首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
GST pi (GSTP) is a member of the glutathione S-transferase (EC 2.5.1.18; GST) family of enzymes that catalyse the conjugation of electrophilic species with reduced glutathione and thus play an important role in the detoxification of electrophilic metabolites. Deletion of GSTP in mice has previously been shown to lead to enhanced susceptibility to chemical-induced skin carcinoma, consistent with its known metabolic functions. A decreased susceptibility to paracetamol hepatotoxicity has also been observed, which has not been fully explained. One possibility is that deletion of the GSTP gene locus results in compensatory changes in other proteins involved in defence against chemical stress. We have therefore used complementary protein expression profiling techniques to perform a systematic comparison of the protein expression profiles of livers from GSTP null and wild-type mice. Analysis of liver proteins by two-dimensional electrophoresis confirmed the absence of GSTP in null mice whereas GSTP represented 3-5% of soluble protein in livers from wild-type animals. There was a high degree of quantitative and qualitative similarity in other liver proteins between GSTP null and wild-type mice. There was no evidence that the absence of GSTP in null animals resulted in enhanced expression of other GST isoforms in the null mice (GST alpha, 1.48%, GST mu, 1.68% of resolved proteins) compared with the wild-type animals (GST alpha, 1.50%, GST mu, 1.40%). In contrast, some members of the thiol specific antioxidant family of proteins, notably antioxidant protein 2 and thioredoxin peroxidases, were expressed at a higher level in the GSTP null mouse livers. These changes presumably reflect the recently described role of GSTP in cell signalling and may underlie the protection against paracetamol toxicity seen in these animals.  相似文献   

3.
S-Nitrosation is a post-translational modification of protein cysteine residues, which occurs in response to cellular oxidative stress. Although it is increasingly being linked to physiologically important processes, the molecular basis for protein regulation by this modification remains poorly understood. We used transient kinetic methods to determine a minimal mechanism for spontaneous S-nitrosoglutathione (GSNO)-mediated transnitrosation of human glutathione transferase (GST) P1-1, a major detoxification enzyme and key regulator of cell proliferation. Cys47 of GSTP1-1 is S-nitrosated in two steps, with the chemical step limited by a pre-equilibrium between the open and closed conformations of helix α2 at the active site. Cys101, in contrast, is S-nitrosated in a single step but is subject to negative cooperativity due to steric hindrance at the dimer interface. Despite the presence of a GSNO binding site at the active site of GSTP1-1, isothermal titration calorimetry as well as nitrosation experiments using S-nitrosocysteine demonstrate that GSNO binding does not precede S-nitrosation of GSTP1-1. Kinetics experiments using the cellular reductant glutathione show that Cys101-NO is substantially more resistant to denitrosation than Cys47-NO, suggesting a potential role for Cys101 in long term nitric oxide storage or transfer. These results constitute the first report of the molecular mechanism of spontaneous protein transnitrosation, providing insight into the post-translational control of GSTP1-1 as well as the process of protein transnitrosation in general.  相似文献   

4.
Catalytic properties and cellular effects of the glutathione peroxidase (GPx)-mimetic compound PhSeZnCl or its d,l-lactide polymer microencapsulation form (M-PhSeZnCl) were investigated and compared with the prototypical Se-organic compounds ebselen and diselenide (PhSe)2. PhSeZnCl was confirmed to catalyze the ping-pong reaction of GPx with higher Vmax than ebselen and (PhSe)2, but the catalytic efficiency calculated for the cosubstrates glutathione (GSH) and H2O2, and particularly the high reactivity against thiols (lowest KM for GSH in the series of test molecules), suggested poor biological applicability of PhSeZnCl as a GPx mimetic. Cytotoxicity of PhSeZnCl was demonstrated in various cancer cell lines via increased reactive oxygen species (ROS) generation, depletion of intracellular thiols, and induction of apoptosis. Experiments carried out in GSH S-transferase P (GSTP)-overexpressing K562 human erythroleukemia cells and in GSTP1-1-knockout murine embryonic fibroblasts (MEFs) demonstrated that this cytosolic enzyme represents a preferential target of the redox disturbances produced by this Se-compound with a key role in controlling H2O2 generation and the perturbation of stress/survival kinase signaling. Microencapsulation was adopted as a strategy to control the thiol reactivity and oxidative stress effects of PhSeZnCl, then assessing applications alternative to anticancer. The uptake of this “depowered” GPx-mimetic formulation, which occurred through an endocytosis-like mechanism, resulted in a marked reduction of cytotoxicity. In MCF-7 cells transfected with different allelic variants of GSTP, M-PhSeZnCl lowered the burst of cellular ROS induced by the exposure to extracellular H2O2, and the extent of this effect changed between the GSTP variants. Microencapsulation is a straightforward strategy to mitigate the toxicity of thiol-reactive Se-organic drugs that enhanced the antioxidant and cellular protective effects of PhSeZnCl. A mechanistic linkage of these effects with the expression pattern and signaling properties of GSTP . This has overcome the GPx-mimetic paradigm proposed for Se-organic drugs with a more pragmatic concept of GSTP signaling modulators.  相似文献   

5.
Aldose reductase (AR) is a multifunctional enzyme that catalyzes the reduction of glucose and lipid peroxidation-derived aldehydes. During myocardial ischemia, the activity of AR is increased due to the oxidation of its cysteine residues to sulfenic acids. It is not known, however, whether the activated, sulfenic form of the protein (AR-SOH) is converted back to its reduced, unactivated state (AR-SH). We report here that in perfused mouse hearts activation of AR during 15 min of global ischemia is completely reversed by 30 min of reperfusion. During reperfusion, AR-SOH was converted to a mixed disulfide (AR-SSG). Deactivation of AR and the appearance of AR-SSG during reperfusion were delayed in hearts of mice lacking glutathione S-transferase P (GSTP). In vitro, GSTP accelerated glutathiolation and inactivation of AR-SOH. Reduction of AR-SSG to AR-SH was facilitated by glutaredoxin (GRX). Ischemic activation of AR was increased in GRX-null hearts but was attenuated in the hearts of cardiospecific GRX transgenic mice. Incubation of AR-SSG with GRX led to the regeneration of the reduced form of the enzyme. In ischemic cardiospecific AR transgenic hearts, AR was co-immunoprecipitated with GSTP, whereas in reperfused hearts, the association of AR with GRX was increased. These findings suggest that upon reperfusion of the ischemic heart AR-SOH is converted to AR-SSG via GSTP-assisted glutathiolation. AR-SSG is then reduced by GRX to AR-SH. Sequential catalysis by GSTP and GRX may be a general redox switching mechanism that regulates the reduction of protein sulfenic acids to cysteines.  相似文献   

6.
In addition to glutathione (GSH) conjugating activity, glutathione S-transferases (GSTs) catalyze "reverse" reactions, such as the hydrolysis of GSH thiol esters. Reverse reactions are of interest as potential tumor-directed pro-drug activation strategies and as mechanisms for tissue redistribution of carboxylate-containing drugs. However, the mechanism and specificity of GST-mediated GSH thiol ester hydrolysis are uncharacterized. Here, the GSH thiol esters of ethacrynic acid (E-SG) and several nonsteroidal antiinflammatory agents have been tested as substrates with human GSTs. The catalytic hydrolysis of these thiol esters appears to be a general property of GSTs. The hydrolysis of the thiol ester of E-SG was studied further with GSTA1-1 and GSTP1-1, as a model pro-drug with several possible fates for the hydrolysis products: competitive inhibition, covalent enzyme adduction, and sequential metabolism. In contrast to hydrolysis rates, significant isoform-dependent differences in the subsequent fate of the products ethacrynic acid and GSH were observed. At low [E-SG], only the GSTP1-1 efficiently catalyzed sequential metabolism, via a dissociative mechanism.  相似文献   

7.
8.
Oxidative stress is a key factor contributing to the development of diabetes complications. Glutathione S-transferases (GSTs) protect against products of oxidative stress by conjugating glutathione to electrophilic substrates, producing compounds that are generally less reactive and more soluble. The expression and activity of GSTs during diabetes have been extensively studied, but little is known about regulation mechanisms of Pi-class GST (GSTP). The aim of the present study was to evaluate how GSTP is regulated in a Streptozotocin (STZ)-induced murine diabetes model. GST activity and GSTP expression were determined in adult male mice diabetized with STZ. Specificity protein 1 (Sp1) expression and O-glycosylation, as well as the role of AP-1 members Jun and Fos in the regulation of GSTP expression, were also assessed. The results showed that GST total activity and GSTP mRNA and protein levels were decreased in the diabetic liver, and returned to normal values after insulin administration. The insulin-mimetic drug vanadate was also able to restore GST activity, but failed to recover GSTP mRNA/protein levels. In diabetic animals, O-glycosylated Sp1 levels were increased, whereas, in insulin-treated animals, glycosylation values were similar to those of controls. After vanadate administration, Sp1 expression levels and glycosylation were lower than those of controls. Our results suggest that hyperglycemia could lead to the observed increase in Sp1 O-glycosylation, which would, in turn, lead to a decrease in the expression of Sp1-dependent GSTP in the liver of diabetic mice.  相似文献   

9.
目的:研究谷胱甘肽S-转移酶P1(GSTP1)、上皮钙粘蛋白(E-cadherin)在垂体腺瘤中的表达及临床意义。方法:应用免疫组化SP染色法检测30例侵袭性垂体腺瘤与30例非侵袭性垂体腺瘤中GSTP1、E-cadherin的表达。结果:GSTP1在侵袭性垂体腺瘤中的表达较非侵袭性垂体腺瘤显著降低(P〈0.05);E-cadherin在侵袭性垂体腺瘤中的表达较非侵袭性垂体腺瘤显著降低(P〈0.05);GSTP1、E-cadherin在垂体腺瘤中的表达呈正相关(r=0.82,P〈0.05)。结论:GSTP1、E-cadherin在垂体腺瘤中的表达与肿瘤侵袭程度显著相关,两者联合检测有助于判断垂体腺瘤侵袭性及预后。  相似文献   

10.
Under normal physiologic conditions, the glutathione S-transferase P1 (GSTP1) protein exists intracellularly as a dimer in reversible equilibrium with its monomeric subunits. In the latter form, GSTP1 binds to the mitogen-activated protein kinase, JNK, and inhibits JNK downstream signaling. In tumor cells, which frequently are characterized by constitutively high GSTP1 expression, GSTP1 undergoes phosphorylation by epidermal growth factor receptor (EGFR) at tyrosine residues 3, 7, and 198. Here we report on the effect of this EGFR-dependent GSTP1 tyrosine phosphorylation on the interaction of GSTP1 with JNK, on the regulation of JNK downstream signaling by GSTP1, and on tumor cell survival. Using in vitro and in vivo growing human brain tumors, we show that tyrosine phosphorylation shifts the GSTP1 dimer-monomer equilibrium to the monomeric state and facilitates the formation of the GSTP1-JNK complex, in which JNK is functionally inhibited. Targeted mutagenesis and functional analysis demonstrated that the increased GSTP1 binding to JNK results from phosphorylation of the GSTP1 C-terminal Tyr-198 by EGFR and is associated with a >2.5-fold decrease in JNK downstream signaling and a significant suppression of both spontaneous and drug-induced apoptosis in the tumor cells. The findings define a novel mechanism of regulatory control of JNK signaling that is mediated by the EGFR/GSTP1 cross-talk and provides a survival advantage for tumors with activated EGFR and high GSTP1 expression. The results lay the foundation for a novel strategy of dual EGFR/GSTP1 for treating EGFR+ve, GSTP1 expressing GBMs.  相似文献   

11.
The glutathione transferases (GSTs) mediate the detoxification of a broad spectrum of electrophilic chemicals. We report here the identification and characterisation of a novel naturally occurring transition that changes codon 169 from GGC (Gly) to GAC (Asp) in the human Pi class GST, GSTP1. Expression of the variant in human HepG2 cells led to a small increase in 1-chloro-2,4-dinitrobenzene (CDNB) conjugation compared to the wild-type protein. Asp169 GSTP1-1 expressed at high levels in Escherichia coli displayed a small but significant increase in specific activity towards CDNB compared to Gly169 GSTP1-1. The catalytic efficiency with CDNB was higher for Asp169 GSTP1-1 compared to the wild-type enzyme, although the kinetic constants of the mutant and the wild-type enzyme towards glutathione were not different. Modelling indicated that the mutation does not appear to change protein conformation. The distribution of the genotypes in a normal healthy population (217 individuals) was 94.3% for the Gly/Gly genotype and 5.7% for the Gly/Asp genotype; no Asp/Asp genotypes were detected in this population. The frequency of the Asp169 allele in the only oxidative stress-linked pathology that we have studied to date, i.e. alcoholic liver disease, was not significantly different from healthy controls. In conclusion, we have detected and characterised a novel SNP in GSTP1 that may play a role in modulating the activity of GSTP1-1.  相似文献   

12.
目的:研究谷胱甘肽S-转移酶P1(GSTP1)、上皮钙粘蛋白(E-cadherin)在垂体腺瘤中的表达及临床意义。方法:应用免疫组化SP染色法检测30例侵袭性垂体腺瘤与30例非侵袭性垂体腺瘤中GSTP1、E-cadherin的表达。结果:GSTP1在侵袭性垂体腺瘤中的表达较非侵袭性垂体腺瘤显著降低(P<0.05);E-cadherin在侵袭性垂体腺瘤中的表达较非侵袭性垂体腺瘤显著降低(P<0.05);GSTP1、E-cadherin在垂体腺瘤中的表达呈正相关(r=0.82,P<0.05)。结论:GSTP1、E-cadherin在垂体腺瘤中的表达与肿瘤侵袭程度显著相关,两者联合检测有助于判断垂体腺瘤侵袭性及预后。  相似文献   

13.
14.
15.
DNA methylation plays an important role in carcinogenesis and the reversibility of this epigenetic modification makes it a potential therapeutic target. To date, DNA methyltransferase inhibitors (DNMTi) have not demonstrated clinical efficacy in prostate cancer, with one of the major obstacles being the inability to monitor drug activity during the trial. Given the high frequency and specificity of GSTP1 DNA methylation in prostate cancer, we investigated whether GSTP1 is a useful marker of DNMTi treatment efficacy. LNCaP prostate cancer cells were treated with 5-aza-2'-deoxycytidine (5-aza-CdR) either with a single high dose (5-20 μM), every alternate day (0.1-10 μM) or daily (0.005-2.5 μM). A daily treatment regimen with 5-aza-CdR was optimal, with significant suppression of cell proliferation achieved with doses of 0.05 μM or greater (p<0.0001) and induction of cell death from 0.5 μM (p<0.0001). In contrast, treatment with a single high dose of 20 μM 5-aza-CdR inhibited cell proliferation but was not able to induce cell death. Demethylation of GSTP1 was observed with doses of 5-aza-CdR that induced significant suppression of cell proliferation (≥ 0.05 μM). Re-expression of the GSTP1 protein was observed only at doses of 5-aza-CdR (≥ 0.5 μM) associated with induction of cell death. Treatment of LNCaP cells with a more stable DNMTi, Zebularine required at least a 100-fold higher dose (≥ 50 μM) to inhibit proliferation and was less potent in inducing cell death, which corresponded to a lack of GSTP1 protein re-expression. We have shown that GSTP1 DNA methylation and protein expression status is correlated with DNMTi treatment response in prostate cancer cells. Since GSTP1 is methylated in nearly all prostate cancers, our results warrant its testing as a marker of epigenetic therapy response in future clinical trials. We conclude that the DNA methylation and protein expression status of GSTP1 are good indicators of DNMTi efficacy.  相似文献   

16.
In the present study, the inhibition of human glutathione S-transferase P1-1 (GSTP1-1) by the flavonoid quercetin has been investigated. The results show a time- and concentration-dependent inhibition of GSTP1-1 by quercetin. GSTP1-1 activity is completely inhibited upon 1 h incubation with 100 microM quercetin or 2 h incubation with 25 microM quercetin, whereas 1 and 10 microM quercetin inhibit GSTP1-1 activity to a significant extent reaching a maximum of 25 and 42% inhibition respectively after 2 h. Co-incubation with tyrosinase greatly enhances the rate of inactivation, whereas co-incubation with ascorbic acid or glutathione prevents this inhibition. Addition of glutathione upon complete inactivation of GSTP1-1 partially restores the activity. Inhibition studies with the GSTP1-1 mutants C47S, C101S and the double mutant C47S/C101S showed that cysteine 47 is the key residue in the interaction between quercetin and GSTP1-1. HPLC and LC-MS analysis of trypsin digested GSTP1-1 inhibited by quercetin did not show formation of a covalent bond between Cys 47 residue of the peptide fragment 45-54 and quercetin. It was demonstrated that the inability to detect the covalent quercetin-peptide adduct using LC-MS is due to the reversible nature of the adduct-formation in combination with rapid and preferential dimerization of the peptide fragment once liberated from the protein. Nevertheless, the results of the present study indicate that quinone-type oxidation products of quercetin likely act as specific active site inhibitors of GSTP1-1 by binding to cysteine 47.  相似文献   

17.
18.
Genetic polymorphisms in glutathione S-transferases (GSTs) genes might influence the detoxification activities of the enzymes predisposing individuals to cancer risk. Owing to the presence of these genetic variants, inter-individual and ethnic differences in GSTs detoxification capacity have been observed in various populations. Therefore, the present study was performed to determine the prevalence GSTM1 0/0, GSTT1 0/0, GSTP1 Ile(105)Val, and GSTA1 A/B polymorphisms in 154 healthy individuals from South Tunisia, and to compare them with those observed in North and Centre Tunisian populations and other ethnic groups. GSTM1 and GSTT1 polymorphisms were analyzed by a Multiplex-PCR approach, whereas GSTP1 and GSTA1 polymorphisms were examined by PCR-RFLP. The frequencies of GSTM10/0 and GSTT1 0/0 genotypes were 53.9% and 27.9%, respectively. The genotype distribution of GSTP1 was 47.4% (Ile/Ile), 40.9% (Ile/Val), and 11.7% (Val/Val). For GSTA1, the genotype distribution was 24.7% (A/A), 53.9% (A/B), and 21.4% (B/B). The combined genotypes distribution of GSTM1, GSTT1, GSTP1 and GSTA1 polymorphisms showed that thirty one of the 36 possible genotypes were present in our population; eight of them have a frequency greater than 5%. To the best of our knowledge, this is the first report of GSTs polymorphisms in South Tunisian population. Our findings demonstrate the impact of ethnicity and reveal a characteristic pattern for Tunisian population. The molecular studies in these enzymes provide basis for further epidemiological investigations in the population where these functional polymorphisms alter therapeutic response and act as susceptibility markers for various clinical conditions.  相似文献   

19.
《Gene》1998,210(1):1-7
Understanding the mechanisms that regulate the human pi class GST (GSTP1) gene expression in breast cancer cells is of particular importance to the study of breast cancer biology. In cultured human breast cancer cell lines, GSTP1 is exclusively expressed in estrogen receptor-negative (ER−) cells but is undetectable in receptor-positive (ER+) cells. Previously, we examined transiently transfected GSTP1 promoter activities, in vitro GSTP1 promoter–DNA interactions, and GSTP1 mRNA stability. These studies indicated that transiently transfected GSTP1 promoter elements and GSTP1 mRNA stability could only partially explain cell line-specific expression of endogenous GSTP1. In the present study, we examined whether the methylation status of the GSTP1 CpG island plays an important role in GSTP1 regulation. Southern blot analysis revealed that the GSTP1 CpG island is hypermethlyated in ER+, GSTP1 non-expressing cell lines but is undermethylated in ER−, GSTP1 expressing cell lines. Moreover, partial demethylation of the GSTP1 CpG island by treatment with 5-aza-2′-deoxycytidine resulted in de novo gene expression in ER+ cell lines, as detected by RT-PCR, Northern blot and Western blot analyses. Our data strongly indicate that methylation status of the promoter contributes significantly to the levels of GSTP1 expressed in ER− and ER+ breast cancer cell lines.  相似文献   

20.
Post-translational S-glutathionylation occurs through the reversible addition of a proximal donor of glutathione to thiolate anions of cysteines in target proteins, where the modification alters molecular mass, charge, and structure/function and/or prevents degradation from sulfhydryl overoxidation or proteolysis. Catalysis of both the forward (glutathione S-transferase P) and reverse (glutaredoxin) reactions creates a functional cycle that can also regulate certain protein functional clusters, including those involved in redox-dependent cell signaling events. For translational application, S-glutathionylated serum proteins may be useful as biomarkers in individuals (who may also have polymorphic expression of glutathione S-transferase P) exposed to agents that cause oxidative or nitrosative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号