首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intron definition in splicing of small Drosophila introns.   总被引:4,自引:1,他引:3       下载免费PDF全文
Approximately half of the introns in Drosophila melanogaster are too small to function in a vertebrate and often lack the pyrimidine tract associated with vertebrate 3' splice sites. Here, we report the splicing and spliceosome assembly properties of two such introns: one with a pyrimidine-poor 3' splice site and one with a pyrimidine-rich 3' splice site. The pyrimidine-poor intron was absolutely dependent on its small size for in vivo and in vitro splicing and assembly. As such, it had properties reminiscent of those of yeast introns. The pyrimidine-rich intron had properties intermediate between those of yeasts and vertebrates. This 3' splice site directed assembly of ATP-dependent complexes when present as either an intron or exon and supported low levels of in vivo splicing of a moderate-length intron. We propose that splice sites can be recognized as pairs across either exons or introns, depending on which distance is shorter, and that a pyrimidine-rich region upstream of the 3' splice site facilitates the exon mode.  相似文献   

2.
3.
Exon 3 of the human apolipoprotein A-II (apoA-II) gene is efficiently included in the mRNA although its acceptor site is significantly weak because of a peculiar (GU)16 tract instead of a canonical polypyrimidine tract within the intron 2/exon 3 junction. Our previous studies demonstrated that the SR proteins ASF/SF2 and SC35 bind specifically an exonic splicing enhancer (ESE) within exon 3 and promote exon 3 splicing. In the present study, we show that the ESE is necessary only in the proper context. In addition, we have characterized two novel sequences in the flanking introns that modulate apoA-II exon 3 splicing. There is a G-rich element in intron 2 that interacts with hnRNPH1 and inhibits exon 3 splicing. The second is a purine rich region in intron 3 that binds SRp40 and SRp55 and promotes exon 3 inclusion in mRNA. We have also found that the (GU) repeats in the apoA-II context bind the splicing factor TDP-43 and interfere with exon 3 definition. Significantly, blocking of TDP-43 expression by small interfering RNA overrides the need for all the other cis-acting elements making exon 3 inclusion constitutive even in the presence of disrupted exonic and intronic enhancers. Altogether, our results suggest that exonic and intronic enhancers have evolved to balance the negative effects of the two silencers located in intron 2 and hence rescue the constitutive exon 3 inclusion in apoA-II mRNA.  相似文献   

4.
Alternative splicing and bioinformatic analysis of human U12-type introns   总被引:1,自引:0,他引:1  
U12-type introns exist, albeit rarely, in a variety of multicellular organisms. Splicing of U12 intron-containing precursor mRNAs takes place in the U12-type spliceosome that is distinct from the major U2-type spliceosome. Due to incompatibility of these two spliceosomes, alternative splicing involving a U12-type intron may give rise to a relatively complicated impact on gene expression. We studied alternative U12-type intron splicing in an attempt to gain more mechanistic insights. First, we characterized mutually exclusive exon selection of the human JNK2 gene, which involves an unusual intron possessing the U12-type 5′ splice site and the U2-type 3′ splice site. We demonstrated that the long and evolutionary conserved polypyrimidine tract of this hybrid intron provides important signals for inclusion of its downstream alternative exon. In addition, we examined the effects of single nucleotide polymorphisms in the human WDFY1 U12-type intron on pre-mRNA splicing. These results provide mechanistic implications on splice-site selection of U12-type intron splicing. We finally discuss the potential effects of splicing of a U12-type intron with genetic defects or within a set of genes encoding RNA processing factors on global gene expression.  相似文献   

5.
Mitochondrial introns in flowering plant genes are virtually all classified as members of the group II ribozyme family although certain structural features have degenerated to varying degrees over evolutionary time. We are interested in the impact that unconventional intron architecture might have on splicing biochemistry in vivo and we have focused in particular on intronic domains V and VI, which for self-splicing introns provide a key component of the catalytic core and the bulged branchpoint adenosine, respectively. Notably, the two transesterification steps in classical group II splicing are the same as for nuclear spliceosomal introns and release the intron as a lariat. Using RT-PCR and circularized RT-PCR, we had previously demonstrated that several wheat mitochondrial introns which lack a branchpoint adenosine have atypical splicing pathways, and we have now extended this analysis to the full set of wheat introns, namely six trans-splicing and sixteen cis-splicing ones. A number of introns are excised using non-lariat pathways and interestingly, we find that several introns which do have a conventional domain VI also use pathways that appear to exploit other internal or external nucleophiles, with the lariat form being relatively minor. Somewhat surprisingly, several introns with weakly-structured domain V/VI helices still exhibit classical lariat splicing, suggesting that accessory factors aid in restoring a splicing-competent conformation. Our observations illustrate that the loss of conventional group II features during evolution is correlated with altered splicing biochemistry in an intron-distinctive manner.  相似文献   

6.
In metazoans, splicing of introns from pre-mRNAs can occur by two pathways: the major U2-dependent or the minor U12-dependent pathways. Whereas the U2-dependent pathway has been well characterized, much about the U12-dependent pathway remains to be discovered. Most of the information regarding U12-type introns has come from in vitro studies of a very few known introns of this class. To expand our understanding of U12-type splicing, especially to test the hypothesis that the simple base-pairing mechanism between the intron and U12 snRNA defines the branchpoint of U12-dependent introns, additional in vitro splicing substrates were created from three putative U12-type introns: the third intron of the Xenopus RPL1 a gene (XRP), the sixth intron of the Xenopus TFIIS.oA gene (XTF), and the first intron of the human Sm E gene (SME). In vitro splicing in HeLa nuclear extract confirmed U12-dependent splicing of each of these introns. Surprisingly, branchpoint mapping of the XRP splicing intermediate shows use of the upstream rather than the downstream of two consecutive adenosines within the branchpoint sequence (BPS), contrary to the prediction based on alignment with the sixth intron of human P120, a U12-dependent intron whose branch site was previously determined. Also, in the SME intron, the position of the branchpoint A residue within the region base paired with U12 differs from that in P120 and XTF. Analysis of these three additional introns therefore rules out simple models for branchpoint selection by the U12-type spliceosome.  相似文献   

7.
8.
9.
10.
Recognition of polypyrimidine (Py) tracts typically present between the branch point and the 3' splice site by the large subunit of the essential splicing factor U2AF is a key early step in pre-mRNA splicing. Diverse intronic sequence arrangements exist, however, including 3' splice sites lacking recognizable Py tracts, which raises the question of how general the requirement for U2AF is for various intron architectures. Our analysis of fission yeast introns in vivo has unexpectedly revealed that whereas introns lacking Py tracts altogether remain dependent on both subunits of U2AF, introns with long Py tracts, unconventionally positioned upstream of branch points, are unaffected by U2AF inactivation. Nevertheless, mutation of these Py tracts causes strong dependence on the large subunit U2AF59. We also find that Py tract diversity influences the requirement for the conserved C-terminal domain of U2AF59 (RNA recognition motif 3), which has been implicated in protein-protein interactions with other splicing factors. Together, these results suggest that in addition to Py tract binding by U2AF, supplementary mechanisms of U2AF recruitment and 3' splice site identification exist to accommodate diverse intron architectures, which have gone unappreciated in biochemical studies of model pre-mRNAs.  相似文献   

11.
U12-dependent introns are found in small numbers in most eukaryotic genomes, but their scarcity makes accurate characterisation of their properties challenging. A computational search for U12-dependent introns was performed using the draft version of the human genome sequence. Human expressed sequences confirmed 404 U12-dependent introns within the human genome, a 6-fold increase over the total number of non-redundant U12-dependent introns previously identified in all genomes. Although most of these introns had AT-AC or GT-AG terminal dinucleotides, small numbers of introns with a surprising diversity of termini were found, suggesting that many of the non-canonical introns found in the human genome may be variants of U12-dependent introns and, thus, spliced by the minor spliceosome. Comparisons with U2-dependent introns revealed that the U12-dependent intron set lacks the ‘short intron’ peak characteristic of U2-dependent introns. Analysis of this U12-dependent intron set confirmed reports of a biased distribution of U12-dependent introns in the genome and allowed the identification of several alternative splicing events as well as a surprising number of apparent splicing errors. This new larger reference set of U12-dependent introns will serve as a resource for future studies of both the properties and evolution of the U12 spliceosome.  相似文献   

12.
In potato invertase genes, the constitutively included, 9-nucleotide (nt)-long mini-exon requires a strong branchpoint and U-rich polypyrimidine tract for inclusion. The strength of these splicing signals was demonstrated by greatly enhanced splicing of a poorly spliced intron and by their ability to support splicing of an artificial mini-exon, following their introduction. Plant introns also require a second splicing signal, UA-rich intronic elements, for efficient intron splicing. Mutation of the branchpoint caused loss of mini-exon inclusion without loss of splicing enhancement, showing that the same U-rich sequence can function as either a polypyrimidine tract or a UA-rich intronic element. The distinction between the splicing signals depended on intron context (the presence or absence of an upstream, adjacent and functional branchpoint), and on the sequence context of the U-rich elements. Polypyrimidine tracts tolerated C residues while UA-rich intronic elements tolerated As. Thus, in plant introns, U-rich splicing elements can have dual roles as either a general plant U-rich splicing signal or a polypyrimidine tract. Finally, overexpression of two different U-rich binding proteins enhanced intron recognition significantly. These results highlight the importance of co-operation between splicing signals, the importance of other nucleotides within U-rich elements for optimal binding of competing splicing factors and effects on splicing efficiency of U-rich binding proteins.  相似文献   

13.
14.

Background  

While the current model of pre-mRNA splicing is based on the recognition of four canonical intronic motifs (5' splice site, branchpoint sequence, polypyrimidine (PY) tract and 3' splice site), it is becoming increasingly clear that splicing is regulated by both canonical and non-canonical splicing signals located in the RNA sequence of introns and exons that act to recruit the spliceosome and associated splicing factors. The diversity of human intronic sequences suggests the existence of novel recognition pathways for non-canonical introns. This study addresses the recognition and splicing of human introns that lack a canonical PY tract. The PY tract is a uridine-rich region at the 3' end of introns that acts as a binding site for U2AF65, a key factor in splicing machinery recruitment.  相似文献   

15.
16.
17.
C Schmelzer  R J Schweyen 《Cell》1986,46(4):557-565
Group II intron bl1 from yeast mitochondria can undergo self-splicing in vitro. Exons become correctly ligated, and the excised intron has a lariat structure similar to that of introns from nuclear mRNA. The branch point of the bl1 lariat is located eight or nine nucleotides upstream of the 3' end of the intron and is part of a hairpin structure that is well conserved among group II introns. Several mutations next to the branch point and in other parts of the core structure of group II introns are shown to affect lariat formation. One of them, carried by strain M4873, abolishes splicing in vivo and in vitro, apparently by changing the architecture of the hairpin structure containing the branch point. Similarities between group II introns and nuclear pre-mRNA introns are discussed in terms of evolutionary relatedness.  相似文献   

18.
19.
AT-AC introns constitute a minor class of eukaryotic pre-mRNA introns, characterized by 5''-AT and AC-3'' boundaries, in contrast to the 5''-GT and AG-3'' boundaries of the much more prevalent conventional introns. In addition to the AT-AC borders, most known AT-AC introns have highly conserved 5'' splice site and branch site sequence elements of 7-8 nt. Intron 6 of the nucleolar P120 gene and intron 2 of the SCN4A voltage-gated skeletal muscle sodium channel are AT-AC introns that have been shown recently to be processed via a unique splicing pathway involving several minor U snRNAs. Interestingly, intron 21 of the same SCN4A gene and the corresponding intron 25 of the SCN5A cardiac muscle sodium channel gene also have 5''-AT and AC-3'' boundaries, but they have divergent 5'' splice site and presumptive branch site sequences. Here, we report the accurate in vitro processing of these two divergent AT-AC introns and show that they belong to a functionally distinct subclass of AT-AC introns. Splicing of these introns does not require U12, U4atac, and U6atac snRNAs, but instead requires the major spliceosomal snRNAs U1, U2, U4, U5, and U6. Previous studies showed that G --> A mutation at the first position and G --> C mutation at the last position of a conventional yeast or mammalian GT-AG intron suppress each other in vivo, suggesting that the first and last bases participate in an essential non-Watson-Crick interaction. Our results show that such introns, hereafter termed AT-AC II introns, occur naturally and are spliced by a mechanism distinct from that responsible for processing of the apparently more common AT-AC I introns.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号