首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Barramundi is a commercially farmed fish in Australia. To examine the potential for barramundi to metabolise dietary α-linolenic acid (ALA, 18:3 n-3), the existence of barramundi desaturase enzymes was examined. A putative fatty acid Δ6 desaturase was cloned from barramundi liver and expressed in yeast. Functional expression revealed Δ6 desaturase activity with both the 18 carbon (C(18)) and C(24) n-3 fatty acids, ALA and 24:5 n-3 as well as the C(18) n-6 fatty, linoleic acid (LA, 18:2 n-6). Metabolism of ALA was favoured over LA. The enzyme also had Δ8 desaturase activity which raises the potential for synthesis in barramundi of omega-3 (n-3) long chain polyunsaturated fatty acids from ALA via a pathway that bypasses the initial Δ6 desaturase step. Our findings not only provide molecular evidence for the fatty acid desaturation pathway in the barramundi but also highlight the importance of taking extracellular fatty acid levels into account when assessing enzyme activity expressed in Saccharomyces cerevisiae.  相似文献   

2.
The synthesis of long chain polyunsaturated fatty acids (LCPUFA), such as eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3), involves fatty acyl desaturase and elongase enzymes. The marine fish species southern bluefin tuna (SBT) can accumulate large quantities of omega-3 (n-3) LCPUFA in its flesh but their capacity to synthesize EPA and DHA is uncertain. A cDNA, sbtElovl5, encoding a putative fatty acyl elongase was amplified from SBT liver tissue. The cDNA included an open reading frame (ORF) encoding 294 amino acids. Sequence comparisons and phylogenetic analyses revealed a high level of sequence conservation between sbtElovl5 and fatty acyl elongase sequences from other fish species. Heterologous expression of the sbtElovl5 ORF in Saccharomyces cerevisiae confirmed that it encoded a fatty acyl elongase capable of elongating C18/20 polyunsaturated fatty acid (PUFA) substrates, but not C22 PUFA substrates. For the first time in an Elovl5, the substrate competition occurring in nature was investigated. Higher activity towards n-3 PUFA substrates than omega-6 (n-6) PUFA substrates was exhibited, regardless of substrate chain length. The sbtElovl5 preferentially elongated 18:4n-3 and 18:3n-6 rather than 20:5n-3 and 20:4n-6. The sbtElovl5 enzyme also elongated saturated and monounsaturated fatty acids.  相似文献   

3.
4.
1. The incorporation and metabolism of (n-3) and (n-6) polyunsaturated fatty acids (PUFA) supplemented to growing cultures were studied in rainbow trout (RTG-2) and turbot (TF) cell lines. 2. A fatty acid concentration of 20 microM considerably altered the fatty acid composition of the cells without affecting lipid class composition or the appearance of cytoplasmic lipid droplets. 3. Both cell lines exhibited considerable delta 6 desaturase activities. 4. Whereas delta 5 desaturase activity was expressed in RTG-2 cells, delta 4 desaturase activity was absent and, conversely, delta 4 desaturase activity was expressed in TF cells, but there was an apparent deficiency in the C18 to C20 elongase multi-enzyme complex. 5. The delta 6 desaturase activity in both cell lines showed little preference between 18:2(n-6) and 18:3(n-3) but the delta 5 desaturase activity of RTG-2 cells and the delta 4 desaturase activity of TF cells showed a preference for (n-3)PUFA. 6. Two fish oil concentrates were assessed for their ability to generate fatty acid compositions in the cell lines more closely resembling those of intact fish tissues.  相似文献   

5.
Yeast co-expressing human elongase and desaturase genes were used to investigate whether the same desaturase gene encodes an enzyme able to desaturate n-3 and n-6 fatty acids with the same or different carbon chain length. The results clearly demonstrated that a single human Delta5 desaturase is active on 20:3n-6 and 20:4n-3. Endogenous Delta6 desaturase substrates were generated by providing to the yeast radiolabelled 20:4n-6 or 20:5n-3 which, through two sequential elongations, produced 24:4n-6 and 24:5n-3, respectively. Overall, our data suggest that a single human Delta6 desaturase is active on 18:2n-6, 18:3n-3, 24:4n-6 and 24:5n-3.  相似文献   

6.
Studies suggested that in human adults, linoleic acid (LA) inhibits the biosynthesis of n-3 long-chain polyunsaturated fatty acids (LC-PUFA), but their effects in growing subjects are largely unknown. We used growing pigs as a model to investigate whether high LA intake affects the conversion of n-3 LC-PUFA by determining fatty acid composition and mRNA levels of Δ5- and Δ6 desaturase and elongase 2 and -5 in liver and brain. In a 2 × 2 factorial arrangement, 32 gilts from eight litters were assigned to one of the four dietary treatments, varying in LA and α-linolenic acid (ALA) intakes. Low ALA and LA intakes were 0.15 and 1.31, and high ALA and LA intakes were 1.48 and 2.65 g/kg BW0.75 per day, respectively. LA intake increased arachidonic acid (ARA) in liver. ALA intake increased eicosapentaenoic acid (EPA) concentrations, but decreased docosahexaenoic acid (DHA) (all P < 0.01) in liver. Competition between the n-3 and n-6 LC-PUFA biosynthetic pathways was evidenced by reductions of ARA (>40%) at high ALA intakes. Concentration of EPA (>35%) and DHA (>20%) was decreased by high LA intake (all P < 0.001). Liver mRNA levels of Δ5- and Δ6 desaturase were increased by LA, and that of elongase 2 by both ALA and LA intakes. In contrast, brain DHA was virtually unaffected by dietary LA and ALA. Generally, dietary LA inhibited the biosynthesis of n-3 LC-PUFA in liver. ALA strongly affects the conversion of both hepatic n-3 and n-6 LC-PUFA. DHA levels in brain were irresponsive to these diets. Apart from Δ6 desaturase, elongase 2 may be a rate-limiting enzyme in the formation of DHA.  相似文献   

7.
Sex differences in n-3 and n-6 fatty acid metabolism in EFA-depleted rats   总被引:1,自引:0,他引:1  
We studied the effect of sex on the distribution of long-chain n-3 and n-6 fatty acids in essential fatty acid-deficient rats fed gamma-linolenate (GLA) concentrate and/or eicosapentaenoate and docosahexaenoate-rich fish oil (FO). Male and female weanling rats were rendered essential fatty acid deficient by maintaining them on a fat-free semisynthetic diet for 8 weeks. Thereafter, animals of each sex were separated into three groups (n = 6) and given, for 2 consecutive days by gastric intubation, 4 g/kg body wt per day of GLA concentrate (containing 84% 18:2n-6), n-3 fatty acid-rich FO (containing 18% 20:5n-3 and 52% 22:6n-3), or an equal mixture of the two oil preparations (GLA + FO). The fatty acid distributions in plasma and liver lipids were then examined. GLA treatment increased the levels of C-20 and C-22 n-6 fatty acids in all lipid fractions indicating that GLA was rapidly metabolized. However, the increases in 20:3n-6 were less in females than those in males, while those in 20:4n-6 were greater, suggesting that the conversion of 20:3n-6 to 20:4n-6 was more active in female than in male rats. FO treatment increased the levels of 20:5n-3 and 22:6n-3 and reduced those of 20:4n-6. The increase in n-3 fatty acids was greater in females than that in males and the reduction in 20:4n-6 was smaller. Consequently, the sum of total long-chain EFAs incorporated was greater in females than that in males. The administration of n-3 fatty acids also reduced the ratio of 20:4n-6 to 20:3n-6 in GLA + FO-treated rats indicating that n-3 fatty acids inhibited the activity of delta-5-desaturase. However, this effect was not affected by the sex difference.  相似文献   

8.
Accumulating evidence finds a relative deficiency of peripheral membrane fatty acids in persons with affective disorders such as unipolar and bipolar depression. Here we sought to investigate whether postmortem brain fatty acids within the anterior cingulate cortex (BA-24) varied according to the presence of major depression at the time of death. Using capillary gas chromatography we measured fatty acids in a depressed group (n=12), and in a control group without lifetime history of psychiatric diagnosis (n=14). Compared to the control group, the depressed group showed significantly lower concentrations of numerous saturated and polyunsaturated fatty acids including both the n-3 and n-6 fatty acids. Additionally, significant correlations between age at death and precursor (or metabolites) in the n-3 fatty acid pathway were demonstrated in the depressed group but not in control subjects. In the n-6 fatty acid family, the ratio of 20:3(n-6)/18:2(n-6) was higher in patients than in control groups, whereas the ratio of 20:4(n-6)/20:3(n-6) was relatively decreased in patients. Lastly, a significant negative correlation between age and the ratio of 20:4(n-6) to 22:6(n-3) was found in patients, but not in controls. Taken together, decreases in 22:6(n-3) may be caused, at least in part, by the diminished formation of 20:5(n-3), which is derived from 20:4(n-3) through a Δ5 desaturase reaction. The present findings from postmortem brain tissue raise the possibility that an increased ratio of 20:4(n-6) to 22:6(n-3) may provide us with a biomarker for depression. Future research should further investigate these relationships.  相似文献   

9.

Background  

Although unsaturated fatty acids such as eicosapentaenoic acid (EPA, C20:5n-3), docosahexaenoic acid (DHA, C22:6n-3) and arachidonic acid (ARA, C20:4n-6), collectively known as the highly unsaturated fatty acids (HUFA), play pivotal roles in vertebrate reproduction, very little is known about their synthesis in the ovary. The zebrafish (Danio rerio) display capability to synthesize all three HUFA via pathways involving desaturation and elongation of two precursors, the linoleic acid (LA, C18:2n-6) and linolenic acid (LNA, C18:3n-3). As a prerequisite to gain full understanding on the importance and regulation of ovarian HUFA synthesis, we described here the mRNA expression pattern of two enzymes; desaturase (fadsd6) and elongase (elovl5), involved in HUFA biosynthesis pathway, in different zebrafish ovarian follicle stages. Concurrently, the fatty acid profile of each follicle stage was also analyzed.  相似文献   

10.
The concentration-dependent metabolism of 1-(14)C-labelled precursors of 22:5n-6 and 22:6n-3 was compared in rat testis cells. The amounts of [(14)C]22- and 24-carbon metabolites were measured by HPLC. The conversion of [1-(14)C]20:5n-3 to [3-(14)C]22:6n-3 was more efficient than that of [1-(14)C]20:4n-6 to [3-(14)C]22:5n-6. At low substrate concentration (4 microM) it was 3.4 times more efficient, reduced to 2.3 times at high substrate concentration (40 microM). The conversion of [1-(14)C]22:5n-3 to [1-(14)C]22:6n-3 was 1.7 times more efficient than that of [1-(14)C]22:4n-6 to [1-(14)C]22:5n-6 using a low, but almost equally efficient using a high substrate concentration. When unlabelled 20:5n-3 was added to a cell suspension incubated with [1-(14)C]20:4n-6 or unlabelled 22:5n-3 to a cell suspension incubated with [1-(14)C]22:4n-6, the unlabelled n-3 fatty acids strongly inhibited the conversion of [1-(14)C]20:4n-6 or [1-(14)C]22:4n-6 to [(14)C]22:5n-6. In the reciprocal experiment, unlabelled 20:4n-6 and 22:4n-6 only weakly inhibited the conversion of [1-(14)C]20:5n-3 and [1-(14)C]22:5n-3 to [(14)C]22:6n-3. The results indicate that if both n-6 and n-3 fatty acids are present, the n-3 fatty acids are preferred over the n-6 fatty acids in the elongation from 20- to 22- and from 22- to 24-carbon atom fatty acids. In vivo the demand for 22-carbon fatty acids for spermatogenesis in the rat may exceed the supply of n-3 precursors and thus facilitate the formation of 22:5n-6 from the more abundant n-6 precursors.  相似文献   

11.
Cultured C6 glioma cells rapidly incorporate and metabolize the essential fatty acids, 18:2(n-6) and 18:3(n-3), to 20- and 22-carbon polyunsaturated fatty acids. Using several deuterated fatty acid substrates we have obtained data that suggest alternate pathways, one possibly involving delta 8-desaturation, may exist in glioma cells for formation of 20:5(n-3) and 22:6(n-3) from 18:3(n-3). With 18:3(n-3)-6,6,7,7-d4 practically no 18:4(n-3)-6,7-d2 or 20:4(n-3)-8,9-d2 was detected whereas 20:3(n-3)-8,8,9,9-d4 accounted for 3.4% and delta 5,11,14,17-20:4-8,8,9,9-d4 for 21.1% of the total deuterated fatty acids recovered in phospholipids after a 16 h incubation; 20:5(n-3)-8,9-d2, 22:5(n-3)-10,11-d2, and 22:6(n-3)-10,11-d2 accounted for 42.4%, 13.2%, and 2.8% of deuterated acyl chains, respectively. When added exogneously, 20:3-8,8,9,9,-d4 was extensively converted to delta 5,11,14,17-20:4(n-3)-8,8,9,9-d4 (45%) and 20:5(n-3)-8,9-d2 (24%); a small amount (4%) of 18:3(n-3)-d4 also was detected. Both 20:4(n-3)-8,9-d2 and 18:4(n-3)-12,13,15,16-d4 were also converted to 20:5(n-3) and 22:6(n-3) with 8 and 0% of the respective original deuterated substrate remaining after 16 h. A possible pathway for 18:3(n-3) metabolism in glioma cells is described whereby an initial chain elongation step is followed by successive delta 5 and delta 8 desaturation reactions resulting in 20:5(n-3) formation and accounting for the ordered removal of deuterium atoms. Alternatively, extremely effective retroconversion may occur to chain shorten 20:3(n-3)-d4 to 18:3(n-3)-d4 followed by rapid conversion through the classical desaturation and chain elongation sequence.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The mammalian Δ6-desaturase coded by fatty acid desaturase 2 (FADS2; HSA11q12-q13.1) catalyzes the first and rate-limiting step for the biosynthesis of long-chain polyunsaturated fatty acids. FADS2 is known to act on at least five substrates, and we hypothesized that the FADS2 gene product would have Δ8-desaturase activity. Saccharomyces cerevisiae transformed with a FADS2 construct from baboon neonate liver cDNA gained the function to desaturate 11,14-eicosadienoic acid (20:2n-6) and 11,14,17-eicosatrienoic acid (20:3n-3) to yield 20:3n-6 and 20:4n-3, respectively. Competition experiments indicate that Δ8-desaturation favors activity toward 20:3n-3 over 20:2n-6 by 3-fold. Similar experiments show that Δ6-desaturase activity is favored over Δ8-desaturase activity by 7-fold and 23-fold for n-6 (18:2n-6 vs 20:2n-6) and n-3 (18:3n-3 vs 20:3n-3), respectively. In mammals, 20:3n-6 is the immediate precursor of prostaglandin E1 and thromboxane B1. 20:3n-6 and 20:4n-3 are also immediate precursors of long-chain polyunsaturated fatty acids arachidonic acid and eicosapentaenoic acid, respectively. These findings provide unequivocal molecular evidence for a novel alternative biosynthetic route to long-chain polyunsaturated fatty acids in mammals from substrates previously considered to be dead-end products.  相似文献   

13.
Synthesis of n-3 and n-6 very long chain-PUFAs (VLC-PUFAs) from 18-carbon essential fatty acids is differentially regulated. The predominant product arising from n-3 fatty acids is docosahexaenoic acid (22:6n-3), with the liver serving as the main site of production. The synthetic pathway requires movement of a 24-carbon intermediate from the endoplasmic reticulum to peroxisomes for retroconversion to 22:6n-3. The mechanism of this intra-organelle flux is unknown, but could be binding-protein facilitated. We thus investigated binding of a series of previously untested VLC-PUFAs to liver fatty acid-binding protein (L-FABP). Three fluorometric assays were employed, all of which showed strong binding (K(d)' approximately 10(-8) to 10(-7) M) of 20-, 22-, and 24-carbon n-3 PUFAs to L-FABP. In contrast, synthesis of the predominant n-6 PUFA product, arachidonic acid, does not require intra-organelle transport. However, we found that n-6 VLC-PUFAs bound to L-FABP with affinities (K(d)' approximately 10(-8) to 10(-7) M) comparable to their n-3 counterparts.Although these results raise the possibility that L-FABP may participate in the cytoplasmic processing of n-3 and n-6 VLC-PUFAs, there is no evidence on the basis of binding affinities that L-FABP accounts for differences in the predominant products formed by the n-3 and n-6 PUFA metabolic pathways.  相似文献   

14.
Fish are an important source of highly unsaturated fatty acids (HUFA) such as eicosapentaenoic acid EPA (20:5 n-3) and docosahexaenoic acid DHA (22:6 n-3) and play a significant role in human nutrition. The fatty acyl delta6-desaturase (Δ6 desaturase) is a rate-limiting enzyme in the biosynthetic pathway of highly unsaturated fatty acids (HUFA) that converts polyunsaturated fatty acids (PUFA) such as linoleic (18:2n-6) and α-linolenic (18:3n-3) acids into HUFA. In this study, fatty acyl Δ6 desaturase was identified from pangasius (Pangasianodon hypophthalmus) and further analyzed for sequenced-based characterization and 3D structural conformation. Sequenced-based analysis revealed some important secondary information such as physicochemical property. e.g., isoelectric point, extinction coefficient, aliphatic index, and grand average hydropathy, among others, and also post-translational modification sites were identified. An evolutionary-conserved stretch of amino acid residue and a functionally significant conserved structural ancestor, N-terminal cytochrome b5 and membrane FADS-like superfamily, were identified. Protein association analysis showed a high confidence score with acyl-CoA synthetase, elovl5, elovl2, and phospholipase A2. Herein, we report, for the first time, a 3D native structure of Δ6 desaturase protein by homology modeling approach; molecular docking analysis was performed with linoleic (18:2n-6) and α-linolenic (18:3n-3) acids, which are the two key substrates in the HUFA biosynthetic pathway. This work provides insight into the structural and functional characterization of Δ6 desaturase, which is involved in HUFA biosynthesis as a rate-limiting enzyme.  相似文献   

15.
ω-3 fatty acid desaturase is a key enzyme for the biosynthesis of ω-3 polyunsaturated fatty acids via the oxidative desaturase/elongase pathways. Here we report the identification of three ω-3 desaturases from oomycetes, Pythium aphanidermatum, Phytophthora sojae, and Phytophthora ramorum. These new ω-3 desaturases share 55 % identity at the amino acid level with the known Δ-17 desaturase of Saprolegnia diclina, and about 31 % identity with the bifunctional Δ-12/Δ-15 desaturase of Fusarium monoliforme. The three enzymes were expressed in either wild-type or codon optimized form in an engineered arachidonic acid producing strain of Yarrowia lipolytica to study their activity and substrate specificity. All three were able to convert the ω-6 arachidonic acid to the ω-3 eicosapentanoic acid, with a substrate conversion efficiency of 54–65 %. These enzymes have a broad ω-6 fatty acid substrate spectrum, including both C18 and C20 ω-6 fatty acids although they prefer the C20 substrates, and have strong Δ-17 desaturase activity but weaker Δ-15 desaturase activity. Thus, they belong to the Δ-17 desaturase class. Unlike the previously identified bifunctional Δ-12/Δ-15 desaturase from F. monoliforme, they lack Δ-12 desaturase activity. The newly identified Δ-17 desaturases could use fatty acids in both acyl-CoA and phospholipid fraction as substrates. The identification of these Δ-17 desaturases provides a set of powerful new tools for genetic engineering of microbes and plants to produce ω-3 fatty acids, such as eicosapentanoic acid and docosahexanoic acid, at high levels.  相似文献   

16.
The marine microalga, Pavlova viridis, contains long-chain polyunsatured fatty acids including eicosapentaenoic acid (EPA, 20:5n-3) and docosapentaenoic acid (DPA, 22:5n-3). A full-length cDNA sequence, pvelo5, was isolated from P. viridis. From sequence alignment, the gene was homologous to fatty acyl elongases from other organisms. Heterologous expression of pvelo5 in Saccharomyces cerevisiae confirmed that it encoded a specific C20-elongase within the n-3 and n-6 pathways. Elongation activity was confined exclusively to EPA and arachidonic acid (20:4n-6). GC analysis indicated that pvelo5 could co-express with other genes for biosynthesis to reconstitute the Δ8 and Δ6 pathways. Real-time PCR results and fatty acid analysis demonstrated that long-chain polyunsatured fatty acids production by the Δ8 pathway might be more effective than that by the Δ6 pathway.  相似文献   

17.
The hydrolysis of chylomicrons enriched in long-chain n-3 fatty acids by cardiac lipoprotein lipase was studied. In 60 min, 24.8% of the triacylglycerol fatty acids were released as free fatty acids. The fatty acids were hydrolyzed at different rates. DHA (docosahexaenoic acid, 22:6n-3) and EPA (eicosapentaenoic acid, 20:5n-3) were released at rates significantly less than average. Stearic acid (18:0), 20:1n-9, and alpha-linolenic acid (18:3n-3) were released significantly faster than average. There was no relationship between the rate of release of a fatty acid and the number of carbons or the number of double bonds. Lipoprotein lipase selectively hydrolyzes the fatty acids of chylomicron triacylglycerols. This selectively will result in remnants that are relatively depleted in 18:0, 20:1, and 18:3 and relatively enriched in 20:5 and 22:6.  相似文献   

18.
Primary culture is a suitable system to study lipid metabolism and polyunsaturated fatty acid biosynthesis. Sertoli cell-enriched preparations were used to determine the fatty acid composition after 5 and 7 days in culture (serum free) as well as the uptake and metabolism of [1-14C]eicosa-8,11,14-trienoic acid. The addition of unlabeled linoleic acid (0.2 and 2.0 microg/ml) was also evaluated. Fatty acid methyl esters derived from cellular lipids were analyzed by gas liquid chromatography and radiochromatography. After 5 days in culture, cells had significantly less 18:2, 20:4, 22:5 and 24:5 and more 18:3, 20:3, 22:4 and 24:4 n-6 fatty acids than non-cultured cells. On day 7, an additional increment in 22:4 n-6 and a decrease in linoleic, gamma-linoleic and 24:4 n-6 fatty acids were observed. The presence of linoleic acid (low dose) produced a significant decrease in saturated and monounsaturated acids and an increase in 18:2, 20:4 and 22:5 n-6 fatty acids. At a high concentration almost all fatty acids belonging to 18:2 n-6 increased significantly. The drop in 20:4 n-6/20:3 n-6 ratio was considered as an indirect evidence of a Delta 5 desaturase activity depression. This assumption was corroborated by studying the transformation of [1-14C]eicosa-8,11,14-trienoic acid into 20:4, 22:4, 22:5, 24:4 and 24:5 n-6 fatty acids. We conclude that Sertoli cells after 7 days in culture evidenced changes in the fatty acid profile similar to those described under fat deprivation. The addition of linoleic acid reverted this pattern and indicated that the Delta 5 desaturase activity is a limiting step in the polyunsaturated fatty acid biosynthesis.  相似文献   

19.
Thraustochytrids, unicellular eukaryotic marine protists, accumulate polyunsaturated fatty acids. Here, we report the molecular cloning and functional characterization of two fatty acid elongase genes (designated tselo1 and tselo2), which could be involved in the desaturase/elongase (standard) pathway in Thraustochytrium sp. ATCC 26185. TsELO1, the product of tselo1 and classified into a Δ6 elongase group by phylogenetic analysis, showed strong C18-Δ6 elongase activity and relatively weak C18-Δ9 and C20-Δ5 activities when expressed in the budding yeast Saccharomyces cerevisiae. TsELO2, classified into a Δ9 elongase subgroup, showed only C16-Δ9 activity. When expressed in Aurantiochytrium limacinum mh0186 using a thraustochytrid-derived promoter and a terminator, TsELO1 exhibited almost the same specificity as expressed in the yeast but TsELO2 showed weak C18-Δ9 activity, in addition to its main C16-Δ9 activity. These results suggest that TsELO1 functions not only as a C18-Δ6 and a C20-Δ5 elongase in the main route but also as a C18-Δ9 elongase in the alternative route of standard pathway, while TsELO2 functions mainly as a C16-Δ9 elongase generating vaccenic acid (C18:1n?7) in thraustochytrids. This is the first report describing a fatty acid elongase harboring C16-Δ9 activity in thraustochytrids.  相似文献   

20.
Placental transfer of the long-chain polyunsaturated fatty acids (LCPUFA) arachidonic (AA) and docosahexaenoic (DHA) acids is selectively high to maintain accretion to fetal tissues, especially the brain. The objectives of the present study were to investigate the essential fatty acid (EFA) and LCPUFA status at birth of preterm and term Brazilian infants and their mothers, from a population of characteristically low intake of n-3 LCPUFA, and to evaluate the association between fetal and maternal status, by the determination of the fatty acid composition of the erythrocyte membrane. Blood samples from umbilical cord of preterm (26-36 weeks of gestation; n = 30) and term (37-42 weeks of gestation; n = 30) infants and the corresponding maternal venous blood were collected at delivery. The LCPUFA composition of the erythrocyte membrane and DHA status were similar for mothers of preterm and term infants. Neonatal AA was higher (P < 0.01) whereas its precursor 18:2n-6 was lower (P < 0.01) than maternal levels, as expected. There was no difference in LCPUFA erythrocyte composition between preterm and term infants, except for DHA. Term infants presented a worse DHA status than preterm infants (P < 0.01) and than their mothers (P < 0.01) at delivery. There was a negative correlation of neonatal DHA with maternal AA and a positive correlation between neonatal AA and maternal AA and 18:2n-6 only at term. These results suggest that the persistent low DHA maternal status, together with the comparatively better AA and 18:2n-6 status, might have affected maternal-fetal transfer of DHA when gestation was completed up to term, and possibly contributed to the worse DHA status of term neonates compared with the preterm neonates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号