol/l stop or retard metamorphosis. High concentrations block the continuation of metamorphosis as long as they are maintained in the culture medium and treatment with homarine during metamorphosis influences the proportioning of the future polyp's body pattern. Most of the homarine found in Hydra tissue derives from Artemia given as food. It is not identical with inhibitor I, an activity partially purified from Hydra tissue, which prevents head and foot formation in Hydra.  相似文献   

16.
Amiloride, an inhibitor of various sodium transporters, is toxic to Schizosaccharomyces pombe at low concentration in minimal but not in rich media. Amiloride-resistant mutants were isolated and shown to represent a new locus (car1 for changed amiloride resistance) on chromosome I. The carl gene was cloned and sequenced. Sequence analysis revealed an open reading frame of 526 amino acids with a predicted molecular weight of 58 545 Da. It has 52% hydrophobic residues and belongs to the class of 12-transmembrane-domain transport proteins. Gene disruption of carl results in increased amiloride resistance. earl has sequence similarity to proteins from Candida associated with resistance to benomyl, methotrexate and cycloheximide. No single physiologically identifiable component of sodium transport appeared to be lost. We propose that earl serves an uptake function, perhaps as a symport with an unknown substrate and this carrier may transport amiloride into the cell. Further, we suggest that amiloride toxicity at low concentrations is not due to its effect on sodium transport but, rather, depends on intracellular interference with an unknown biosynthetic pathway.  相似文献   

17.
Summary A metamorphosis-inducing factor was isolated from medium conditioned by either metamorphosing larvae or 3-day postmetamorphic primary polyps. The factor has a molecular weight 8 kDa and is heatlabile. It does not induce metamorphosis of isolated posterior fragments and is therefore not identical to the internal signal described by Schwoerer-Böhning et al. (1990). The biological significance of the substance is currently unclear, therefore its inducing activity may be a side effect.  相似文献   

18.
Like many other cnidarians, corals undergo metamorphosis from a motile planula larva to a sedentary polyp. In some sea anemones such as Nematostella this process is a smooth transition requiring no extrinsic stimuli, but in many corals it is more complex and is cue-driven. To better understand the molecular events underlying coral metamorphosis, competent larvae were treated with either a natural inducer of settlement (crustose coralline algae chips/extract) or LWamide, which bypasses the settlement phase and drives larvae directly into metamorphosis. Microarrays featuring > 8000 Acropora unigenes were used to follow gene expression changes during the 12 h period after these treatments, and the expression patterns of specific genes, selected on the basis of the array experiments, were investigated by in situ hybridization. Three patterns of expression were common—an aboral pattern restricted to the searching/settlement phase, a second phase of aboral expression corresponding to the beginning of the development of the calicoblastic ectoderm and continuing after metamorphosis, and a later orally-restricted pattern.  相似文献   

19.
20.
Summary The caudal musculature of the free-swimming tadpole of the ascidian, B. schlosseri consists of cylindrical mononucleated cells connected in longitudinal rows flanking the axial notochord. During resorption of the larval tail, which is apparently induced by the contraction of the epidermis, muscle cells are dissociated and pushed into the body cavity where most of them are rapidly engulfed by phagocytes. In the initial stages of tail withdrawal muscle cells display surface alterations due to the disruption of intercellular junctions and disarrangement of myofibrils. Extensive degenerative changes, with shrinkage of mitochondria and disintegration of the contractile material are subsequently observed. Lysosomes and autophagic vacuoles are rarely seen and appear to play a secondary role in the degradation of the muscle cells, which occurs predominantly within the phagocytes. Myofilaments and myofibrils have never been observed within autophagic vacuoles. Clumps of muscle fragments and degenerated phagocytes undergo eventual dissolution in the blood lacunae, concomitantly with the differentiation of the young oozooid.This investigation was supported in part by a grant from the Muscular Dystrophy Associations of America and by CNR contract No. 7100396/04115542 from the Istituto di Biologia del Mare, Venice. We gratefully acknowledge the skillful assistance of Mr. G. Gallian, Mr. M. Fabbri and Mr. G. Tognon. We also thank the staff of the Stazione Idrobiologica at Chioggia for collecting the colonies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号