首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In budding yeast and humans, cohesion establishment during S phase requires the acetyltransferase Eco1/Esco1-2, which acetylates the cohesin subunit Smc3 on two conserved lysine residues. Whether Smc3 is the sole Eco1/Esco1-2 effector and how Smc3 acetylation promotes cohesion are unknown. In fission yeast (Schizosaccharomyces pombe), as in humans, cohesin binding to G(1) chromosomes is dynamic and the unloading reaction is stimulated by Wpl1 (human ortholog, Wapl). During S phase, a subpopulation of cohesin becomes stably bound to chromatin in an Eso1 (fission yeast Eco1/Esco1-2)-dependent manner. Cohesin stabilization occurs unevenly along chromosomes. Cohesin remains largely labile at the rDNA repeats but binds mostly in the stable mode to pericentromere regions. This pattern is largely unchanged in eso1Δ wpl1Δ cells, and cohesion is unaffected, indicating that the main Eso1 role is counteracting Wpl1. A mutant of Psm3 (fission yeast Smc3) that mimics its acetylated state renders cohesin less sensitive to Wpl1-dependent unloading and partially bypasses the Eso1 requirement but cannot generate the stable mode of cohesin binding in the absence of Eso1. Conversely, nonacetylatable Psm3 reduces the stable cohesin fraction and affects cohesion in a Wpl1-dependent manner, but cells are viable. We propose that Psm3 acetylation contributes to Eso1 counteracting of Wpl1 to secure stable cohesin interaction with postreplicative chromosomes but that it is not the sole molecular event by which this occurs.  相似文献   

2.
During meiosis, homologues become juxtaposed and synapsed along their entire length. Mutations in the cohesin complex disrupt not only sister chromatid cohesion but also homologue pairing and synaptonemal complex formation. In this study, we report that Pds5, a cohesin-associated protein known to regulate sister chromatid cohesion, is required for homologue pairing and synapsis in budding yeast. Pds5 colocalizes with cohesin along the length of meiotic chromosomes. In the absence of Pds5, the meiotic cohesin subunit Rec8 remains bound to chromosomes with only minor defects in sister chromatid cohesion, but sister chromatids synapse instead of homologues. Double-strand breaks (DSBs) are formed but are not repaired efficiently. In addition, meiotic chromosomes undergo hypercondensation. When the mitotic cohesin subunit Mcd1 is substituted for Rec8 in Pds5-depleted cells, chromosomes still hypercondense, but synapsis of sister chromatids is abolished. These data suggest that Pds5 modulates the Rec8 activity to facilitate chromosome morphological changes required for homologue synapsis, DSB repair, and meiotic chromosome segregation.  相似文献   

3.
BACKGROUND: Sister chromatid cohesion depends on a complex called cohesin, which contains at least four subunits: Smc1, Smc3, Scc1 and Scc3. Cohesion is established during DNA replication, is partially dismantled in many, but not all, organisms during prophase, and is finally destroyed at the metaphase-to-anaphase transition. A quite separate protein called Spo76 is required for sister chromatid cohesion during meiosis in the ascomycete Sordaria. Spo76-like proteins are highly conserved amongst eukaryotes and a homologue in Aspergillus nidulans, called BimD, is required for the completion of mitosis. The isolation of the cohesin subunit Smc3 as a suppressor of BimD mutations suggests that Spo76/BimD might function in the same process as cohesin. RESULTS: We show here that the yeast homologue of Spo76, called Pds5, is essential for establishing sister chromatid cohesion and maintaining it during metaphase. We also show that Pds5 co-localizes with cohesin on chromosomes, that the chromosomal association of Pds5 and cohesin is interdependent, that Scc1 recruits Pds5 to chromosomes in G1 and that its cleavage causes dissociation of Pds5 from chromosomes at the metaphase-to-anaphase transition. CONCLUSIONS: Our data show that Pds5 functions as part of the same process as cohesin. Sequence similarities and secondary structure predictions indicate that Pds5 consists of tandemly repeated HEAT repeats, and might therefore function as a protein-protein interaction scaffold, possibly in the cohesin-DNA complex assembly.  相似文献   

4.
Tanaka K  Hao Z  Kai M  Okayama H 《The EMBO journal》2001,20(20):5779-5790
During S phase, chromatid cohesion is established only between nascent sisters and with faithful pairing along their entire region, but how this is ensured is unknown. Here we report that sister chromatid cohesion is formed and maintained by a unique mechanism. In fission yeast, Eso1p, functioning in close coupling to DNA replication, establishes sister chromatid cohesion whereas the newly identified Cohesin-associated protein Pds5p hinders the establishment of cohesion until counteracted by Eso1p, yet stabilizes cohesion once it is established. Eso1p interacts physically with Pds5p via its Ctf7p/Eco1p-homologous domain.  相似文献   

5.
Cohesin is a protein complex that forms a ring around sister chromatids thus holding them together. The ring is composed of three proteins: Smc1, Smc3 and Scc1. The roles of three additional proteins that associate with the ring, Scc3, Pds5 and Wpl1, are not well understood. It has been proposed that these three factors form a complex that stabilizes the ring and prevents it from opening. This activity promotes sister chromatid cohesion but at the same time poses an obstacle for the initial entrapment of sister DNAs. This hindrance to cohesion establishment is overcome during DNA replication via acetylation of the Smc3 subunit by the Eco1 acetyltransferase. However, the full mechanistic consequences of Smc3 acetylation remain unknown. In the current work, we test the requirement of Scc3 and Pds5 for the stable association of cohesin with DNA. We investigated the consequences of Scc3 and Pds5 depletion in vivo using degron tagging in budding yeast. The previously described DHFR-based N-terminal degron as well as a novel Eco1-derived C-terminal degron were employed in our study. Scc3 and Pds5 associate with cohesin complexes independently of each other and require the Scc1 "core" subunit for their association with chromosomes. Contrary to previous data for Scc1 downregulation, depletion of either Scc3 or Pds5 had a strong effect on sister chromatid cohesion but not on cohesin binding to DNA. Quantity, stability and genome-wide distribution of cohesin complexes remained mostly unchanged after the depletion of Scc3 and Pds5. Our findings are inconsistent with a previously proposed model that Scc3 and Pds5 are cohesin maintenance factors required for cohesin ring stability or for maintaining its association with DNA. We propose that Scc3 and Pds5 specifically function during cohesion establishment in S phase.  相似文献   

6.
Sister chromatid cohesion is established during S phase and maintained until anaphase. The cohesin complex (Mcd1p/Scc1p, Smc1p, Smc3p Irr1p/Scc3p in budding yeast) serves a structural role as it is required at all times when cohesion exists. Pds5p co-localizes temporally and spatially with cohesin on chromosomes but is thought to serve as a regulator of cohesion maintenance during mitosis. In contrast, Ctf7p/Eco1p is required during S phase for establishment but is not required during mitosis. Here we provide genetic and biochemical evidence that the pathways of cohesion establishment and maintenance are intimately linked. Our results show that mutants in ctf7 and pds5 are synthetically lethal. Moreover, over-expression of either CTF7 or PDS5 exhibits reciprocal suppression of the other mutant’s temperature sensitivity. The suppression by CTF7 is specific for pds5 mutants as CTF7 over-expression increases the temperature sensitivity of an mcd1 mutant but has no effect on smc1 or smc3 mutants. Three additional findings provide new insights into the process of cohesion establishment. First, over-expression of ctf7 alleles deficient in acetylase activity exhibit significantly reduced suppression of the pds5 mutant but exacerbated toxicity to the mcd1 mutant. Second, using chromosome spreads and chromatin immuno-precipitation, we find neither cohesin complex nor Pds5p chromosomal localization is altered in ctf7 mutants. Finally, biochemical analysis reveals that Ctf7p and Pds5p co-immunoprecipitate, which physically links these regulators of cohesion establishment and maintenance. We propose a model whereby Ctf7p and Pds5p co-operate to facilitate efficient establishment by mediating changes in cohesin complex on chromosomes after its deposition.  相似文献   

7.
Pds5p and the cohesin complex are required for sister chromatid cohesion and localize to the same chromosomal loci over the same cell cycle window. However, Pds5p and the cohesin complex likely have distinct roles in cohesion. We report that pds5 mutants establish cohesion, but during mitosis exhibit precocious sister dissociation. Thus, unlike the cohesin complex, which is required for cohesion establishment and maintenance, Pds5p is required only for maintenance. We identified SMT4, which encodes a SUMO isopeptidase, as a high copy suppressor of both the temperature sensitivity and precocious sister dissociation of pds5 mutants. In contrast, SMT4 does not suppress temperature sensitivity of cohesin complex mutants. Pds5p is SUMO conjugated, with sumoylation peaking during mitosis. SMT4 overexpression reduces Pds5p sumoylation, whereas smt4 mutants have increased Pds5p sumoylation. smt4 mutants were previously shown to be defective in cohesion maintenance during mitosis. These data provide the first link between a protein required for cohesion, Pds5p, and sumoylation, and suggest that Pds5p sumoylation promotes the dissolution of cohesion.  相似文献   

8.
Sister‐chromatid cohesion mediated by the cohesin complex is fundamental for precise chromosome segregation in mitosis. Through binding the cohesin subunit Pds5, Wapl releases the bulk of cohesin from chromosome arms in prophase, whereas centromeric cohesin is protected from Wapl until anaphase onset. Strong centromere cohesion requires centromeric localization of the mitotic histone kinase Haspin, which is dependent on the interaction of its non‐catalytic N‐terminus with Pds5B. It remains unclear how Haspin fully blocks the Wapl–Pds5B interaction at centromeres. Here, we show that the C‐terminal kinase domain of Haspin (Haspin‐KD) binds and phosphorylates the YSR motif of Wapl (Wapl‐YSR), thereby directly inhibiting the YSR motif‐dependent interaction of Wapl with Pds5B. Cells expressing a Wapl‐binding‐deficient mutant of Haspin or treated with Haspin inhibitors show centromeric cohesion defects. Phospho‐mimetic mutation in Wapl‐YSR prevents Wapl from binding Pds5B and releasing cohesin. Forced targeting Haspin‐KD to centromeres partly bypasses the need for Haspin–Pds5B interaction in cohesion protection. Taken together, these results indicate a kinase‐dependent role for Haspin in antagonizing Wapl and protecting centromeric cohesion in mitosis.  相似文献   

9.
Cohesin mediates sister chromatid cohesion and contributes to the organization of interphase chromatin through DNA looping. In vertebrate somatic cells, cohesin consists of Smc1, Smc3, Rad21, and either SA1 or SA2. Three additional factors Pds5, Wapl, and Sororin bind to cohesin and modulate its dynamic association with chromatin. There are two Pds5 proteins in vertebrates, Pds5A and Pds5B, but their functional specificity remains unclear. Here, we demonstrate that Pds5 proteins are essential for cohesion establishment by allowing Smc3 acetylation by the cohesin acetyl transferases (CoATs) Esco1/2 and binding of Sororin. While both proteins contribute to telomere and arm cohesion, Pds5B is specifically required for centromeric cohesion. Furthermore, reduced accumulation of Aurora B at the inner centromere region in cells lacking Pds5B impairs its error correction function, promoting chromosome mis‐segregation and aneuploidy. Our work supports a model in which the composition and function of cohesin complexes differs between different chromosomal regions.  相似文献   

10.
11.
Cohesin mediates sister chromatid cohesion which is essential for chromosome segregation and repair. Sister chromatid cohesion requires an acetyl‐transferase (Eso1 in fission yeast) counteracting Wpl1, promoting cohesin release from DNA. We report here that Wpl1 anti‐cohesion function includes an additional mechanism. A genetic screen uncovered that Protein Phosphatase 4 (PP4) mutants allowed cell survival in the complete absence of Eso1. PP4 co‐immunoprecipitated Wpl1 and cohesin and Wpl1 triggered Rad21 de‐phosphorylation in a PP4‐dependent manner. Relevant residues were identified and mapped within the central domain of Rad21. Phospho‐mimicking alleles dampened Wpl1 anti‐cohesion activity, while alanine mutants were neutral indicating that Rad21 phosphorylation would shelter cohesin from Wpl1 unless erased by PP4. Experiments in post‐replicative cells lacking Eso1 revealed two cohesin populations. Type 1 was released from DNA by Wpl1 in a PP4‐independent manner. Type 2 cohesin, however, remained DNA‐bound and lost its cohesiveness in a manner depending on Wpl1‐ and PP4‐mediated Rad21 de‐phosphorylation. These results reveal that Wpl1 antagonizes sister chromatid cohesion by a novel pathway regulated by the phosphorylation status of the cohesin kleisin subunit.  相似文献   

12.
Sister chromatid cohesion is essential for chromosome segregation and is mediated by cohesin bound to DNA. Cohesin-DNA interactions can be reversed by the cohesion-associated protein Wapl, whereas a stably DNA-bound form of cohesin is thought to mediate cohesion. In vertebrates, Sororin is essential for cohesion and stable cohesin-DNA interactions, but how Sororin performs these functions is unknown. We show that DNA replication and cohesin acetylation promote binding of Sororin to cohesin, and that Sororin displaces Wapl from its binding partner Pds5. In the absence of Wapl, Sororin becomes dispensable for cohesion. We propose that Sororin maintains cohesion by inhibiting Wapl's ability to dissociate cohesin from DNA. Sororin has only been identified in vertebrates, but we show that many invertebrate species contain Sororin-related proteins, and that one of these, Dalmatian, is essential for cohesion in Drosophila. The mechanism we describe here may therefore be widely conserved among different species.  相似文献   

13.
The Structural Maintenance of Chromosome (SMC) complex, termed cohesin, is essential for sister chromatid cohesion. Cohesin is also important for chromosome condensation, DNA repair, and gene expression. Cohesin is comprised of Scc3, Mcd1, Smc1, and Smc3. Scc3 also binds Pds5 and Wpl1, cohesin-associated proteins that regulate cohesin function, and to the Scc2/4 cohesin loader. We mutagenized SCC3 to elucidate its role in cohesin function. A 5 amino acid insertion after Scc3 residue I358, or a missense mutation of residue D373 in the adjacent stromalin conservative domain (SCD) induce inviability and defects in both cohesion and cohesin binding to chromosomes. The I358 and D373 mutants abrogate Scc3 binding to Mcd1. These results define an Scc3 region extending from I358 through the SCD required for binding Mcd1, cohesin localization to chromosomes and cohesion. Scc3 binding to the cohesin loader, Pds5 and Wpl1 are unaffected in I358 mutant and the loader still binds the cohesin core trimer (Mcd1, Smc1 and Smc3). Thus, Scc3 plays a critical role in cohesin binding to chromosomes and cohesion at a step distinct from loader binding to the cohesin trimer. We show that residues Y371 and K372 within the SCD are critical for viability and chromosome condensation but dispensable for cohesion. However, scc3 Y371A and scc3 K372A bind normally to Mcd1. These alleles also provide evidence that Scc3 has distinct mechanisms of cohesin loading to different loci. The cohesion-competence, condensation-incompetence of Y371 and K372 mutants suggests that cohesin has at least one activity required specifically for condensation.  相似文献   

14.
15.
Cohesion between sister chromatids in eukaryotes is mediated by the evolutionarily conserved cohesin complex. Cohesin forms a proteinaceous ring, large enough to trap pairs of replicated sister chromatids. The circumference consists of the Smc1 and Smc3 subunits, while Scc1 is thought to close the ring by bridging the Smc (structural maintenance of chromosomes) ATPase head domains. Little is known about two additional subunits, Scc3 and Pds5, and about possible conformational changes of the complex during the cell cycle. We have employed fluorescence resonance energy transfer (FRET) to analyse interactions within the cohesin complex in live budding yeast. These experiments reveal an unexpected geometry of Scc1 at the Smc heads, and suggest that Pds5 plays a role at the Smc hinge on the opposite side of the ring. Key subunit interactions, including close proximity of the two ATPase heads, are constitutive throughout the cell cycle. This depicts cohesin as a stable molecular machine undergoing only transient conformational changes during binding and dissociation from chromosomes. Using FRET, we did not observe interactions between more than one cohesin complex in vivo.  相似文献   

16.
The meiotic cohesin Rec8 is required for the stepwise segregation of chromosomes during the two rounds of meiotic division. By directly measuring chromosome compaction in living cells of the fission yeast Schizosaccharomyces pombe, we found an additional role for the meiotic cohesin in the compaction of chromosomes during meiotic prophase. In the absence of Rec8, chromosomes were decompacted relative to those of wild-type cells. Conversely, loss of the cohesin-associated protein Pds5 resulted in hypercompaction. Although this hypercompaction requires Rec8, binding of Rec8 to chromatin was reduced in the absence of Pds5, indicating that Pds5 promotes chromosome association of Rec8. To explain these observations, we propose that meiotic prophase chromosomes are organized as chromatin loops emanating from a Rec8-containing axis: the absence of Rec8 disrupts the axis, resulting in disorganized chromosomes, whereas reduced Rec8 loading results in a longitudinally compacted axis with fewer attachment points and longer chromatin loops.  相似文献   

17.
In fission yeast, meiotic mono-orientation of sister kinetochores is established by cohesion at the core centromere, which is established by a meiotic cohesin complex and the kinetochore protein Moa1. The cohesin subunit Psm3 is acetylated by Eso1 and deacetylated by Clr6. We show that in meiosis, Eso1 is required for establishing core centromere cohesion during S phase, whereas Moa1 is required for maintaining this cohesion after S phase. The clr6-1 mutation suppresses the mono-orientation defect of moa1Δ cells, although the Clr6 target for this suppression is not Psm3. Thus, several acetylations are crucial for establishing and maintaining core centromere cohesion.  相似文献   

18.
Cohesin is a multisubunit complex that mediates sister-chromatid cohesion. Its Smc1 and Smc3 subunits possess ABC-like ATPases at one end of 50 nm long coiled coils. At the other ends are pseudosymmetrical hinge domains that interact to create V-shaped Smc1/Smc3 heterodimers. N- and C-terminal domains within cohesin's kleisin subunit Scc1 bind to Smc3 and Smc1 ATPase heads respectively, thereby creating a huge tripartite ring. It has been suggested that cohesin associates with chromosomes by trapping DNA within its ring. Opening of the ring due to cleavage of Scc1 by separase destroys sister-chromatid cohesion and triggers anaphase. We show that cohesin's hinges are not merely dimerization domains. They are essential for cohesin's association with chromosomes, which is blocked by artificially holding hinge domains together but not by preventing Scc1's dissociation from SMC ATPase heads. Our results suggest that entry of DNA into cohesin's ring requires transient dissociation of Smc1 and Smc3 hinge domains.  相似文献   

19.
Sister chromatid cohesion enables chromosomes to achieve bipolar attachment to the mitotic spindle and its dissolution is required for chromosome segregation. The cohesin complex serves as the primary molecular glue responsible for cohesion. Pds5p binds to the same chromosomal loci as the cohesin complex but plays a distinct role as a regulator of cohesion maintenance. Catenation between sister chromatids must also be removed by Topoisomerase II (Top2p) enzymatic activity to enable chromosome segregation. We identified TOP2 as a high-copy suppressor of the temperature sensitivity of pds5 mutants. TOP2 suppression is specific for pds5 mutants as it does not suppress mutants in the cohesin complex. TOP2 suppresses mini-chromosome loss in pds5 mutants indicating that it rescues a chromosome segregation defect. Surprisingly, TOP2 over-expression fails to suppress the cohesion defect of pds5 mutants, suggesting that it suppresses an additional and as yet uncharacterized defect in pds5 mutants that is essential for viability. A catalytically dead TOP2 allele suppresses pds5 temperature sensitivity, suggesting that suppression is unrelated to Top2p enzymatic function. Consistent with this idea, when the pds5 mutant is combined with the top2-4 mutant, which accumulates DNA catenanes due to defective enzymatic activity, the double mutants exhibit synthetic sickness indicating that increased catenation is toxic to pds5 cells. Our results suggest that Pds5p and Top2p cooperate to promote proper chromosome segregation by a mechanism unrelated to either cohesion or catenation/decatenation.  相似文献   

20.
Wapl controls the dynamic association of cohesin with chromatin   总被引:18,自引:0,他引:18  
Cohesin establishes sister-chromatid cohesion from S phase until mitosis or meiosis. To allow chromosome segregation, cohesion has to be dissolved. In vertebrate cells, this process is mediated in part by the protease separase, which destroys a small amount of cohesin, but most cohesin is removed from chromosomes without proteolysis. How this is achieved is poorly understood. Here, we show that the interaction between cohesin and chromatin is controlled by Wapl, a protein implicated in heterochromatin formation and tumorigenesis. Wapl is associated with cohesin throughout the cell cycle, and its depletion blocks cohesin dissociation from chromosomes during the early stages of mitosis and prevents the resolution of sister chromatids until anaphase, which occurs after a delay. Wapl depletion also increases the residence time of cohesin on chromatin in interphase. Our data indicate that Wapl is required to unlock cohesin from a particular state in which it is stably bound to chromatin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号