首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The regulation of cauliflower mosaic virus (CaMV) pregenomic 35S RNA translation occurs via nonlinear ribosome migration (ribosome shunt) and is mediated by an elongated hairpin structure in the leader. The replacement of the viral leader by a series of short, low-energy stems in either orientation supports efficient ribosomal shunting, showing that the stem per se, and not its sequence, is recognized by the translation machinery. The requirement for cis-acting sequences from the unstructured terminal regions of the viral leader was analyzed: the 5'-terminal polypyrimidine stretch and the short upstream open reading frame (uORF) A stimulate translation, whereas the 3'-flanking region seems not to be essential. Based on these results, an artificial leader was designed with a stable stem flanked by unstructured sequences derived from parts of the 5'- and 3'-proximal regions of the CaMV 35S RNA leader. This artificial leader is shunt-competent in translation assays in vivo and in vitro, indicating that a low-energy stem, broadly used as a device to successfully interfere with ribosome scanning, can efficiently support translation, if preceded by a short uORF. The synthetic 140-nt leader can functionally replace the CaMV 35S RNA 600-nt leader, thus implicating the universal role that nonlinear ribosome scanning could play in translation initiation in eukaryotes.  相似文献   

3.
Hepatitis C viral (HCV) RNA includes an internal ribosome entry segment (IRES) that extends some 30 nt into the coding region and promotes internal initiation of translation at the authentic initiation codon at nt 342. The 5'-boundary of this IRES was mapped by in vitro translation and transfection assays and was found to lie between nt 42 and 71. Within these IRES boundaries there are, in most HCV strains, three AUG triplets upstream of the authentic initiation site. Although the first, 5'-proximal, of these is absolutely conserved, a mutational analysis showed that it is not a functional initiation codon. In particular, the G residue could be substituted provided compensatory mutations were made to maintain base pairing. The other two upstream AUGs are not absolutely conserved, and mutation of the third (5'-distal) had little effect on IRES activity. When an additional AUG codon was introduced by single-site mutation just upstream of the authentic initiation codon, it was found to be used when most of the IRES had been deleted to generate an RNA translated by the scanning ribosome mechanism, but was not used in the background of the full-length IRES when internal initiation is operative. These results argue that the IRES promotes direct ribosome entry immediately at, or indeed very close to, the authentic initiation codon, and that the upstream AUGs do not serve as ribosome entry sites.  相似文献   

4.
5.
The initiation of translation is a fundamental and highly regulated process in gene expression. Translation initiation in prokaryotic systems usually requires interaction between the ribosome and an mRNA sequence upstream of the initiation codon, the so-called ribosome-binding site (Shine-Dalgarno sequence). However, a large number of genes do not possess Shine-Dalgarno sequences, and it is unknown how start codon recognition occurs in these mRNAs. We have performed genome-wide searches in various groups of prokaryotes in order to identify sequence elements and/or RNA secondary structural motifs that could mediate translation initiation in mRNAs lacking Shine-Dalgarno sequences. We find that mRNAs without a Shine-Dalgarno sequence are generally less structured in their translation initiation region and show a minimum of mRNA folding at the start codon. Using reporter gene constructs in bacteria, we also provide experimental support for local RNA unfoldedness determining start codon recognition in Shine-Dalgarno--independent translation. Consistent with this, we show that AUG start codons reside in single-stranded regions, whereas internal AUG codons are usually in structured regions of the mRNA. Taken together, our bioinformatics analyses and experimental data suggest that local absence of RNA secondary structure is necessary and sufficient to initiate Shine-Dalgarno--independent translation. Thus, our results provide a plausible mechanism for how the correct translation initiation site is recognized in the absence of a ribosome-binding site.  相似文献   

6.
TYMV RNA supports the translation of two proteins, p69 and p206, from AUG initiation codons 7 nucleotides apart. We have studied the translation of this overlapping dicistronic mRNA with luciferase reporter RNAs electroporated into cowpea protoplasts and in toe-printing studies that map ribosomes stalled during initiation in wheat germ extracts. Agreement between these two assays indicates that the observed effects reflect ribosome initiation events. The robust expression from the downstream AUG206 codon was dependent on its closeness to the upstream AUG69 codon. Stepwise separation of these codons resulted in a gradual increase in upstream initiation and decrease in downstream initiation, and expression was converted from dicistronic to monocistronic. Selection by ribosomes for initiation between the nearby AUG codons was responsive to the sequence contexts that govern leaky scanning, but the normally strong position effect favoring upstream initiation was greatly diminished. Similar dicistronic expression was supported for RNAs with altered initiation sequences and for RNAs devoid of flanking viral sequences. Closely spaced AUG codons may thus represent an under-recognized strategy for bicistronic expression from eukaryotic mRNAs. The initiation behavior observed in these studies suggests that 5'-3' ribosome scanning involves backward excursions averaging about 15 nucleotides.  相似文献   

7.
Structure-function relationship of Rous sarcoma virus leader RNA.   总被引:20,自引:4,他引:20       下载免费PDF全文
J L Darlix  M Zuker    P F Spahr 《Nucleic acids research》1982,10(17):5183-5196
Cells infected by RSV synthesize viral 35S RNA as well as subgenomic 28S and 22S RNAs coding for the Env and Src genes respectively. In addition, at least the 5' 101 nucleotides of the leader are also conserved and we have shown previously that this sequence contains a strong ribosome binding site (J.-L. Darlix et al., J. Virol. 29, 597). We now report the RNA sequence of Rous Sarcoma virus (RSV) leader RNA and propose a folding of this 5' untranslated region which brings the Cap, the initiation codon for Gag and the strong ribosome binding site close to each other. We also show that ribosomes protect a sequence just upstream from initiator Aug of Gag in vitro, and believed to interact with part of the strong ribosome binding site according to the folding proposed for the leader RNA.  相似文献   

8.
J Fütterer  I Potrykus  Y Bao  L Li  T M Burns  R Hull    T Hohn 《Journal of virology》1996,70(5):2999-3010
The expression of the rice tungro bacilliform virus open reading frame I was studied in transiently transfected protoplasts. Expression occurs despite the presence of a long leader sequence and the absence of a proper ATG initiation codon. Translation is initiated at an ATT codon. The efficiency of initiation in rice protoplasts depends strongly on the mechanism by which ribosomes reach this codon. From the effects of scanning-inhibiting structures inserted into different leader regions, it can be deduced that this mechanism is related to the ribosome shunt described for cauliflower mosaic virus 35S RNA. The process delivers initiation-competent ribosomes to the region downstream of the leader and is so precise that only the second of two potential start codons only 12 nucleotides apart is recognized. The ATT codon that is used when it is present downstream of the leader is hardly recognized as a start codon by ribosomes that reach it by scanning.  相似文献   

9.
Expression of the plasmid gene cat-86 is induced in Bacillus subtilis by two antibiotics, chloramphenicol and the nucleoside antibiotic amicetin. We proposed that induction by either drug causes the destabilization of a stem-loop structure in cat-86 mRNA that sequesters the ribosome-binding site for the cat coding sequence. The destabilization event frees the ribosome-binding site, permitting the initiation of translation of cat-86 mRNA. cat-86 induction is due to the stalling of a ribosome in a leader region of cat-86 mRNA, which is located 5' to the RNA stem-loop structure. A stalled ribosome that is active in cat-86 induction has its aminoacyl site occupied by leader codon 6. To test the hypothesis that a leader site 5' to codon 6 permits a ribosome to stall in the presence of an inducing antibiotic, we inserted an extra codon between leader codons 5 and 6. This insertion blocked induction, which was then restored by the deletion of leader codon 6. Thus, induction seems to require the maintenance of a precise spatial relationship between an upstream leader site(s) and leader codon 6. Mutations in the ribosome-binding site for the cat-86 leader, RBS-2, which decreased its strength of binding to 16S rRNA, prevented induction. In contrast, mutations that significantly altered the sequence of RBS-2 but increased its strength of binding to 16S rRNA did not block induction by either chloramphenicol or amicetin. We therefore suspected that the proposed leader site that permitted drug-mediated stalling was located between RBS-2 and leader codon 6. This region of the cat-86 leader contains an eight-nucleotide sequence (conserved region I) that is largely conserved among all known cat leaders. The codon immediately 5' to conserved region I differs, however, between amicetin-inducible and amicetin-noninducible cat genes. In amicetin-inducible cat genes such as cat-86, the codon 5' to conserved region I is a valine codon, GTG. The same codon in amicetin-noninducible cat genes is a lysine codon, either AAA or AAG. When the GTG codon immediately 5' to conserved region I in cat-86 was changed to AAA, amicetin was no longer active in cat-86 induction, but chloramphenicol induction was unaffected by the mutation. The potential role of the GTG codon in amicetin induction is discussed.  相似文献   

10.
AUG-unrelated translation initiation was found in an insect picorna-like virus, Plautia stali intestine virus (PSIV). The positive-strand RNA genome of the virus contains two nonoverlapping open reading frames (ORFs). The capsid protein gene is located in the 3′-proximal ORF and lacks an AUG initiation codon. We examined the translation mechanism and the initiation codon of the capsid protein gene by using various dicistronic and monocistronic RNAs in vitro. The capsid protein gene was translated cap independently in the presence of the upstream cistron, indicating that the gene is translated by internal ribosome entry. Deletion analysis showed that the internal ribosome entry site (IRES) consisted of approximately 250 bases and that its 3′ boundary extended slightly into the capsid-coding region. The initiation codon for the IRES-mediated translation was identified as the CUU codon, which is located just upstream of the 5′ terminus of the capsid-coding region by site-directed mutagenesis. In vitro translation assays of monocistronic RNAs lacking the 5′ part of the IRES showed that this CUU codon was not recognized by scanning ribosomes. This suggests that the PSIV IRES can effectively direct translation initiation without stable codon-anticodon pairing between the initiation codon and the initiator methionyl-tRNA.  相似文献   

11.
The secondary structure of the Escherichia coli alpha mRNA leader sequence has been determined using nucleases specific for single- or double-stranded RNA. Three different length alpha RNA fragments were studied at 0 degrees C and 37 degrees C. A very stable eight base-pair helix forms upstream from the ribosome initiation site, defining a 29 base loop. There is evidence for base-pairing between nucleotides within this loop and for a "pseudo-knot" interaction of some loop bases with nucleotides just 3' to the initiation codon, forming a region of complex structure. A weak helix also pairs sequences near the 5' terminus of the alpha mRNA with bases near the Shine-Dalgarno sequence. Affinity constants for the translational repressor S4 binding different length alpha mRNA fragments indicate that most of the S4 recognition features must be contained within the main helix and hairpin regions. Binding of S4 to the alpha mRNA alters the structure of the 29 base hairpin region, and probably melts the weak pairing between the 5' and 3' termini of the leader. The pseudo-knot structure and the conformational changes associated with it provide a link between the structures of the S4 binding site and the ribosome binding site. The alpha mRNA may therefore play an active role in mediating translational repression.  相似文献   

12.
Poliovirus infection is accompanied by translational control that precludes translation of 5'-capped mRNAs and facilitates translation of the uncapped poliovirus RNA by an internal initiation mechanism. Previous reports have suggested that the capped alfalfa mosaic virus coat protein mRNA (AIMV CP RNA), which contains an unstructured 5' leader sequence, is unusual in being functionally active in extracts prepared from poliovirus-infected HeLa cells (PI-extracts). To identify the cis-acting nucleotide elements permitting selective AIMV CP expression, we tested capped mRNAs containing structured or unstructured 5' leader sequences in addition to an mRNA containing the poliovirus internal ribosome entry site (IRES). Translations were performed with PI-extracts and extracts prepared from mock-infected HeLa cells (MI-extracts). A number of control criteria demonstrated that the HeLa cells were infected by poliovirus and that the extracts were translationally active. The data strongly indicate that translation of RNAs lacking an internal ribosome entry site, including AIMV CP RNA, was severely compromised in PI-extracts, and we find no evidence that the unstructured AIMV CP RNA 5' leader sequence acts in cis to bypass the poliovirus translational control. Nevertheless, cotranslation assays in the MI-extracts demonstrate that mRNAs containing the unstructured AIMV CP RNA 5' untranslated region have a competitive advantage over those containing the rabbit alpha-globin 5' leader. Previous reports of AIMV CP RNA translation in PI-extracts likely describe inefficient expression that can be explained by residual cap-dependent initiation events, where AIMV CP RNA translation is competitive because of a diminished quantitative requirement for initiation factors.  相似文献   

13.
A scanning mechanism has been proposed (Kozak, 1978) to explain how eukaryotic ribosomes select the correct AUG codon for initiation of protein synthesis. The hypothesis is that a 40 S ribosomal subunit binds initially at or near the 5′-terminus of a message and subsequently migrates toward the interior of the messenger RNA, stopping when it encounters the first AUG codon, at which point a 60 S subunit joins and peptide bond formation begins. The scanning mechanism predicts that if a message were modified by introduction of a new AUG triplet upstream of the existing initiator codon, the adventitious AUG should be the preferred site for formation of an 80 S initiation complex. This prediction has been confirmed in the present studies with two reovirus messenger RNAs, in which sodium bisulfite was used to convert an ACG sequence (located in the 5′ untranslated region of each message) to AUG. Analysis of the ribosome-protected mRNA fragments recovered from sparsomycin-blocked 80 S initiation complexes revealed that a high percentage of wheat germ ribosomes were centered around the “unnatural” 5′-proximal AUG created by the bisulfite treatment, although some ribosomes were also positioned at the second (normal) initiator codon. The bisulfite modification was carried out in 7 m-urea at 37 °C. resulting in quantitative conversion of cytosine to uracil. Thus, both the primary and secondary structure of the message were drastically altered. These perturbations did not impair the efficiency of ribosome binding, nor did the highly unfolded state of the mRNA permit ribosomes to attach to spurious sites in the interior of the message. The data support a mechanism in which the initiator codon is selected by virtue of its position in a message (i.e. closest to the 5′-terminus), without regard to either the primary or secondary structure of the flanking regions.  相似文献   

14.
The S1 mRNA of avian reovirus is functionally tricistronic, encoding three unrelated proteins, p10, p17 and σC, from three sequential, partially overlapping open reading frames (ORFs). The mechanism of translation initiation at the 3′-proximal σC ORF is currently unknown. Transient RNA transfections using Renilla luciferase reporter constructs revealed only a modest reduction in reporter expression upon optimization of either the p10 or p17 start sites. Insertion of multiple upstream AUG (uAUG) codons in a preferred start codon sequence context resulted in a substantial retention of downstream translation initiation on the S1 mRNA, but not on a heterologous mRNA. The S1 mRNA therefore facilitates leaky scanning to promote ribosome access to the σC start codon. Evidence also indicates that σC translation is mediated by a second scanning-independent mechanism capable of bypassing upstream ORFs. This alternate mechanism is cap-dependent and requires a sequence-dependent translation enhancer element that is complementary to 18S rRNA. Downstream translation initiation of the tricistronic S1 mRNA is therefore made possible by two alternate mechanisms, facilitated leaky scanning and an atypical form of ribosome shunting. This dual mechanism of downstream translation initiation ensures sufficient expression of the σC cell attachment protein that is essential for infectious progeny virus production.  相似文献   

15.
16.
RNA phage GA coat and lysis protein expression are translationally coupled through an overlapping termination and initiation codon UAAUG. Essential for this coupling are the proximity of the termination codon of the upstream coat gene to the initiation codon of the lysis gene (either a <3 nucleotide separation or physical closeness through a possible hairpin structure) but not the Shine-Dalgarno sequence. This suggests that the ribosomes completing the coat gene translation are exclusively responsible for translation of the lysis gene. Inactivation of ribosome recycling factor (RRF), which normally releases ribosomes at the termination codon, did not influence the expression of the reporter gene fused to the lysis gene. This suggests the possibility that RRF may not release ribosomes from the junction UAAUG. However, RRF is essential for correct ribosomal recognition of the AUG codon as the initiation site for the lysis gene.  相似文献   

17.
Alternative initiations of translation of the human fibroblast growth factor 2 (FGF-2) mRNA, at three CUG start codons and one AUG start codon, result in the synthesis of four isoforms of FGF-2. This process has important consequences on the fate of FGF-2: the CUG-initiated products are nuclear and their constitutive expression is able to induce cell immortalization, whereas the AUG-initiated product, mostly cytoplasmic, can generate cell transformation. Thus, the different isoforms probably have distinct targets in the cell. We show here that translation initiation of the FGF-2 mRNA breaks the rule of the cap-dependent ribosome scanning mechanism. First, translation of the FGF-2 mRNA was shown to be cap independent in vitro. This cap-independent translation required a sequence located between nucleotides (nt) 192 and 256 from the 5' end of the 318-nt-long 5' untranslated region. Second, expression of bicistronic vectors in COS-7 cells indicated that the FGF-2 mRNA is translated through a process of internal ribosome entry mediated by the mRNA leader sequence. By introducing additional AUG codons into the RNA leader sequence, we localized an internal ribosome entry site to between nt 154 and 318 of the 5' untranslated region, just upstream of the first CUG. The presence of an internal ribosome entry site in the FGF-2 mRNA suggests that the process of internal translation initiation, by controlling the expression of a growth factor, could have a crucial role in the control of cell proliferation and differentiation.  相似文献   

18.
The human hepatitis B virus (HBV) has a compact genome encoding four major overlapping coding regions: the core, polymerase, surface and X. The polymerase initiation codon is preceded by the partially overlapping core and four or more upstream initiation codons. There is evidence that several mechanisms are used to enable the synthesis of the polymerase protein, including leaky scanning and ribosome reinitiation. We have examined the first AUG in the pregenomic RNA, it precedes that of the core. It initiates an uncharacterized short upstream open reading frame (uORF), highly conserved in all HBV subtypes, we designated the C0 ORF. This arrangement suggested that expression of the core and polymerase may be affected by this uORF. Initiation at the C0 ORF was confirmed in reporter constructs in transfected cells. The C0 ORF had an inhibitory role in downstream expression from the core initiation site in HepG2 cells and in vitro, but also stimulated reinitiation at the polymerase start when in an optimal context. Our results indicate that the C0 ORF is a determinant in balancing the synthesis of the core and polymerase proteins.  相似文献   

19.
The retroviral genomic RNA is the messenger for the synthesis of the group-specific antigen (gag) and polymerase precursors of the major structural proteins and enzymes of the virion. The 5'-untranslated leader of the simian immunodeficiency virus (SIV) genomic RNA is formed of highly structured domains involved in key steps of the viral life cycle. Thus, the presence of stable RNA structures between the 5'-cap and the gag start codon are thought to strongly inhibit scanning of a 43 S preinitiation ribosomal complex. This prompted us to look for an alternative to the canonical ribosome scanning. By using a standard bicistronic assay in the rabbit reticulocyte lysate, we show that the SIVmac 5'-leader contains an internal ribosome entry segment (IRES) and that gene expression driven by this IRES is stimulated upon cleavage of eukaryotic initiation factor 4G. Deletion analysis revealed that the sequence between the major splice donor and the gag AUG codon is required for IRES activity. DNA transfection and viral transduction experiments in both NIH-3T3 and COS-7 cells confirmed that translation driven by the SIV leader is IRES-dependent and thus insensitive to the immunosuppressant rapamycin. Identification of an IRES in SIV is of particular interest for the understanding of lentivirus replication and also for the design of novel lentiviral vectors suitable for gene transfer.  相似文献   

20.
The expression of the gene encoding Escherichia coli threonyl-tRNA synthetase (ThrRS) is negatively autoregulated at the translational level. ThrRS binds to its own mRNA leader, which consists of four structural and functional domains: the Shine–Dalgarno (SD) sequence and the initiation codon region (domain 1); two upstream hairpins (domains 2 and 4) connected by a single-stranded region (domain 3). Using a combination of in vivo and in vitro approaches, we show here that the ribosome binds to thrS mRNA at two non-contiguous sites: region −12 to +16 comprising the SD sequence and the AUG codon and, unexpectedly, an upstream single-stranded sequence in domain 3. These two regions are brought into close proximity by a 38-nucleotide-long hairpin structure (domain 2). This domain, although adjacent to the 5' edge of the SD sequence, does not inhibit ribosome binding as long as the single-stranded region of domain 3 is present. A stretch of unpaired nucleotides in domain 3, but not a specific sequence, is required for efficient translation. As the repressor and the ribosome bind to interspersed domains, the competition between ThrRS and ribosome for thrS mRNA binding can be explained by steric hindrance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号