首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although it is understood that hydrogen peroxide (H2O2) promotes cellular proliferation, little is known about its role in endothelial cell cycle progression. To assess the regulatory role of endogenously produced H2O2 in cell cycle progression, we studied the cell cycle progression in mouse aortic endothelial cells (MAECs) obtained from mice overexpressing a human catalase transgene (hCatTg), which destroys H2O2. The hCatTg MAECs displayed a prolonged doubling time compared to wild-type controls (44.0  ±  4.7 h versus 28.6  ±  0.8 h, p < 0.05), consistent with a diminished growth rate and H2O2 release. Incubation with aminotriazole, a catalase inhibitor, prevented the observed diminished growth rate in hCatTg MAECs. Inhibition of catalase activity with aminotriazole abrogated catalase overexpression-induced antiproliferative action. Flow cytometry analysis indicated that the prolonged doubling time was principally due to an extended G0/G1 phase in hCatTg MAECs compared to the wild-type cells (25.0  ±  0.9 h versus 15.9  ±  1.4 h, p  <  0.05). The hCatTg MAECs also exhibited decreased activities of the cyclin-dependent kinase (Cdk) complexes responsible for G0/G1- to S-phase transition in the cell cycle, including the cyclin D–Cdk4 and cyclin E–Cdk2 complexes. Moreover, the reduction in cyclin–Cdk activities in hCatTg MAECs was accompanied by increased protein levels of two Cdk inhibitors, p21 and p27, which inhibit the Cdk activity required for the G0/G1- to S-phase transition. Knockdown of p21 and/or p27 attenuated the antiproliferative effect of catalase overexpression in MAECs. These results, together with the fact that catalase is an H2O2 scavenger, suggest that endogenously produced H2O2 mediates MAEC proliferation by fostering the transition from G0/G1 to S phase.  相似文献   

2.
3.
In this study, we examined the effects of 20 amino acids on the expression level of NAD(P)H:quinone oxidoreductase 1 (NQO1) in human intestinal LS180 cells. Five amino acids were associated with significant increases in NQO1 mRNA expression; the most substantial increase was induced by cysteine, which markedly increased the NQO1 mRNA level in a time- and dose-dependent manner. Cysteine also increased the protein level of NQO1 and its enzymatic activity in LS180 cells. Furthermore, cysteine significantly up-regulated NQO1 promoter activity, and this induction was completely abolished by mutation of the antioxidant response element, a binding site of the nuclear factor erythroid 2-related factor 2 (Nrf2). Knockdown experiment using siRNA against Nrf2 showed the involvement of Nrf2 on cysteine-induced increase in NQO1 mRNA expression. Further, cysteine treatment increased the amount of Nrf2 protein in the nucleus and decreased the amount of Kelch-like ECH-associated protein 1 (a suppressor protein of Nrf2) in the cytosol, suggesting that Nrf2 was activated by cysteine. Oral administration of cysteine to mice significantly increased NQO1 mRNA levels in the mouse intestinal mucosa. These findings show that cysteine induces NQO1 expression in both in vitro and in vivo systems and also suggest that Nrf2 activation is involved in this induction.  相似文献   

4.
5.
Human NRH:quinone oxidoreductase 2 (NQO2) is a cytosolic protein that catalyzes the metabolic reduction of quinones and provides protection against myelogenous hyperplasia and chemical carcinogenesis. NQO2 gene expression is induced in response to antioxidant tert-butylhydroquinone (tBHQ). Sequence analysis revealed six putative antioxidant response elements (ARE1 through 6) in the human NQO2 gene promoter. Deletion mutagenesis and transfection studies suggested that the ARE region between nucleotides -1433 and -1424 is essential for basal expression and antioxidant induction of NQO2 gene expression. Mutation of this ARE from 3.8 kb NQO2 gene promoter significantly repressed expression and abrogated the induction in response to antioxidant in transfected cells. Band shift, supershift, and chromatin immunoprecipitation (ChIP) assays demonstrated binding of nuclear factors Nrf2 and JunD with human NQO2 gene ARE. Coimmunoprecipitation experiments revealed an association between Nrf2 and JunD. Overexpression of Nrf2 upregulated and overexpression of Nrf2 dominant-negative mutant downregulated ARE-mediated NQO2 gene expression. The treatment of Hep-G2 cells with Nrf2-specific RNAi significantly reduced Nrf2 and NQO2 gene expression and tBHQ induction. The results combined demonstrated that Nrf2 associates with JunD, binds to ARE at nucleotide -1433, and regulates human NQO2 gene expression and induction in response to antioxidants.  相似文献   

6.
Abstract

Certain dioxins, including 2,3,7,8,-tetrachloro-dibenzo-p-dioxin (TCDD), are exogenous ligands for an aryl hydrocarbon receptor (AhR) and induces various drug-metabolizing enzymes. In this study, we examined the effect of curcumin on expression of drug-metabolizing enzymes through the AhR and NF-E2 related factor 2 (Nrf2) pathways. Curcumin dose-dependently inhibited TCDD-induced expression of phase I enzyme cytochrome P450 1A1 (CYP1A1) and phase II enzymes NAD(P)H:quinone oxidoreductase-1 (NQO1) and heme oxygenase 1 (HO-1) but not tert-butyl hydroquinone-induced NQO1 and HO-1, suggesting that curcumin inhibited only AhR pathway, but not Nrf2 one directly. Furthermore, we used 14 curcumin derivatives and obtained the correlation between hydrophobicity of the compounds and suppressive effect against AhR transformation. Results from the quantitative structure active correlative analysis indicated that methoxy groups and β-diketone structure possessing keto-enol tautomerism in curcumin were necessary to inhibit AhR transformation, and the addition of methyl and methoxy group(s) to the curcumin increased the inhibition effect.  相似文献   

7.
8.
9.
10.
11.
12.
Regulation of genes encoding NAD(P)H:quinone oxidoreductases   总被引:15,自引:0,他引:15  
  相似文献   

13.
14.
Zhu H  Itoh K  Yamamoto M  Zweier JL  Li Y 《FEBS letters》2005,579(14):3029-3036
Understanding the molecular pathway(s) of antioxidant gene regulation is of crucial importance for developing antioxidant-inducing agents for the intervention of oxidative cardiac disorders. Accordingly, this study was undertaken to determine the role of Nrf2 signaling in the basal expression as well as the chemical inducibility of endogenous antioxidants and phase 2 enzymes in cardiac fibroblasts. The basal expression of a scope of key cellular antioxidants and phase 2 enzymes was significantly lower in cardiac fibroblasts derived from Nrf2-/- mice than those from wild type control. These include catalase, reduced glutathione (GSH), glutathione reductase (GR), GSH S-transferase (GST), and NAD(P)H:quinone oxidoreductase-1 (NQO1). Incubation of Nrf2+/+ cardiac fibroblasts with 3H-1,2-dithiole-3-thione (D3T) led to a significant induction of superoxide dismutase (SOD), catalase, GSH, GR, glutathione peroxidase (GPx), GST, and NQO1. The inducibility of SOD, catalase, GSH, GR, GST, and NQO1, but not GPx by D3T was completely abolished in Nrf2-/- cells. The Nrf2-/- cardiac fibroblasts were much more sensitive to reactive oxygen and nitrogen species-mediated cytotoxicity. Upregulation of antioxidants and phase 2 enzymes by D3T in Nrf2+/+ cardiac fibroblasts resulted in a dramatically increased resistance to the above species-induced cytotoxicity. In contrast, D3T-treatment of the Nrf2-/- cells only provided a slight cytoprotection. Taken together, this study demonstrates for the first time that Nrf2 is critically involved in the regulation of the basal expression and chemical induction of a number of antioxidants and phase 2 enzymes in cardiac fibroblasts, and is an important factor in controlling cardiac cellular susceptibility to reactive oxygen and nitrogen species-induced cytotoxicity.  相似文献   

15.
16.
17.
18.
19.
Diallyl sulfide, diallyl disulfide, and daillyl trisulfide (DATS) are major volatile components of garlic oil. In this study, we assessed their relative potency in inducing antioxidant enzyme expression. Among the three organosulfur compounds, DATS was found to be most potent in inducing heme oxygenase-1 (HO-1) and NAD(P)H:quinone oxidoreductase-1 (NQO1) in human gastric epithelial (AGS) cells. Furthermore, DATS administration by gavage increased the expression of HO-1 and NQO1 in C57BL/6 mouse stomach. Treatment with DATS increased the accumulation of nuclear factor-erythroid-2-related factor-2 (Nrf2) in the nucleus of cultured AGS cells and in mouse stomach in vivo. The DATS-induced expression of HO-1 and NQO1 was abrogated in the cells transiently transfected with Nrf2-siRNA or in the embryonic fibroblasts from Nrf2-null mice, indicating that Nrf2 is a key mediator of the cytoprotective effects of DATS. Pretreatment of AGS cells with N-acetylcysteine or dithiothreitol attenuated DATS-induced nuclear localization of Nrf2 and the expression of HO-1 and NQO1. Cysteine-151, -273 and -288 of Kelch-like ECH-associated protein-1 (Keap1), a cytosolic repressor of Nrf2, have been considered to act as a redox sensor and play a role in Nrf2 activation. To determine whether DATS could inactivate Keap1 through thiol modification, we established cell lines constitutively expressing wild type-Keap1 or three different mutant constructs in which cysteine-151, -273, or -288 of Keap1 was replaced with serine by retroviral gene transfer. DATS failed to activate Nrf2, and to induce expression of HO-1 and NQO1 only in Keap1-C288S mutant cells. LC-ESI-MS/MS analysis of recombinant Keap1 treated with DATS revealed that the peptide fragment containing Cys288 gained a molecular mass of 72.1 Da equivalent to the molecular weight of mono-allyl mono-sulfide. Taken together, these findings suggest that DATS may directly interact with the Cys288 residue of Keap1, which partly accounts for its ability to induce Nrf2 activation and upregulate defensive gene expression.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号