首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In vivo site-directed mutagenesis of the factor IX gene by chimeric RNA/DNA oligonucleotidesKren, B.T. et al. (1998)Nat. Med. 4, 285–290Targeted nucleotide exchange in the alkaline phosphatase gene of HuH-7 cells mediated by a chimeric RNA/DNA oligonucleotideKren, B.T. et al. (1997)Hepatology 25, 1462–1468  相似文献   

2.
In vivo site-directed mutagenesis using oligonucleotides   总被引:13,自引:0,他引:13  
Functional characterization of the genes of higher eukaryotes has been aided by their expression in model organisms and by analyzing site-specific changes in homologous genes in model systems such as the yeast Saccharomyces cerevisiae. Modifying sequences in yeast or other organisms such that no heterologous material is retained requires in vitro mutagenesis together with subcloning. PCR-based procedures that do not involve cloning are inefficient or require multistep reactions that increase the risk of additional mutations. An alternative approach, demonstrated in yeast, relies on transformation with an oligonucleotide, but the method is restricted to the generation of mutants with a selectable phenotype. Oligonucleotides, when combined with gap repair, have also been used to modify plasmids in yeast; however, this approach is limited by restriction-site availability. We have developed a mutagenesis approach in yeast based on transformation by unpurified oligonucleotides that allows the rapid creation of site-specific DNA mutations in vivo. A two-step, cloning-free process, referred to as delitto perfetto, generates products having only the desired mutation, such as a single or multiple base change, an insertion, a small or a large deletion, or even random mutations. The system provides for multiple rounds of mutation in a window up to 200 base pairs. The process is RAD52 dependent, is not constrained by the distribution of naturally occurring restriction sites, and requires minimal DNA sequencing. Because yeast is commonly used for random and selective cloning of genomic DNA from higher eukaryotes such as yeast artificial chromosomes, the delitto perfetto strategy also provides an efficient way to create precise changes in mammalian or other DNA sequences.  相似文献   

3.
A fast and efficient site-directed mutagenesis method has been developed, using the newly constructed plasmid pTPS19, which expresses the toxic CcdB protein originally encoded by the E. coli F plasmid. Once the target gene is cloned into pTPS19, desired mutations can be introduced with two primers. The first contains the desired mutation, and the second is designed to create a +1 frame shift in the ccdB gene to inactivate the CcdB protein. The mutants can be directly selected on LB plates containing IPTG, through which the toxic CcdB protein is induced, thereby eliminating cells carrying wild-type parental plasmids. Based on stringent selection through the toxic CcdB protein, mutagenesis efficiency of 90%-100% was reached even after one round of transformation.  相似文献   

4.
C-reactive protein (CRP) is a cyclic pentameric protein whose major binding specificity, at physiological pH, is for substances bearing exposed phosphocholine moieties. Another pentameric form of CRP, which exists at acidic pH, displays binding activity for oxidized LDL (ox-LDL). The ox-LDL-binding site in CRP, which is hidden at physiological pH, is exposed by acidic pH-induced structural changes in pentameric CRP. The aim of this study was to expose the hidden ox-LDL-binding site of CRP by site-directed mutagenesis and to generate a CRP mutant that can bind to ox-LDL without the requirement of acidic pH. Mutation of Glu(42), an amino acid that participates in intersubunit interactions in the CRP pentamer and is buried, to Gln resulted in a CRP mutant (E42Q) that showed significant binding activity for ox-LDL at physiological pH. For maximal binding to ox-LDL, E42Q CRP required a pH much less acidic than that required by wild-type CRP. At any given pH, E42Q CRP was more efficient than wild-type CRP in binding to ox-LDL. Like wild-type CRP, E42Q CRP remained pentameric at acidic pH. Also, E42Q CRP was more efficient than wild-type CRP in binding to several other deposited, conformationally altered proteins. The E42Q CRP mutant provides a tool to investigate the functions of CRP in defined animal models of inflammatory diseases including atherosclerosis because wild-type CRP requires acidic pH to bind to deposited, conformationally altered proteins, including ox-LDL, and available animal models may not have sufficient acidosis or other possible modifiers of the pentameric structure of CRP at the sites of inflammation.  相似文献   

5.
To elucidate the role of sulfhydryl groups in the enzymatic reaction of the aspartase from Escherichia coli, we used site-directed mutagenesis which showed that the enzyme was activated by replacement of Cys-430 with a tryptophan. This mutation produced functional alterations without appreciable structural change: The kcat values became 3-fold at pH 6.0; the Hill coefficient values became higher under both pH conditions; the dependence of enzyme activity on divalent metal ions increased; and hydroxylamine, a good substrate for the wild-type enzyme, proved a poor substrate for the mutant.  相似文献   

6.
Human C-reactive protein (CRP) can activate the classical pathway of complement and function as an opsonin only when it is complexed to an appropriate ligand. Most known CRP ligands bind to the phosphocholine (PCh)-binding site of the protein. In the present study, we used oligonucleotide-directed site-specific mutagenesis to investigate structural determinants of the PCh-binding site of CRP. Eight mutant recombinant (r) CRP, Y40F; E42Q; Y40F, E42Q; K57Q; R58G; K57Q, R58G; W67K; and K57Q, R58G, W67K were constructed and expressed in COS cells. Wild-type and all mutant rCRP except for the W67K mutants bound to solid-phase PCh-substituted bovine serum albumin (PCh-BSA) with similar apparent avidities. However, W67K rCRP had decreased avidity for PCh-BSA and the triple mutant, K57Q, R58G, W67K, failed to bind PCh-BSA. Inhibition experiments using PCh and dAMP as inhibitors indicated that both Lys-57 and Arg-58 contribute to PCh binding. They also indicated that Trp-67 provides interactions with the choline group. The Y40F and E42Q mutants were found to have increased avidity for fibronectin compared to wild-type rCRP. We conclude that the residues Lys-57, Arg-58, and Trp-67 contribute to the structure of the PCh-binding site of human CRP. Residues Tyr-40 and Glu-42 do not appear to participate in the formation of the PCh-binding site of CRP, however, they may be located in the vicinity of the fibronectin-binding site of CRP.  相似文献   

7.
A number of inhibitors of kinesin spindle protein (KSP) have been described, which are known from X-ray crystallography studies to bind to an induced fit pocket defined by the L5 loop. We describe the characterization of eight mutant forms of KSP in which six residues that line this pocket have been altered. Mutants were analyzed by measuring rates of enzyme catalysis, in the presence and absence of six KSP inhibitors of four diverse structural classes and of varied ATP-competition status. Our analysis was in agreement with the model of binding established by the structural studies and suggests that binding energy is well distributed across functional groups in these molecules. The majority of the mutants retained significant enzymatic activity while diminishing inhibitor binding, indicating potential for the development of drug resistance. These data provide detailed information on interactions between inhibitor and binding pocket at the functional group level and enable the development of novel KSP inhibitors.  相似文献   

8.
Site-directed mutagenesis and deletions were used to study mitochondrial import of a major yeast adenylate kinase, Aky2p. This enzyme lacks a cleavable presequence and occurs in active and apparently unprocessed form both in mitochondria and cytoplasm. Mutations were applied to regions known to be surface-exposed and to diverge between short and long isoforms. In vertebrates, short adenylate kinase isozymes occur exclusively in the cytoplasm, whereas long versions of the enzyme have mitochondrial locations. Mutations in the extra loop of the yeast (long-form) enzyme did not affect mitochondrial import of the protein, whereas variants altered in the central, N- or C-terminal parts frequently displayed increased or, in the case of a deletion of the 8 N-terminal triplets, decreased import efficiencies. Although the N-terminus is important for targeting adenylate kinase to mitochondria, other parameters like internal sequence determinants and folding velocity of the nascent protein may also play a role.  相似文献   

9.

Background

Vanabins are a unique protein family of vanadium-binding proteins with nine disulfide bonds. Possible binding sites for VO2+ in Vanabin2 from a vanadium-rich ascidian Ascidia sydneiensis samea have been detected by nuclear magnetic resonance study, but the metal selectivity and metal-binding ability of each site was not examined.

Methods

In order to reveal functional contribution of each binding site, we prepared several mutants of Vanabin2 by in vitro site-directed mutagenesis and analyzed their metal selectivity and affinity by immobilized metal-ion affinity chromatography and Hummel Dreyer method.

Results

Mutation at K10/R60 (site 1) markedly reduced the affinity for VO2+. Mutation at K24/K38/R41/R42 (site 2) decreased the maximum binding number, but only slightly increased the overall affinity for VO2+. Secondary structure of both mutants was the same as that of the wild type as assessed by circular dichroism spectroscopy. Mutation in disulfide bonds near the site 1 did not affect its high affinity binding capacity, while those near the site 2 decreased the overall affinity for VO2+.

General significance

These results suggested that the site 1 is a high affinity binding site for VO2+, while the site 2 composes a moderate affinity site for multiple VO2+.  相似文献   

10.
Protein engineering uses oligonucleotide-directed mutagenesis to modify DNA sequences through a two-step process of hybridization and enzymatic synthesis. Inefficient reactions confound attempts to introduce mutations, especially for the construction of vast combinatorial protein libraries. This paper applied computational approaches to the problem of inefficient mutagenesis. Several results implicated oligonucleotide annealing to non-target sites, termed ‘cross-hybridization’, as a significant contributor to mutagenesis reaction failures. Test oligonucleotides demonstrated control over reaction outcomes. A novel cross-hybridization score, quickly computable for any plasmid and oligonucleotide mixture, directly correlated with yields of deleterious mutagenesis side products. Cross-hybridization was confirmed conclusively by partial incorporation of an oligonucleotide at a predicted cross-hybridization site, and by modification of putative template secondary structure to control cross-hybridization. Even in low concentrations, cross-hybridizing species in mixtures poisoned reactions. These results provide a basis for improved mutagenesis efficiencies and increased diversities of cognate protein libraries.  相似文献   

11.
Because of their limited size and complexity, de novo designed proteins are particularly useful for the detailed investigation of folding thermodynamics and mechanisms. Here, we describe how subtle changes in the hydrophobic core of a model three-helix bundle protein (GM-0) alter its folding energetics. To explore the folding tolerance of GM-0 toward amino acid sequence variability, two mutant proteins (GM-1 and GM-2) were generated. In the mutants, cavities were created in the hydrophobic core of the protein by either singly (GM-1; L35A variant) or doubly (GM-2; L35A/I39A variant) replacing large hydrophobic side chains by smaller Ala residues. The folding of GM-0 is characterized by two partially folded intermediate states exhibiting characteristics of molten globules, as evidenced by pressure-unfolding and pressure-assisted cold denaturation experiments. In contrast, the folding energetics of both mutants, GM-1 and GM-2, exhibit only one folding intermediate. Our results support the view that simple but biologically important folding motifs such as the three-helix bundle can reveal complex folding plasticity, and they point to the role of hydrophobic packing as a determinant of the overall stability and folding thermodynamic of the helix bundle.  相似文献   

12.
HO nuclease introduces a specific double-strand break in the mating-type locus (MAT) of Saccharomyces cerevisiae, initiating mating-type interconversion. To define the sequence recognized by HO nuclease, random mutations were produced in a 30-base-pair region homologous to either MAT alpha or MATa by a chemical synthesis procedure. The mutant sites were introduced into S. cerevisiae on a shuttle vector and tested for the ability to stimulate recombination in an assay that mimics mating-type interconversion. The results suggest that a core of 8 noncontiguous bases near the Y-Z junction of MAT is essential for HO nuclease to bind and cleave its recognition site. Other contacts must be required because substrates that contain several mutations outside an intact core reduce or eliminate cleavage in vivo. The results show that HO site recognition is a complex phenomenon, similar to promoter-polymerase interactions.  相似文献   

13.
Posttranslational glycosaminoglycan attachment to decorin, a chondroitin/dermatan sulfate proteoglycan, was studied by expression of a wild-type decorin cDNA and several mutagenized forms in two types of mammalian cells. Transfection of the wild-type cDNA resulted in the synthesis of an authentic chondroitin/dermatan sulfate proteoglycan similar to the decorin molecule synthesized by cultured human fibroblasts. Conversion of the serine residue that serves as the attachment site for the sole glycosaminoglycan chain in decorin to a threonine residue greatly reduced the efficiency of the glycosaminoglycan substitution. Less than 10% of the threonine-mutated core protein acquired a glycosaminoglycan chain, whereas most of the core protein was secreted without such substitution. Expression of cDNA in which an alanine residue had been introduced into the substituted serine position resulted in the secretion of core protein with no detectable glycosaminoglycan. Conversion to alanine of either one of the glycine residues that are adjacent to the substituted serine yielded the proteoglycan form of decorin. These results show that the xylosyltransferase responsible for the initiation of the glycosaminoglycan chain on the core protein can use a threonine residue for this substitution instead of a serine residue, but that such substitution is only partial, creating a "part-time" proteoglycan. Moreover, variations are possible in the sequence context of a glycosaminoglycan-substituted serine residue without loss of glycosaminoglycan substitution. The conformation of the substitution site may therefore be important for xylosyltransferase recognition.  相似文献   

14.
Five moeA mutants were generated by replacing some conserved amino acids of MoeA by site-directed mutagenesis. The mutants were assayed for the ability to restore in vivo nitrate reductase activity of the moeA mutant Escherichia coli JRG97 and in vitro Neurospora crassa nit-1 nitrate reductase activity. The replacements Asp59AlaGly60Ala, Asp259Ala, Pro298AlaPro301Ala abolished the function of MoeA in Mo-molybdopterin formation and stabilization, reflected in the inability to restore nitrate reductase activity. The replacements Gly251AlaGly252Ala reduced, and that of Pro283Ala had no effect, on nitrate reductase activity. E. coli JRG97 cells transformed with mutants that failed to restore nitrate reductase activity showed by HPLC analysis a decreased level of molybdopterin-derived dephospho FormA as compared to bacteria transformed with wild-type moeA. The effects of the amino acid replacements on MoeA function may be explained in correlation with the MoeA crystal structure.  相似文献   

15.
H Adachi  T Ohta  H Matsuzawa 《FEBS letters》1987,226(1):150-154
Penicillin-binding protein (PBP) 2 of Escherichia coli is located in the cytoplasmic membrane. The N-terminal hydrophobic segment (31 amino acids, residues 15-45) of PBP2 was removed by a deletion in the PBP2 gene by site-directed mutagenesis, resulting in the production of a water-soluble form of PBP2 (called PBP2*). PBP2* retained the penicillin-binding activity, was localized in the cytoplasm and was overproduced under the control of the lpp-lac promoter. this indicates that the removed hydrophobic segment is an uncleaved signal sequence required for translocation of PBP2 across the cytoplasmic membrane, and also suggests that the segment anchors the protein to the membrane.  相似文献   

16.
精氨酸脱亚胺酶(ADI)是一种针对精氨酸缺陷型癌症(如:肝癌、黑素瘤)的新药,目前处于临床三期试验。文中通过定点突变技术分析了精氨酸脱亚胺酶的特定氨基酸位点对酶活力的影响机制。针对已报道的关键氨基酸残基A128、H404、I410,采用QuikChange法进行定点突变,获得ADI突变株M1(A128T)、M2(H404R)、M3(I410L)和M4(A128T/H404R)。将突变株在大肠杆菌BL21(DE3)中进行重组表达,并对纯化获得的突变蛋白进行酶学性质研究。结果表明,突变位点A128T和H404R对ADI最适pH的提高,生理中性(pH 7.4)条件下的酶活力和稳定性的提高,以及Km值的降低均具有显著的作用。研究结果为阐明ADI的酶活力影响机制和蛋白质的理性改造提供了一定的依据。  相似文献   

17.
We previously reported that the yeast Saccharomyces cerevisiae ISC1 gene (Yer019w), which has homology to the bacterial sphingomyelinase gene, encodes inositol phosphosphingolipids-phospholipase C, Isc1p [Sawai, H., Okamoto, Y., Luberto, C., Mao, C., Bielawska, A., Domae, M., and Hannun, Y. A. (2000) J. Biol. Chem. 275, 39793-39798]. The present study was conducted to determine specific domains in Isc1p required for catalysis. Several amino acid residues are conserved from bacterial sphingomyelinase to mammalian sphingomyelinase and are also found in ISC1. Individual mutation of the conserved E100, N233, and H334 resulted in complete loss of Isc1p activity, suggesting an essential role in catalysis for these amino acid residues. Isc1p also contains a domain (from G162 to S169) with homology to P-loop domains, found in nucleotide-binding proteins. In addition, two amino acid residues from this domain, D163 and K168, are conserved from bacterial to mammalian sphingomyelinases in this "P-loop-like domain". G162, D163, G167, K168, and S169 were replaced individually with alanine using site-directed mutagenesis. D163A and K168A lost activity completely. Mutations in the other three positions rendered enzyme versions with much reduced but detectable activity. The V(max) values for G162A, G167A, and S169A were reduced, compared with wild type, but the K(m) values for G162A, G167A, and S169A were similar to that of wild type, indicating that the substrate binding efficiency was not greatly altered in these mutants and that the P-loop-like domain of ISC1 might be essential in catalysis of Isc1p. Furthermore, the Mg(2+) K(a) constants for G162A, G167, and S169A were higher than that for wild type, suggesting that this P-loop-like domain may be involved in Mg(2+) binding. Although cell lysates from yeast cells overexpressing all mutants similarly bound to phosphatidylserine (PS), an anionic lipid activator of Isc1p, G162A and G167A required 13.3 mol % PS to achieve maximum activity compared to 6.7 mol % for the wild-type enzyme, suggesting that PS might play a role in optimal catalytic efficiency of Isc1p via this P-loop-like domain. This study provides novel insight into a new domain found in Isc1p and related enzymes.  相似文献   

18.
Bacteriophage M13 coat protein - a 50-residue protein located at the E. coli host membrane during phage reproduction - is subjected to cytoplasmic, membrane-bound, and DNA-interactive environments during the phage life cycle. In research to examine the specific features of primary/secondary structure in the effective transmembrane (TM) region of the protein (residues 21-39: YIGYAWAMVVVIVGATIGI) which modulate its capacity to respond conformationally to the progressive influences of these varying environments, we have prepared over two dozen viable mutant phages with alterations in their coat protein TM regions. Mutants were obtained through use of site-directed mutagenesis techniques in combination with three "randomized" oligonucleotides which spanned the TM region. No subcloning was required. Among mutations observed were those in which each of the four TM Val residues was changed to Ala, and several with increased Ser or Thr content, including one double Ser mutant (G23S-A25S). Polar substitutions arising at Gly23 and Tyr24-including G23D, Y24H, Y24D and Y24N-suggested that this local segment resides external to the host membrane. Milligram quantities of mutant coat proteins are obtained by growing M13 mutant phages in liter preparations, with isotopic (e.g., 13C) labelling at desired sites, for subsequent characterization and conformational analysis in membrane-mimetic media.  相似文献   

19.
Rat cellular retinol-binding protein II (CRBP II) is an abundant 134-residue intestinal protein that binds all-trans-retinol and all-trans-retinal. It belongs to a family of homologous, 15-kDa cytoplasmic proteins that bind hydrophobic ligands in a noncovalent fashion. These binding proteins include a number of proteins that bind long chain fatty acids. X-ray analyses of the structure of two family members, rat intestinal fatty acid-binding protein and bovine myelin P2 protein, indicate that they have a high degree of conformational similarity and that the carboxylate group of their bound fatty acid interacts with a delta-guanidium group of at least 1 of 2 "buried" arginine residues. These 2 Arg residues are conserved in other family members that bind long chain fatty acids and in cellular retinoic acid-binding protein, but are replaced by Gln109 and Gln129 in CRBP II. We have genetically engineered two amino acid substitutions in CRBP II: 1) Gln109 to Arg and 2) Gln129 to Arg. The purified Escherichia coli-derived CRBP II mutant proteins were analyzed by fluorescence and nuclear magnetic resonance spectroscopy. Both mutants exhibit markedly decreased binding of all-trans-retinol and all-trans-retinaldehyde, but no increased binding of all-trans-retinoic acid. Arg substitution for Gln109 but not for Gln129 produces a dramatic increase in palmitate binding activity. Analysis of the endogenous fatty acids associated with the purified E. coli-derived proteins revealed that E. coli-derived intestinal fatty acid binding protein and the Arg109 CRBP II mutant are complexed with endogenous fatty acids in a qualitatively and quantitatively similar manner. These results provide evidence that this internal Arg may play an important role in the binding of long chain fatty acids by members of this protein family.  相似文献   

20.
The human interleukin (IL)-18-binding protein (hIL-18BP) is a naturally occurring antagonist of IL-18, a proinflammatory cytokine that is related to IL-1beta and has an important role in defense against microbial invaders. As its name implies, the hIL-18BP binds to IL-18 with high affinity and prevents the interaction of IL-18 with its receptor. We genetically modified the C terminus of hIL-18BP by appending a 15-amino acid biotinylation recognition site and a six-histidine tag and then performed site-directed mutagenesis to determine the functional epitopes that mediate efficient binding to IL-18. The mutated IL-18BPs were secreted from mammalian cells, captured by metal affinity chromatography, biotinylated in situ, eluted, and immobilized on streptavidin-coated chips. Using surface plasmon resonance, we identified seven amino acids of hIL-18BP which, when changed individually to alanine, caused an 8-750-fold decrease in binding affinity, largely because of increased off-rates. These seven amino acids localized to the predicted beta-strand c and d of hIL-18BP immunoglobulin-like domain, and most had hydrophobic side chains. Just two amino acids, tyrosine 97 and phenylalanine 104, contributed approximately 50% of the binding free energy. Information obtained from these studies could contribute to the design of molecular antagonists of IL-18 for treatment of inflammatory diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号