共查询到20条相似文献,搜索用时 0 毫秒
1.
Kuo C Lim S King NJ Johnston SL Burgess JK Black JL Oliver BG 《American journal of physiology. Lung cellular and molecular physiology》2011,300(6):L951-L957
Airway remodeling, which includes increases in the extracellular matrix (ECM), is a characteristic feature of asthma and is correlated to disease severity. Rhinovirus (RV) infections are associated with increased risk of asthma development in young children and are the most common cause of asthma exacerbations. We examined whether viral infections can increase ECM deposition and whether this increased ECM modulates cell proliferation and migration. RV infection of nonasthmatic airway smooth muscle (ASM) cells significantly increased the deposition of fibronectin (40% increase, n = 12) and perlecan (80% increase, n = 14), while infection of asthmatic ASM cells significantly increased fibronectin (75% increase, n = 9) and collagen IV (15% increase, n = 9). We then treated the ASM cells with the Toll-like receptor (TLR) agonists polyinosinic:polycytidylic acid, imiquimod, and pure RV RNA and were able to show that the mechanism through which RV induced ECM deposition was via the activation of TLR3 and TLR7/8. Finally, we assessed whether the virus-induced ECM was bioactive by measuring the amount of migration and proliferation of virus-naive cells that seeded onto the ECM. Basically, ECM from asthmatic ASM cells induced twofold greater migration of virus-naive ASM cells than ECM from nonasthmatic ASM cells, and these rates of migration were further increased on RV-modulated ECM. Increased migration on the RV-modulated ECM was not due to increased cell proliferation, as RV-modulated ECM decreased the proliferation of virus-naive cells. Our results suggest that viruses may contribute to airway remodeling through increased ECM deposition, which in turn may contribute to increased ASM mass via increased cell migration. 相似文献
2.
Role of extracellular matrix and its regulators in human airway smooth muscle biology 总被引:3,自引:0,他引:3
Parameswaran K Willems-Widyastuti A Alagappan VK Radford K Kranenburg AR Sharma HS 《Cell biochemistry and biophysics》2006,44(1):139-146
Altered extracellular matrix (ECM) deposition contributing to airway wall remodeling is an important feature of asthma and
chronic obstructive pulmonary disease (COPD). The molecular mechanisms of this process are poorly understood. One of the key
pathological features of these diseases is thickening of airway walls. This thickening is largely to the result of airway
smooth muscle (ASM) cell hyperplasia and hypertrophy as well as increased deposition of ECM proteins such as collagens, elastin,
laminin, and proteoglycans around the smooth muscle. Many growth factors and cytokines, including fibroblast growth factor
(FGF)-1, FGF-2, and transforming growth factor (TGF)-α1, that are released from the airway wall have the potential to contribute to airway remodeling, revealed by enhanced ASM proliferation
and increased ECM protein deposition. TGF-α1 and FGF-1 stimulate mRNA expression of collagen I and III in ASM cells, suggesting their role in the deposition of extracellular
matrix proteins by ASM cells in the airways of patients with chronic lung diseases. Focus is now on the bidirectional relationship
between ASM cells and the ECM. In addition to increased synthesis of ECM proteins, ASM cells can be involved in downregulation
of matrix metalloproteinases (MMPs) and upregulation of tissue inhibitors of metalloproteinases (TIMPs), thus eventually contributing
to the alteration in ECM. In turn, ECM proteins promote the survival, proliferation, cytokine synthesis, migration, and contraction
of human airway smooth muscle cells. Thus, the intertwined relationship of ASM and ECM and their response to stimuli such
as chronic inflammation in diseases such as asthma and COPD contribute to the remodeling seen in airways of patients with
these diseases. 相似文献
3.
David Van Ly Monique De Pedro Peter James Lucy Morgan Judith L Black Janette K Burgess Brian GG Oliver 《Respiratory research》2013,14(1):127
Background
Virus-induced exacerbations of Chronic Obstructive Pulmonary Disease (COPD) are a significant health burden and occur even in those receiving the best current therapies. Rhinovirus (RV) infections are responsible for half of all COPD exacerbations. The mechanism by which exacerbations occur remains undefined, however it is likely to be due to virus-induced inflammation. Given that phophodiesterase 4 (PDE4) inhibitors have an anti-inflammatory effect in patients with COPD they present a potential therapy prior to, and during, these exacerbations.Methods
In the present study we investigated whether the PDE4 inhibitor piclamilast (10-6 M) could alter RV or viral mimetic (5 μg/mL of imiquimod or poly I:C) induced inflammation and RV replication in primary human airway smooth muscle cells (ASMC) and bronchial epithelial cells (HBEC). The mediators IL-6, IL-8, prostaglandin E2 and cAMP production were assayed by ELISA and RV replication was assayed by viral titration.Results
We found that in ASMCs the TLR3 agonist poly I:C induced IL-8 release was reduced while induced IL-6 release by the TLR7/8 agonist imiquimod was further increased by the presence of piclamilast. However, in RV infected ASMCs, virus replication and induced mediator release were unaltered by piclamilast, as was also found in HBECs. The novel findings of this study reveal that although PDE inhibitors may not influence RV-induced cytokine production in ASMCs and replication in either ASMCs or HBECs, they have the capacity to be anti-inflammatory during TLR activation by modulating the induction of these chemotactic cytokines.Conclusion
By extrapolating our in vitro findings to exacerbations of COPD in vivo this suggests that PDE4 inhibitors may have beneficial anti-inflammatory properties when patients are infected with bacteria or viruses other than RV. 相似文献4.
Shaoping Xie Razao Issa Maria B Sukkar Ute Oltmanns Pankaj K Bhavsar Alberto Papi Gaetano Caramori Ian Adcock K Fan Chung 《Respiratory research》2005,6(1):148
Background
The elastolytic enzyme matrix metalloproteinase (MMP)-12 has been implicated in the development of airway inflammation and remodeling. We investigated whether human airway smooth muscle cells could express and secrete MMP-12, thereby participating in the pathogenesis of airway inflammatory diseases.Methods
Laser capture microdissection was used to collect smooth muscle cells from human bronchial biopsy sections. MMP-12 mRNA expression was analysed by quantitative real-time RT-PCR. MMP-12 protein expression and secretion from cultured primary airway smooth muscle cells was further analysed by Western blot. MMP-12 protein localization in bronchial tissue sections was detected by immunohistochemistry. MMP-12 activity was determined by zymography. The TransAM AP-1 family kit was used to measure c-Jun activation and nuclear binding. Analysis of variance was used to determine statistical significance.Results
We provide evidence that MMP-12 mRNA and protein are expressed by in-situ human airway smooth muscle cells obtained from bronchial biopsies of normal volunteers, and of patients with asthma, COPD and chronic cough. The pro-inflammatory cytokine, interleukin (IL)-1β, induced a >100-fold increase in MMP-12 gene expression and a >10-fold enhancement in MMP-12 activity of primary airway smooth muscle cell cultures. Selective inhibitors of extracellular signal-regulated kinase, c-Jun N-terminal kinase and phosphatidylinositol 3-kinase reduced the activity of IL-1β on MMP-12, indicating a role for these kinases in IL-1β-induced induction and release of MMP-12. IL-1β-induced MMP-12 activity and gene expression was down-regulated by the corticosteroid dexamethasone but up-regulated by the inflammatory cytokine tumour necrosis factor (TNF)-α through enhancing activator protein-1 activation by IL-1β. Transforming growth factor-β had no significant effect on MMP-12 induction.Conclusion
Our findings indicate that human airway smooth muscle cells express and secrete MMP-12 that is up-regulated by IL-1β and TNF-α. Bronchial smooth muscle cells may be an important source of elastolytic activity, thereby participating in remodeling in airway diseases such as COPD and chronic asthma. 相似文献5.
R V Iozzo 《The Journal of biological chemistry》1985,260(12):7464-7473
Despite the growing evidence implicating proteoglycans in the control of cell proliferation and differentiation, little is known about the factors that control their metabolism in neoplasia or the mechanisms through which these macromolecules may influence neoplastic growth. The primary objective of the present study was to test whether human colon carcinoma cells released soluble mediators capable of stimulating the synthesis of proteoglycans in normal colon fibroblasts in vitro. Serum-free medium conditioned by colon carcinoma cells (TCM) was capable of stimulating several-fold the synthesis and secretion of proteoglycans in normal colon fibroblasts without inducing a mitogenic response. This effect was a true stimulation of proteoglycan biosynthesis since the kinetics of turnover were identical in the presence or absence of TCM. Characterization of the proteoglycans synthesized in the absence of TCM revealed that colon fibroblasts synthesized at least three species of proteoglycans including a heparan sulfate proteoglycan which was associated primarily with the cell layer and two populations of proteoglycans which were predominantly released into the medium and contained chondroitin-dermatan sulfate side chains. When fibroblasts were exposed to TCM, they synthesized and released higher amounts of proteoglycans which had overall similar density, molecular weight, and polydispersity but differed from controls in that they contained significantly higher proportions of chondroitin sulfate side chains. Partial characterization of TCM strongly indicated that the stimulatory activity comprised a family of polypeptides, with molecular weight between 5.4 and 6.0 X 10(5), which were heat stable and acid/alkali labile. Neoplastic modulation of proteoglycan metabolism in normal mesenchymal cells may represent an additional mechanism through which tumor cells can alter their surrounding environment. 相似文献
6.
Ascorbate-generated endogenous extracellular matrix affects cell protein synthesis in calf aortic smooth muscle cells 总被引:1,自引:0,他引:1
Mark A. Zern Elaine Schwartz Marie-Adele Giambrone Olga O. Blumenfeld 《Experimental cell research》1985,160(2):307-318
Ascorbate supplementation of cultured fetal calf aortic smooth muscle cells leads to increased deposition of extracellular matrix proteins and stimulation of cellular protein synthesis (E. Schwartz et al., J cell biol 92 (1983) 462) [7]. In the present study, we have investigated this phenomenon at the level of gene expression. Cells were grown for three weeks on tissue culture plastic with or without ascorbate (50 micrograms/ml). When compared to controls, cells grown in presence of ascorbate had twice as much poly(A+) RNA per microgram of total RNA, and ascorbate led to a 50% increase in [35S]methionine incorporation when the total RNA was translated in the reticulocyte lysate system. SDS-PAGE revealed no change in the protein pattern under the two conditions. "Northern" hybridization revealed a two- to fivefold increase in the sequence content of beta-actin, alpha-tubulin and type I pro alpha 1-collagen in total RNA of ascorbate-supplemented cells, but no difference was observed in the mRNA sequence content for the three specific proteins when equal amounts of poly(A+) RNA from ascorbate and control cells were hybridized with the three cloned cDNAs. To evaluate the effect of an exogenous matrix, cells were also plated on collagen gels. RNA isolated from cells grown on collagen without added ascorbate exhibited translational activity and mRNA sequence content similar to cells grown with ascorbate on tissue culture plastic. In contrast, no differences from controls were found in cells grown for one week in the presence of ascorbate, at which time no significant deposition of collagen occurs in the extracellular matrix. These results suggest that the stimulation in protein synthesis in fetal calf smooth muscle cells supplemented with ascorbate is associated with an increase in the proportion of poly(A+) RNA in the total RNA pool, and that the production of an endogenous collagen-rich matrix in the presence of ascorbate may be the basis for these pretranslational changes. 相似文献
7.
D L Cochran H A Perr M F Graham R F Diegelmann 《Biochemical and biophysical research communications》1987,142(2):542-551
Human intestinal smooth muscle cells have recently been identified as the major cell type responsible for stricture formation in Crohn's disease. Heparin, a sulfated glycosaminoglycan, has been shown to be a key modulator of vascular smooth muscle cell growth both in vivo and in vitro and to affect the release of proteins from these cells. Heparin has also been shown to affect the growth of human intestinal smooth muscle cells. In this report we demonstrate that heparin, in addition to its effects on proliferation, also has very specific effects on proteins released by these cells in vitro. Examination of the culture medium proteins of heparin-treated human intestinal cells revealed an increase in three proteins of molecular weight between 150-250 kd, an increase in a 37 kd protein and a decrease in synthesis of lower molecular weight (less than 20 kd) proteins. In substrate-attached material a transient effect on a 48 kd protein was observed. No effects on intracellular labeled proteins could be demonstrated. The 35S-methionine labeled protein profile of human intestinal smooth muscle cells exposed to heparin is similar to that observed in rat vascular smooth muscle cells yet distinct differences do exist. Extracellular processing does not account for the released proteins nor is de novo protein synthesis required suggesting that altered intracellular protein processing is the mechanism for the heparin-induced protein pattern. The release of specific proteins following exposure to heparin may reflect a significant influence of this glycosaminoglycan on the metabolism of smooth muscle cells in general and particularly in the human intestine. 相似文献
8.
Groseth A Hoenen T Weber M Wolff S Herwig A Kaufmann A Becker S 《PLoS neglected tropical diseases》2011,5(5):e1137
The mechanisms underlying the development of disease during arenavirus infection are poorly understood. However, common to all hemorrhagic fever diseases is the involvement of macrophages as primary target cells, suggesting that the immune response in these cells may be of paramount importance during infection. Thus, in order to identify features of the immune response that contribute to arenavirus pathogenesis, we have examined the growth kinetics and cytokine profiles of two closely related New World arenaviruses, the apathogenic Tacaribe virus (TCRV) and the hemorrhagic fever-causing Junin virus (JUNV), in primary human monocytes and macrophages. Both viruses grew robustly in VeroE6 cells; however, TCRV titres were decreased by approximately 10 fold compared to JUNV in both monocytes and macrophages. Infection of both monocytes and macrophages with TCRV also resulted in the release of high levels of IL-6, IL-10 and TNF-α, while levels of IFN-α, IFN-β and IL-12 were not affected. However, we could show that the presence of these cytokines had no direct effect on growth of either TCRV of JUNV in macrophages. Further analysis also showed that while the production of IL-6 and IL-10 are dependent on viral replication, production of TNF-α also occurs after exposure to UV-inactivated TCRV particles and is thus independent of productive virus infection. Surprisingly, JUNV infection did not have an effect on any of the cytokines examined indicating that, in contrast to other viral hemorrhagic fever viruses, macrophage-derived cytokine production is unlikely to play an active role in contributing to the cytokine dysregulation observed in JUNV infected patients. Rather, these results suggest that an early, controlled immune response by infected macrophages may be critical for the successful control of infection of apathogenic viruses and prevention of subsequent disease, including systemic cytokine dysregulation. 相似文献
9.
Asthma is a chronic airway inflammatory disease. Chronic aspiration by gastric fluid in gastroesophageal reflux disease (GERD) is considered a primary inflammatory factor exacerbating or predisposing patients to asthma. Airway smooth muscle cells (SMCs) are considered an important component in airway remodeling. To investigate the role of gastric fluid in airway SMC inflammation and airway remodeling, we examined gastric fluid-induced cytokine and chemokine profiles, airway SMC migration and matrix metalloproteinase expression in rat primary rat airway SMCs. The T helper cell type 2 (Th2) cytokines interleukin 4, interleukin 6 and tumor necrosis factor 2 (TNF-α) and the chemokines, lipopolysaccharide-induced CXC chemokine (LIX/CXCL5), cytokine-induced neutrophil chemoattractant 2 (CINC-2), CINC-3, fractalkine, ciliary neurotrophic factor (CNTF), and vascular endothelial growth factor were induced by gastric fluid in primary cultured rat airway SMCs. Migration of rat airway SMCs was enhanced by gastric fluid and conditioned medium. The migration of rat airway SMCs enhanced by gastric fluid was associated with actin polymerization and activation of focal adhesion kinase. Matrix metalloproteinase 2 expressions in airway SMCs was enhanced by gastric fluid and conditioned medium. The results suggest potential mechanisms by which gastric fluid aspiration might influence SMC-mediated airway remodeling. 相似文献
10.
LY294002, but not wortmannin,increases intracellular calcium and inhibits calcium transients in bovine and human airway smooth muscle cells 总被引:2,自引:0,他引:2
To characterize the effect that a phosphatidylinositol 3-kinase (PI3-kinase) inhibitor, LY294002, has on cytosolic calcium concentrations ([Ca2+]i), bovine airway smooth muscle cells (BASMC) and cultured human bronchial smooth muscle cells (HBSMC) were loaded with fura 2-AM, imaged as single cells and [Ca2+]i measured ratiometrically. LY294002 (50 microM) increased [Ca2+]i by 294+/-76 nM (P<0.01, n=13) and 230+/-31 nM (P<0.001, n=10) in BASMC and HBSMC, respectively, and increases occurred in the absence of extracellular calcium. In contrast, after pre-treatment with thapsigargin, LY294002 no longer increased [Ca2+]i. This calcium mobilization by LY294002 was associated with a significant functional effect since LY294002 also inhibited calcium transients to carbachol (45+/-23 nM), caffeine (45+/-32 nM), and histamine (20+/-22 nM), with controls of 969+/-190, 946+/-156, and 490+/-28 nM, respectively. Wortmannin, a different PI3-kinase inhibitor, neither increased [Ca2+]i nor inhibited transients. Also, LY294002 increased [Ca2+]i in the presence of wortmannin, U-73122, and xestospongin C. We concluded that LY294002 increased [Ca2+]i, at least in part, by mobilizing intracellular calcium stores and inhibited calcium transients. The effects of LY294002 on [Ca2+]i were not dependent on wortmannin-sensitive PI3-kinases, phospholipase C, or inositol trisphosphate receptors (IP3R). For BASMC and HBSMC, LY294002 has effects on calcium regulation that could be important to recognize when studying PI3-kinases. 相似文献
11.
12.
A recent report suggested that platelet-derived growth factor (PDGF) activates nuclear factor-kappa B (NF-kappa B) by phosphorylation of the protein kinase Akt [Romashkova and Makarov, Nature 401 (1999) 86-90]. The present study investigates the role of Akt in the activation of NF-kappa B by tumor necrosis factor-alpha (TNF alpha, 10 ng/ml) and PDGF-BB (20 ng/ml) in human vascular smooth muscle cells (SMC), skin and foreskin fibroblasts. TNF alpha stimulated serine phosphorylation and degradation of the inhibitory protein I kappa B alpha and strongly induced nuclear NF-kappa B translocation and binding activity. PDGF did not induce serine phosphorylation or degradation of I kappa B alpha and did not enhance binding activity of NF-kappa B. In contrast, stimulation with PDGF resulted in a marked phosphorylation of Akt, but no Akt phosphorylation occurred after stimulation with TNF alpha. These data suggest that Akt phosphorylation is not involved in NF-kappa B activation in human SMC and fibroblasts. 相似文献
13.
Dragon S Rahman MS Yang J Unruh H Halayko AJ Gounni AS 《American journal of physiology. Lung cellular and molecular physiology》2007,292(4):L1023-L1029
Recent studies into the pathogenesis of airway disorders such as asthma have revealed a dynamic role for airway smooth muscle cells in the perpetuation of airway inflammation via secretion of cytokines and chemokines. In this study, we evaluated whether IL-17 could enhance IL-1beta-mediated CXCL-8 release from human airway smooth muscle cells (HASMC) and investigated the upstream and downstream signaling events regulating the induction of CXCL-8. CXCL-8 mRNA and protein induction were assessed by real-time RT-PCR and ELISA from primary HASMC cultures. HASMC transfected with site-mutated activator protein (AP)-1/NF-kappaB CXCL-8 promoter constructs were treated with selective p38, MEK1/2, and phosphatidylinositol 3-kinase (PI3K) inhibitors to determine the importance of MAPK and PI3K signaling pathways as well as AP-1 and NF-kappaB promoter binding sites. We demonstrate IL-17 induced and synergized with IL-1beta to upregulate CXCL-8 mRNA and protein levels. Erk1/2 and p38 modulated IL-17 and IL-1beta CXCL-8 promoter activity; however, IL-1beta also activated the PI3K pathway. The synergistic response mediating CXCL-8 promoter activity was dependent on both MAPK and PI3K signal transduction pathways and required the cooperation of AP-1 and NF-kappaB cis-acting elements upstream of the CXCL-8 gene. Collectively, our observations indicate MAPK and PI3K pathways regulate the synergy of IL-17 and IL-1beta to enhance CXCL-8 promoter activity, mRNA induction, and protein synthesis in HASMC via the cooperative activation of AP-1 and NF-kappaB trans-acting elements. 相似文献
14.
Hamann KJ Vieira JE Halayko AJ Dorscheid D White SR Forsythe SM Camoretti-Mercado B Rabe KF Solway J 《American journal of physiology. Lung cellular and molecular physiology》2000,278(3):L618-L624
Hypertrophy and hyperplasia lead to excess accumulation of smooth muscle in the airways of human asthmatic subjects. However, little is known about mechanisms that might counterbalance these processes, thereby limiting the quantity of smooth muscle in airways. Ligation of Fas on the surface of vascular smooth muscle cells and nonmuscle airway cells can lead to apoptotic cell death. We therefore tested the hypotheses that 1) human airway smooth muscle (HASM) expresses Fas, 2) Fas cross-linking induces apoptosis in these cells, and 3) tumor necrosis factor (TNF)-alpha potentiates Fas-mediated airway myocyte killing. Immunohistochemistry using CH-11 anti-Fas monoclonal IgM antibody revealed Fas expression in normal human bronchial smooth muscle in vivo. Flow cytometry using DX2 anti-Fas monoclonal IgG antibody revealed that passage 4 cultured HASM cells express surface Fas. Surface Fas decreased partially during prolonged serum deprivation of cultured HASM cells and was upregulated by TNF-alpha stimulation. Fas cross-linking with CH-11 antibody induced apoptosis in cultured HASM cells, and this effect was reduced by long-term serum deprivation and synergistically potentiated by concomitant TNF-alpha exposure. TNF-alpha did not induce substantial apoptosis in the absence of Fas cross-linking. These data represent the first demonstration that Fas is expressed on HASM and suggest a mechanism by which Fas-mediated apoptosis could act to oppose excess smooth muscle accumulation during airway remodeling in asthma. 相似文献
15.
Sara S Roscioni Loes EM Kistemaker Mark H Menzen Carolina RS Elzinga Reinoud Gosens Andrew J Halayko Herman Meurs Martina Schmidt 《Respiratory research》2009,10(1):1-17
Background
Platelet-derived growth factor A (PDGF-A) signals solely through PDGF-Rα, and is required for fibroblast proliferation and transdifferentiation (fibroblast to myofibroblast conversion) during alveolar development, because pdgfa-null mice lack both myofibroblasts and alveoli. However, these PDGF-A-mediated mechanisms remain incompletely defined. At postnatal days 4 and 12 (P4 and P12), using mouse lung fibroblasts, we examined (a) how PDGF-Rα correlates with ki67 (proliferation marker) or alpha-smooth muscle actin (αSMA, myofibroblast marker) expression, and (b) whether PDGF-A directly affects αSMA or modifies stimulation by transforming growth factor beta (TGFβ).Methods
Using flow cytometry we examined PDGF-Rα, αSMA and Ki67 in mice which express green fluorescent protein (GFP) as a marker for PDGF-Rα expression. Using real-time RT-PCR we quantified αSMA mRNA in cultured Mlg neonatal mouse lung fibroblasts after treatment with PDGF-A, and/or TGFβ.Results
The intensity of GFP-fluorescence enabled us to distinguish three groups of fibroblasts which exhibited absent, lower, or higher levels of PDGF-Rα. At P4, more of the higher than lower PDGF-Rα + fibroblasts contained Ki67 (Ki67+), and Ki67+ fibroblasts predominated in the αSMA + but not the αSMA- population. By P12, Ki67+ fibroblasts comprised a minority in both the PDGF-Rα + and αSMA+ populations. At P4, most Ki67+ fibroblasts were PDGF-Rα + and αSMA- whereas at P12, most Ki67+ fibroblasts were PDGF-Rα- and αSMA-. More of the PDGF-Rα + than - fibroblasts contained αSMA at both P4 and P12. In the lung, proximate αSMA was more abundant around nuclei in cells expressing high than low levels of PDGF-Rα at both P4 and P12. Nuclear SMAD 2/3 declined from P4 to P12 in PDGF-Rα-, but not in PDGF-Rα + cells. In Mlg fibroblasts, αSMA mRNA increased after exposure to TGFβ, but declined after treatment with PDGF-A.Conclusion
During both septal eruption (P4) and elongation (P12), alveolar PDGF-Rα may enhance the propensity of fibroblasts to transdifferentiate rather than directly stimulate αSMA, which preferentially localizes to non-proliferating fibroblasts. In accordance, PDGF-Rα more dominantly influences fibroblast proliferation at P4 than at P12. In the lung, TGFβ may overshadow the antagonistic effects of PDGF-A/PDGF-Rα signaling, enhancing αSMA-abundance in PDGF-Rα-expressing fibroblasts. 相似文献16.
The platelet glycoprotein IIb/IIIa-like protein in human endothelial cells promotes adhesion but not initial attachment to extracellular matrix 总被引:1,自引:4,他引:1
下载免费PDF全文

《The Journal of cell biology》1987,105(4):1885-1892
On platelets the membrane glycoprotein IIb/IIIa complex (GPIIb/IIIa) functions in adhesive interactions with fibrinogen, von Willebrand factor, and fibronectin. However, the function of GPIIb/IIIa-like proteins on endothelial cells, as well as the ligand(s) the complex binds, is unknown. Using a highly specific polyclonal antibody we have explored the function of GPIIb/IIIa-like proteins on human umbilical vein endothelial cells (HUVE). Analysis by immunoblotting shows that this antiserum recognizes the endothelial GPIIIa-like protein of the complex. The IgG fraction of the polyclonal antiserum and its Fab' fragments detach confluent and subconfluent HUVE from extracellular substrata. The effect of the anti-GPIIb/IIIa IgG is not toxic as the detached cells maintain their viability after trypsinization and replating. Anti-GPIIb/IIIa IgG does not inhibit HUVE binding to extracellular matrix or purified fibronectin in an attachment assay despite the presence of intact GPIIb/IIIa on HUVE detached from substrate by various methods. Apparently, the GPIIb/IIIa-like protein on HUVE is important in normal HUVE adhesion to the extracellular matrix, but it is not required in the initial attachment of HUVE to extracellular matrix. 相似文献
17.
18.
Janssen LJ Premji M Lu-Chao H Cox G Keshavjee S 《American journal of physiology. Lung cellular and molecular physiology》2000,278(5):L899-L905
We compared the effects of two redox forms of nitric oxide, NO(+) [liberated by S-nitroso-N-acetyl-penicillamine (SNAP)] and NO. [liberated by 3-morpholinosydnonimine (SIN-1) in the presence of superoxide dismutase], on cytosolic concentration of Ca(2+) ([Ca(2+)](i); single cells) and tone (intact strips) obtained from human main stem bronchi and canine trachealis. SNAP evoked a rise in [Ca(2+)](i) that was unaffected by removing external Ca(2+) but was markedly reduced by depleting the internal Ca(2+) pool using cyclopiazonic acid (10(-5) M). Dithiothreitol (1 mM) also antagonized the Ca(2+) transient as well as the accompanying relaxation. SNAP attenuated responses to 15 and 30 mM KCl but not those to 60 mM KCl, suggesting the involvement of an electromechanical coupling mechanism rather than a direct effect on the contractile apparatus or on Ca(2+) channels. SNAP relaxations were sensitive to charybdotoxin (10(-7) M) or tetraethylammonium (30 mM) but not to 4-aminopyridine (1 mM). Neither SIN-1 nor 8-bromoguanosine 3',5'-cyclic monophosphate had any significant effect on resting [Ca(2+)](i), although both of these agents were able to completely reverse tone evoked by carbachol (10(-7) M). We conclude that NO(+) causes release of internal Ca(2+) in a cGMP-independent fashion, leading to activation of Ca(2+)-dependent K(+) channels and relaxation, whereas NO. relaxes the airways through a cGMP-dependent, Ca(2+)-independent pathway. 相似文献
19.
Vascular smooth muscle cells (VSMC) may be programmed by nutrient deprivation. We found that after 2 and 12 h exposure to 75% reduced amino acids, the release of basic fibroblast growth factor (bFGF) and transforming growth factor beta1 (TGF beta 1) from VSMC was significantly greater than that from cells maintained in control medium [2572.0 (546.3) vs 602.1 (241.7), P=0.001 and 16 028.0 (2192. 4) vs 13 027.3 (1233.5) pg/10(6)cells, P=0.022 respectively]. These differences were magnified after two passages of exposure for both bFGF (P=0.0001) and TGF beta 1 (P=0.0001). The stimulated release of VEGF by hypoxia and bFGF was unaffected. Amino acid deprivation of human VSMC is associated with a patterned release of angiogenic cytokines which could be relevant to the programmed changes in VSMC phenotype. 相似文献
20.
Heparin increases mRNA levels of thrombospondin but not fibronectin in human vascular smooth muscle cells 总被引:1,自引:0,他引:1
B Lyons-Giordano J M Brinker N A Kefalides 《Biochemical and biophysical research communications》1989,162(3):1100-1104
The effects of heparin (180 micrograms/ml) on steady state mRNA levels for fibronectin, thrombospondin, actin and collagen types I and III were investigated in human umbilical artery smooth muscle cells. Heparin caused a 120% increase in thrombospondin mRNA levels and a 60% and 180% increase in the mRNA levels of procollagen chains alpha 2(I) and alpha 1(III), respectively. No change in fibronectin or actin mRNA levels resulted from heparin treatment. We reported earlier (Biochem. Biophys. Res. Comm. 148:1264, 1987) that heparin increases smooth muscle cell synthesis of both fibronectin and thrombospondin. These data show that heparin coordinately regulates thrombospondin mRNA and protein levels. The heparin induced increase in fibronectin biosynthesis apparently reflects control at the translational or post-translational level. 相似文献